blob: 35f0fbdd87229e48102a553f838d0288124ffd5f [file] [log] [blame]
/*
* Copyright (c) 1999-2021 Douglas Gilbert.
* All rights reserved.
* Use of this source code is governed by a BSD-style
* license that can be found in the BSD_LICENSE file.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
/* NOTICE:
* On 5th October 2004 (v1.00) this file name was changed from sg_err.c
* to sg_lib.c and the previous GPL was changed to a FreeBSD license.
* The intention is to maintain this file and the related sg_lib.h file
* as open source and encourage their unencumbered use.
*
* CONTRIBUTIONS:
* This file started out as a copy of SCSI opcodes, sense keys and
* additional sense codes (ASC/ASCQ) kept in the Linux SCSI subsystem
* in the kernel source file: drivers/scsi/constant.c . That file
* bore this notice: "Copyright (C) 1993, 1994, 1995 Eric Youngdale"
* and a GPL notice.
*
* Much of the data in this file is derived from SCSI draft standards
* found at https://www.t10.org with the "SCSI Primary Commands-4" (SPC-4)
* being the central point of reference.
*
* Contributions:
* sense key specific field decoding [Trent Piepho 20031116]
*
*/
#define _POSIX_C_SOURCE 200809L /* for posix_memalign() */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <ctype.h>
#define __STDC_FORMAT_MACROS 1
#include <inttypes.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sg_lib.h"
#include "sg_lib_data.h"
#include "sg_unaligned.h"
#include "sg_pr2serr.h"
/* sg_lib_version_str (and datestamp) defined in sg_lib_data.c file */
#define ASCQ_ATA_PT_INFO_AVAILABLE 0x1d /* corresponding ASC is 0 */
typedef unsigned int my_uint; /* convenience to save a few line wraps */
FILE * sg_warnings_strm = NULL; /* would like to default to stderr */
int
pr2ws(const char * fmt, ...)
{
va_list args;
int n;
va_start(args, fmt);
n = vfprintf(sg_warnings_strm ? sg_warnings_strm : stderr, fmt, args);
va_end(args);
return n;
}
/* Users of the sg_pr2serr.h header need this function definition */
int
pr2serr(const char * fmt, ...)
{
va_list args;
int n;
va_start(args, fmt);
n = vfprintf(stderr, fmt, args);
va_end(args);
return n;
}
/* Want safe, 'n += snprintf(b + n, blen - n, ...)' style sequence of
* functions. Returns number of chars placed in cp excluding the
* trailing null char. So for cp_max_len > 0 the return value is always
* < cp_max_len; for cp_max_len <= 1 the return value is 0 and no chars are
* written to cp. Note this means that when cp_max_len = 1, this function
* assumes that cp[0] is the null character and does nothing (and returns
* 0). Linux kernel has a similar function called scnprintf(). Public
* declaration in sg_pr2serr.h header */
int
sg_scnpr(char * cp, int cp_max_len, const char * fmt, ...)
{
va_list args;
int n;
if (cp_max_len < 2)
return 0;
va_start(args, fmt);
n = vsnprintf(cp, cp_max_len, fmt, args);
va_end(args);
return (n < cp_max_len) ? n : (cp_max_len - 1);
}
/* Simple ASCII printable (does not use locale), includes space and excludes
* DEL (0x7f). */
static inline int
my_isprint(int ch)
{
return ((ch >= ' ') && (ch < 0x7f));
}
/* DSENSE is 'descriptor sense' as opposed to the older 'fixed sense'.
* Only (currently) used in SNTL. */
bool
sg_get_initial_dsense(void)
{
int k;
const char * cp;
cp = getenv("SG3_UTILS_DSENSE");
if (cp) {
if (1 == sscanf(cp, "%d", &k))
return k ? true : false;
}
return false;
}
/* Searches 'arr' for match on 'value' then 'peri_type'. If matches
'value' but not 'peri_type' then yields first 'value' match entry.
Last element of 'arr' has NULL 'name'. If no match returns NULL. */
static const struct sg_lib_value_name_t *
get_value_name(const struct sg_lib_value_name_t * arr, int value,
int peri_type)
{
const struct sg_lib_value_name_t * vp = arr;
const struct sg_lib_value_name_t * holdp;
if (peri_type < 0)
peri_type = 0;
for (; vp->name; ++vp) {
if (value == vp->value) {
if (peri_type == vp->peri_dev_type)
return vp;
holdp = vp;
while ((vp + 1)->name && (value == (vp + 1)->value)) {
++vp;
if (peri_type == vp->peri_dev_type)
return vp;
}
return holdp;
}
}
return NULL;
}
/* If this function is not called, sg_warnings_strm will be NULL and all users
* (mainly fprintf() ) need to check and substitute stderr as required */
void
sg_set_warnings_strm(FILE * warnings_strm)
{
sg_warnings_strm = warnings_strm;
}
/* Take care to minimize printf() parsing delays when printing commands */
static char bin2hexascii[] = {'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
/* Given a SCSI command pointed to by cdbp of sz bytes this function forms
* a SCSI command in ASCII surrounded by square brackets in 'b'. 'b' is at
* least blen bytes long. If cmd_name is true then the command is prefixed
* by its SCSI command name (e.g. "VERIFY(10) [2f ...]". The command is
* shown as spaced separated pairs of hexadecimal digits (i.e. 0-9, a-f).
* Each pair represents byte. The leftmost pair of digits is cdbp[0] . If
* sz <= 0 then this function tries to guess the length of the command. */
char *
sg_get_command_str(const uint8_t * cdbp, int sz, bool cmd_name, int blen,
char * b)
{
int k, j, jj;
if ((cdbp == NULL) || (b == NULL) || (blen < 1))
return b;
if (cmd_name && (blen > 16)) {
sg_get_command_name(cdbp, 0, blen, b);
j = (int)strlen(b);
if (j < (blen - 1))
b[j++] = ' ';
} else
j = 0;
if (j >= blen)
goto fini;
b[j++] = '[';
if (j >= blen)
goto fini;
if (sz <= 0) {
if (SG_VARIABLE_LENGTH_CMD == cdbp[0])
sz = cdbp[7] + 8;
else
sz = sg_get_command_size(cdbp[0]);
}
jj = j;
for (k = 0; (k < sz) && (j < (blen - 3)); ++k, j += 3, ++cdbp) {
b[j] = bin2hexascii[(*cdbp >> 4) & 0xf];
b[j + 1] = bin2hexascii[*cdbp & 0xf];
b[j + 2] = ' ';
}
if (j > jj)
--j; /* don't want trailing space before ']' */
if (j >= blen)
goto fini;
b[j++] = ']';
fini:
if (j >= blen)
b[blen - 1] = '\0'; /* truncated string */
else
b[j] = '\0';
return b;
}
#define CMD_NAME_LEN 128
void
sg_print_command_len(const uint8_t * cdbp, int sz)
{
char buff[CMD_NAME_LEN];
sg_get_command_str(cdbp, sz, true, sizeof(buff), buff);
pr2ws("%s\n", buff);
}
void
sg_print_command(const uint8_t * cdbp)
{
sg_print_command_len(cdbp, 0);
}
bool
sg_scsi_status_is_good(int sstatus)
{
sstatus &= 0xfe;
switch (sstatus) {
case SAM_STAT_GOOD:
case SAM_STAT_CONDITION_MET:
return true;
default:
return false;
}
}
bool
sg_scsi_status_is_bad(int sstatus)
{
sstatus &= 0xfe;
switch (sstatus) {
case SAM_STAT_GOOD:
case SAM_STAT_CONDITION_MET:
return false;
default:
return true;
}
}
void
sg_get_scsi_status_str(int scsi_status, int buff_len, char * buff)
{
const struct sg_lib_simple_value_name_t * sstatus_p;
if ((NULL == buff) || (buff_len < 1))
return;
else if (1 == buff_len) {
buff[0] = '\0';
return;
}
scsi_status &= 0x7e; /* sanitize as much as possible */
for (sstatus_p = sg_lib_sstatus_str_arr; sstatus_p->name; ++sstatus_p) {
if (scsi_status == sstatus_p->value)
break;
}
if (sstatus_p->name)
sg_scnpr(buff, buff_len, "%s", sstatus_p->name);
else
sg_scnpr(buff, buff_len, "Unknown status [0x%x]", scsi_status);
}
void
sg_print_scsi_status(int scsi_status)
{
char buff[128];
sg_get_scsi_status_str(scsi_status, sizeof(buff) - 1, buff);
buff[sizeof(buff) - 1] = '\0';
pr2ws("%s ", buff);
}
/* Get sense key from sense buffer. If successful returns a sense key value
* between 0 and 15. If sense buffer cannot be decode, returns -1 . */
int
sg_get_sense_key(const uint8_t * sbp, int sb_len)
{
if ((NULL == sbp) || (sb_len < 2))
return -1;
switch (sbp[0] & 0x7f) {
case 0x70:
case 0x71:
return (sb_len < 3) ? -1 : (sbp[2] & 0xf);
case 0x72:
case 0x73:
return sbp[1] & 0xf;
default:
return -1;
}
}
/* Yield string associated with sense_key value. Returns 'buff'. */
char *
sg_get_sense_key_str(int sense_key, int buff_len, char * buff)
{
if (1 == buff_len) {
buff[0] = '\0';
return buff;
}
if ((sense_key >= 0) && (sense_key < 16))
sg_scnpr(buff, buff_len, "%s", sg_lib_sense_key_desc[sense_key]);
else
sg_scnpr(buff, buff_len, "invalid value: 0x%x", sense_key);
return buff;
}
/* Yield string associated with ASC/ASCQ values. Returns 'buff'. */
char *
sg_get_asc_ascq_str(int asc, int ascq, int buff_len, char * buff)
{
int k, num, rlen;
bool found = false;
if (1 == buff_len) {
buff[0] = '\0';
return buff;
}
for (k = 0; sg_lib_asc_ascq_range[k].text; ++k) {
struct sg_lib_asc_ascq_range_t * ei2p = &sg_lib_asc_ascq_range[k];
if ((ei2p->asc == asc) &&
(ascq >= ei2p->ascq_min) &&
(ascq <= ei2p->ascq_max)) {
found = true;
num = sg_scnpr(buff, buff_len, "Additional sense: ");
rlen = buff_len - num;
sg_scnpr(buff + num, ((rlen > 0) ? rlen : 0), ei2p->text, ascq);
}
}
if (found)
return buff;
for (k = 0; sg_lib_asc_ascq[k].text; ++k) {
struct sg_lib_asc_ascq_t * eip = &sg_lib_asc_ascq[k];
if (eip->asc == asc &&
eip->ascq == ascq) {
found = true;
sg_scnpr(buff, buff_len, "Additional sense: %s", eip->text);
}
}
if (! found) {
if (asc >= 0x80)
sg_scnpr(buff, buff_len, "vendor specific ASC=%02x, ASCQ=%02x "
"(hex)", asc, ascq);
else if (ascq >= 0x80)
sg_scnpr(buff, buff_len, "ASC=%02x, vendor specific qualification "
"ASCQ=%02x (hex)", asc, ascq);
else
sg_scnpr(buff, buff_len, "ASC=%02x, ASCQ=%02x (hex)", asc, ascq);
}
return buff;
}
/* Attempt to find the first SCSI sense data descriptor that matches the
* given 'desc_type'. If found return pointer to start of sense data
* descriptor; otherwise (including fixed format sense data) returns NULL. */
const uint8_t *
sg_scsi_sense_desc_find(const uint8_t * sbp, int sb_len,
int desc_type)
{
int add_sb_len, desc_len, k;
const uint8_t * descp;
if ((sb_len < 8) || (0 == (add_sb_len = sbp[7])))
return NULL;
if ((sbp[0] < 0x72) || (sbp[0] > 0x73))
return NULL;
add_sb_len = (add_sb_len < (sb_len - 8)) ? add_sb_len : (sb_len - 8);
descp = &sbp[8];
for (desc_len = 0, k = 0; k < add_sb_len; k += desc_len) {
int add_d_len;
descp += desc_len;
add_d_len = (k < (add_sb_len - 1)) ? descp[1]: -1;
desc_len = add_d_len + 2;
if (descp[0] == desc_type)
return descp;
if (add_d_len < 0) /* short descriptor ?? */
break;
}
return NULL;
}
/* Returns true if valid bit set, false if valid bit clear. Irrespective the
* information field is written out via 'info_outp' (except when it is
* NULL). Handles both fixed and descriptor sense formats. */
bool
sg_get_sense_info_fld(const uint8_t * sbp, int sb_len,
uint64_t * info_outp)
{
const uint8_t * bp;
if (info_outp)
*info_outp = 0;
if (sb_len < 7)
return false;
switch (sbp[0] & 0x7f) {
case 0x70:
case 0x71:
if (info_outp)
*info_outp = sg_get_unaligned_be32(sbp + 3);
return !!(sbp[0] & 0x80);
case 0x72:
case 0x73:
bp = sg_scsi_sense_desc_find(sbp, sb_len, 0 /* info desc */);
if (bp && (0xa == bp[1])) {
uint64_t ull = sg_get_unaligned_be64(bp + 4);
if (info_outp)
*info_outp = ull;
return !!(bp[2] & 0x80); /* since spc3r23 should be set */
} else
return false;
default:
return false;
}
}
/* Returns true if fixed format or command specific information descriptor
* is found in the descriptor sense; else false. If available the command
* specific information field (4 byte integer in fixed format, 8 byte
* integer in descriptor format) is written out via 'cmd_spec_outp'.
* Handles both fixed and descriptor sense formats. */
bool
sg_get_sense_cmd_spec_fld(const uint8_t * sbp, int sb_len,
uint64_t * cmd_spec_outp)
{
const uint8_t * bp;
if (cmd_spec_outp)
*cmd_spec_outp = 0;
if (sb_len < 7)
return false;
switch (sbp[0] & 0x7f) {
case 0x70:
case 0x71:
if (cmd_spec_outp)
*cmd_spec_outp = sg_get_unaligned_be32(sbp + 8);
return true;
case 0x72:
case 0x73:
bp = sg_scsi_sense_desc_find(sbp, sb_len,
1 /* command specific info desc */);
if (bp && (0xa == bp[1])) {
if (cmd_spec_outp)
*cmd_spec_outp = sg_get_unaligned_be64(bp + 4);
return true;
} else
return false;
default:
return false;
}
}
/* Returns true if any of the 3 bits (i.e. FILEMARK, EOM or ILI) are set.
* In descriptor format if the stream commands descriptor not found
* then returns false. Writes true or false corresponding to these bits to
* the last three arguments if they are non-NULL. */
bool
sg_get_sense_filemark_eom_ili(const uint8_t * sbp, int sb_len,
bool * filemark_p, bool * eom_p, bool * ili_p)
{
const uint8_t * bp;
if (sb_len < 7)
return false;
switch (sbp[0] & 0x7f) {
case 0x70:
case 0x71:
if (sbp[2] & 0xe0) {
if (filemark_p)
*filemark_p = !!(sbp[2] & 0x80);
if (eom_p)
*eom_p = !!(sbp[2] & 0x40);
if (ili_p)
*ili_p = !!(sbp[2] & 0x20);
return true;
} else
return false;
case 0x72:
case 0x73:
/* Look for stream commands sense data descriptor */
bp = sg_scsi_sense_desc_find(sbp, sb_len, 4);
if (bp && (bp[1] >= 2)) {
if (bp[3] & 0xe0) {
if (filemark_p)
*filemark_p = !!(bp[3] & 0x80);
if (eom_p)
*eom_p = !!(bp[3] & 0x40);
if (ili_p)
*ili_p = !!(bp[3] & 0x20);
return true;
}
}
return false;
default:
return false;
}
}
/* Returns true if SKSV is set and sense key is NO_SENSE or NOT_READY. Also
* returns true if progress indication sense data descriptor found. Places
* progress field from sense data where progress_outp points. If progress
* field is not available returns false and *progress_outp is unaltered.
* Handles both fixed and descriptor sense formats.
* Hint: if true is returned *progress_outp may be multiplied by 100 then
* divided by 65536 to get the percentage completion. */
bool
sg_get_sense_progress_fld(const uint8_t * sbp, int sb_len,
int * progress_outp)
{
const uint8_t * bp;
int sk, sk_pr;
if (sb_len < 7)
return false;
switch (sbp[0] & 0x7f) {
case 0x70:
case 0x71:
sk = (sbp[2] & 0xf);
if ((sb_len < 18) ||
((SPC_SK_NO_SENSE != sk) && (SPC_SK_NOT_READY != sk)))
return false;
if (sbp[15] & 0x80) { /* SKSV bit set */
if (progress_outp)
*progress_outp = sg_get_unaligned_be16(sbp + 16);
return true;
} else
return false;
case 0x72:
case 0x73:
/* sense key specific progress (0x2) or progress descriptor (0xa) */
sk = (sbp[1] & 0xf);
sk_pr = (SPC_SK_NO_SENSE == sk) || (SPC_SK_NOT_READY == sk);
if (sk_pr && ((bp = sg_scsi_sense_desc_find(sbp, sb_len, 2))) &&
(0x6 == bp[1]) && (0x80 & bp[4])) {
if (progress_outp)
*progress_outp = sg_get_unaligned_be16(bp + 5);
return true;
} else if (((bp = sg_scsi_sense_desc_find(sbp, sb_len, 0xa))) &&
((0x6 == bp[1]))) {
if (progress_outp)
*progress_outp = sg_get_unaligned_be16(bp + 6);
return true;
} else
return false;
default:
return false;
}
}
char *
sg_get_pdt_str(int pdt, int buff_len, char * buff)
{
if ((pdt < 0) || (pdt > 31))
sg_scnpr(buff, buff_len, "bad pdt");
else
sg_scnpr(buff, buff_len, "%s", sg_lib_pdt_strs[pdt]);
return buff;
}
int
sg_lib_pdt_decay(int pdt)
{
if ((pdt < 0) || (pdt > 31))
return 0;
return sg_lib_pdt_decay_arr[pdt];
}
char *
sg_get_trans_proto_str(int tpi, int buff_len, char * buff)
{
if ((tpi < 0) || (tpi > 15))
sg_scnpr(buff, buff_len, "bad tpi");
else
sg_scnpr(buff, buff_len, "%s", sg_lib_transport_proto_strs[tpi]);
return buff;
}
#define TRANSPORT_ID_MIN_LEN 24
char *
sg_decode_transportid_str(const char * lip, uint8_t * bp, int bplen,
bool only_one, int blen, char * b)
{
int num, k, n;
uint64_t ull;
int bump;
if ((NULL == b) || (blen < 1))
return b;
else if (1 == blen) {
b[0] = '\0';
return b;
}
if (NULL == lip)
lip = "";
/* bump = TRANSPORT_ID_MIN_LEN; // some old compilers insisted on this */
for (k = 0, n = 0; bplen > 0; ++k, bp += bump, bplen -= bump) {
int proto_id, normal_len, tpid_format;
if ((k > 0) && only_one)
break;
if ((bplen < 24) || (0 != (bplen % 4)))
n += sg_scnpr(b + n, blen - n, "%sTransport Id short or not "
"multiple of 4 [length=%d]:\n", lip, blen);
else
n += sg_scnpr(b + n, blen - n, "%sTransport Id of initiator:\n",
lip);
tpid_format = ((bp[0] >> 6) & 0x3);
proto_id = (bp[0] & 0xf);
normal_len = (bplen > TRANSPORT_ID_MIN_LEN) ?
TRANSPORT_ID_MIN_LEN : bplen;
switch (proto_id) {
case TPROTO_FCP: /* Fibre channel */
n += sg_scnpr(b + n, blen - n, "%s FCP-2 World Wide Name:\n",
lip);
if (0 != tpid_format)
n += sg_scnpr(b + n, blen - n, "%s [Unexpected TPID format: "
"%d]\n", lip, tpid_format);
n += hex2str(bp + 8, 8, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_SPI: /* Scsi Parallel Interface, obsolete */
n += sg_scnpr(b + n, blen - n, "%s Parallel SCSI initiator SCSI "
"address: 0x%x\n", lip,
sg_get_unaligned_be16(bp + 2));
if (0 != tpid_format)
n += sg_scnpr(b + n, blen - n, "%s [Unexpected TPID format: "
"%d]\n", lip, tpid_format);
n += sg_scnpr(b + n, blen - n, "%s relative port number (of "
"corresponding target): 0x%x\n", lip,
sg_get_unaligned_be16(bp + 6));
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_SSA:
n += sg_scnpr(b + n, blen - n, "%s SSA (transport id not "
"defined):\n", lip);
n += sg_scnpr(b + n, blen - n, "%s TPID format: %d\n", lip,
tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_1394: /* IEEE 1394 */
n += sg_scnpr(b + n, blen - n, "%s IEEE 1394 EUI-64 name:\n",
lip);
if (0 != tpid_format)
n += sg_scnpr(b + n, blen - n, "%s [Unexpected TPID format: "
"%d]\n", lip, tpid_format);
n += hex2str(&bp[8], 8, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_SRP: /* SCSI over RDMA */
n += sg_scnpr(b + n, blen - n, "%s RDMA initiator port "
"identifier:\n", lip);
if (0 != tpid_format)
n += sg_scnpr(b + n, blen - n, "%s [Unexpected TPID format: "
"%d]\n", lip, tpid_format);
n += hex2str(bp + 8, 16, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_ISCSI:
n += sg_scnpr(b + n, blen - n, "%s iSCSI ", lip);
num = sg_get_unaligned_be16(bp + 2);
if (0 == tpid_format)
n += sg_scnpr(b + n, blen - n, "name: %.*s\n", num, &bp[4]);
else if (1 == tpid_format)
n += sg_scnpr(b + n, blen - n, "world wide unique port id: "
"%.*s\n", num, &bp[4]);
else {
n += sg_scnpr(b + n, blen - n, " [Unexpected TPID format: "
"%d]\n", tpid_format);
n += hex2str(bp, num + 4, lip, 0, blen - n, b + n);
}
bump = (((num + 4) < TRANSPORT_ID_MIN_LEN) ?
TRANSPORT_ID_MIN_LEN : num + 4);
break;
case TPROTO_SAS:
ull = sg_get_unaligned_be64(bp + 4);
n += sg_scnpr(b + n, blen - n, "%s SAS address: 0x%" PRIx64 "\n",
lip, ull);
if (0 != tpid_format)
n += sg_scnpr(b + n, blen - n, "%s [Unexpected TPID format: "
"%d]\n", lip, tpid_format);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_ADT: /* no TransportID defined by T10 yet */
n += sg_scnpr(b + n, blen - n, "%s ADT:\n", lip);
n += sg_scnpr(b + n, blen - n, "%s TPID format: %d\n", lip,
tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_ATA: /* no TransportID defined by T10 yet */
n += sg_scnpr(b + n, blen - n, "%s ATAPI:\n", lip);
n += sg_scnpr(b + n, blen - n, "%s TPID format: %d\n", lip,
tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_UAS: /* no TransportID defined by T10 yet */
n += sg_scnpr(b + n, blen - n, "%s UAS:\n", lip);
n += sg_scnpr(b + n, blen - n, "%s TPID format: %d\n", lip,
tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_SOP:
n += sg_scnpr(b + n, blen - n, "%s SOP ", lip);
num = sg_get_unaligned_be16(bp + 2);
if (0 == tpid_format)
n += sg_scnpr(b + n, blen - n, "Routing ID: 0x%x\n", num);
else {
n += sg_scnpr(b + n, blen - n, " [Unexpected TPID format: "
"%d]\n", tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
}
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_PCIE: /* no TransportID defined by T10 yet */
n += sg_scnpr(b + n, blen - n, "%s PCIE:\n", lip);
n += sg_scnpr(b + n, blen - n, "%s TPID format: %d\n", lip,
tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
case TPROTO_NONE: /* no TransportID defined by T10 */
n += sg_scnpr(b + n, blen - n, "%s No specified protocol\n",
lip);
/* n += hex2str(bp, ((bplen > 24) ? 24 : bplen),
* lip, 0, blen - n, b + n); */
bump = TRANSPORT_ID_MIN_LEN;
break;
default:
n += sg_scnpr(b + n, blen - n, "%s unknown protocol id=0x%x "
"TPID format=%d\n", lip, proto_id, tpid_format);
n += hex2str(bp, normal_len, lip, 1, blen - n, b + n);
bump = TRANSPORT_ID_MIN_LEN;
break;
}
}
return b;
}
static const char * desig_code_set_str_arr[] =
{
"Reserved [0x0]",
"Binary",
"ASCII",
"UTF-8",
"Reserved [0x4]", "Reserved [0x5]", "Reserved [0x6]", "Reserved [0x7]",
"Reserved [0x8]", "Reserved [0x9]", "Reserved [0xa]", "Reserved [0xb]",
"Reserved [0xc]", "Reserved [0xd]", "Reserved [0xe]", "Reserved [0xf]",
};
const char *
sg_get_desig_code_set_str(int val)
{
if ((val >= 0) && (val < (int)SG_ARRAY_SIZE(desig_code_set_str_arr)))
return desig_code_set_str_arr[val];
else
return NULL;
}
static const char * desig_assoc_str_arr[] =
{
"Addressed logical unit",
"Target port", /* that received request; unless SCSI ports VPD */
"Target device that contains addressed lu",
"Reserved [0x3]",
};
const char *
sg_get_desig_assoc_str(int val)
{
if ((val >= 0) && (val < (int)SG_ARRAY_SIZE(desig_assoc_str_arr)))
return desig_assoc_str_arr[val];
else
return NULL;
}
static const char * desig_type_str_arr[] =
{
"vendor specific [0x0]",
"T10 vendor identification",
"EUI-64 based",
"NAA",
"Relative target port",
"Target port group", /* spc4r09: _primary_ target port group */
"Logical unit group",
"MD5 logical unit identifier",
"SCSI name string",
"Protocol specific port identifier", /* spc4r36 */
"UUID identifier", /* spc5r08 */
"Reserved [0xb]",
"Reserved [0xc]", "Reserved [0xd]", "Reserved [0xe]", "Reserved [0xf]",
};
const char *
sg_get_desig_type_str(int val)
{
if ((val >= 0) && (val < (int)SG_ARRAY_SIZE(desig_type_str_arr)))
return desig_type_str_arr[val];
else
return NULL;
}
char *
sg_get_zone_type_str(uint8_t zt, int buff_len, char * buff)
{
if ((NULL == buff) || (buff_len < 1))
return NULL;
switch (zt) {
case 1:
sg_scnpr(buff, buff_len, "conventional");
break;
case 2:
sg_scnpr(buff, buff_len, "sequential write required");
break;
case 3:
sg_scnpr(buff, buff_len, "sequential write preferred");
break;
case 4:
sg_scnpr(buff, buff_len, "sequential or before required");
break;
case 5:
sg_scnpr(buff, buff_len, "gap");
break;
default:
sg_scnpr(buff, buff_len, "unknown [0x%x]", zt);
break;
}
return buff;
}
/* Expects a T10 UUID designator (as found in the Device Identification VPD
* page) pointed to by 'dp'. To not produce an error string in 'b', c_set
* should be 1 (binary) and dlen should be 18. Currently T10 only supports
* locally assigned UUIDs. Writes output to string 'b' of no more than blen
* bytes and returns the number of bytes actually written to 'b' but doesn't
* count the trailing null character it always appends (if blen > 0). 'lip'
* is lead-in string (on each line) than may be NULL. skip_prefix avoids
* outputting: ' Locally assigned UUID: ' before the UUID. */
int
sg_t10_uuid_desig2str(const uint8_t *dp, int dlen, int c_set, bool do_long,
bool skip_prefix, const char * lip /* lead-in */,
int blen, char * b)
{
int m;
int n = 0;
if (NULL == lip)
lip = "";
if (1 != c_set) {
n += sg_scnpr(b + n, blen - n, "%s << expected binary "
"code_set >>\n", lip);
n += hex2str(dp, dlen, lip, 0, blen - n, b + n);
return n;
}
if ((1 != ((dp[0] >> 4) & 0xf)) || (18 != dlen)) {
n += sg_scnpr(b + n, blen - n, "%s << expected locally "
"assigned UUID, 16 bytes long >>\n", lip);
n += hex2str(dp, dlen, lip, 0, blen - n, b + n);
return n;
}
if (skip_prefix) {
if (strlen(lip) > 0)
n += sg_scnpr(b + n, blen - n, "%s", lip);
} else
n += sg_scnpr(b + n, blen - n, "%s Locally assigned UUID: ",
lip);
for (m = 0; m < 16; ++m) {
if ((4 == m) || (6 == m) || (8 == m) || (10 == m))
n += sg_scnpr(b + n, blen - n, "-");
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)dp[2 + m]);
}
n += sg_scnpr(b + n, blen - n, "\n");
if (do_long) {
n += sg_scnpr(b + n, blen - n, "%s [0x", lip);
for (m = 0; m < 16; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)dp[2 + m]);
n += sg_scnpr(b + n, blen - n, "]\n");
}
return n;
}
int
sg_get_designation_descriptor_str(const char * lip, const uint8_t * ddp,
int dd_len, bool print_assoc, bool do_long,
int blen, char * b)
{
int m, p_id, piv, c_set, assoc, desig_type, ci_off, c_id, d_id, naa;
int vsi, k, n, dlen;
const uint8_t * ip;
uint64_t vsei;
char e[64];
const char * cp;
n = 0;
if (NULL == lip)
lip = "";
if (dd_len < 4) {
n += sg_scnpr(b + n, blen - n, "%sdesignator desc too short: got "
"length of %d want 4 or more\n", lip, dd_len);
return n;
}
dlen = ddp[3];
if (dlen > (dd_len - 4)) {
n += sg_scnpr(b + n, blen - n, "%sdesignator too long: says it is %d "
"bytes, but given %d bytes\n", lip, dlen, dd_len - 4);
return n;
}
ip = ddp + 4;
p_id = ((ddp[0] >> 4) & 0xf);
c_set = (ddp[0] & 0xf);
piv = ((ddp[1] & 0x80) ? 1 : 0);
assoc = ((ddp[1] >> 4) & 0x3);
desig_type = (ddp[1] & 0xf);
if (print_assoc && ((cp = sg_get_desig_assoc_str(assoc))))
n += sg_scnpr(b + n, blen - n, "%s %s:\n", lip, cp);
n += sg_scnpr(b + n, blen - n, "%s designator type: ", lip);
cp = sg_get_desig_type_str(desig_type);
if (cp)
n += sg_scnpr(b + n, blen - n, "%s", cp);
n += sg_scnpr(b + n, blen - n, ", code set: ");
cp = sg_get_desig_code_set_str(c_set);
if (cp)
n += sg_scnpr(b + n, blen - n, "%s", cp);
n += sg_scnpr(b + n, blen - n, "\n");
if (piv && ((1 == assoc) || (2 == assoc)))
n += sg_scnpr(b + n, blen - n, "%s transport: %s\n", lip,
sg_get_trans_proto_str(p_id, sizeof(e), e));
/* printf(" associated with the %s\n", sdparm_assoc_arr[assoc]); */
switch (desig_type) {
case 0: /* vendor specific */
k = 0;
if ((1 == c_set) || (2 == c_set)) { /* ASCII or UTF-8 */
for (k = 0; (k < dlen) && my_isprint(ip[k]); ++k)
;
if (k >= dlen)
k = 1;
}
if (k)
n += sg_scnpr(b + n, blen - n, "%s vendor specific: %.*s\n",
lip, dlen, ip);
else {
n += sg_scnpr(b + n, blen - n, "%s vendor specific:\n", lip);
n += hex2str(ip, dlen, lip, 0, blen - n, b + n);
}
break;
case 1: /* T10 vendor identification */
n += sg_scnpr(b + n, blen - n, "%s vendor id: %.8s\n", lip, ip);
if (dlen > 8) {
if ((2 == c_set) || (3 == c_set)) { /* ASCII or UTF-8 */
n += sg_scnpr(b + n, blen - n, "%s vendor specific: "
"%.*s\n", lip, dlen - 8, ip + 8);
} else {
n += sg_scnpr(b + n, blen - n, "%s vendor specific: 0x",
lip);
for (m = 8; m < dlen; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "\n");
}
}
break;
case 2: /* EUI-64 based */
if (! do_long) {
if ((8 != dlen) && (12 != dlen) && (16 != dlen)) {
n += sg_scnpr(b + n, blen - n, "%s << expect 8, 12 and "
"16 byte EUI, got %d >>\n", lip, dlen);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
n += sg_scnpr(b + n, blen - n, "%s 0x", lip);
for (m = 0; m < dlen; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "\n");
break;
}
n += sg_scnpr(b + n, blen - n, "%s EUI-64 based %d byte "
"identifier\n", lip, dlen);
if (1 != c_set) {
n += sg_scnpr(b + n, blen - n, "%s << expected binary "
"code_set (1) >>\n", lip);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
ci_off = 0;
if (16 == dlen) { /* first 8 bytes are 'Identifier Extension' */
uint64_t id_ext = sg_get_unaligned_be64(ip);
ci_off = 8;
n += sg_scnpr(b + n, blen - n, "%s Identifier extension: 0x%"
PRIx64 "\n", lip, id_ext);
} else if ((8 != dlen) && (12 != dlen)) {
n += sg_scnpr(b + n, blen - n, "%s << can only decode 8, 12 "
"and 16 byte ids >>\n", lip);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
c_id = sg_get_unaligned_be24(ip + ci_off);
n += sg_scnpr(b + n, blen - n, "%s IEEE Company_id: 0x%x\n", lip,
c_id);
vsei = 0;
for (m = 0; m < 5; ++m) {
if (m > 0)
vsei <<= 8;
vsei |= ip[ci_off + 3 + m];
}
n += sg_scnpr(b + n, blen - n, "%s Vendor Specific Extension "
"Identifier: 0x%" PRIx64 "\n", lip, vsei);
if (12 == dlen) {
d_id = sg_get_unaligned_be32(ip + 8);
n += sg_scnpr(b + n, blen - n, "%s Directory ID: 0x%x\n",
lip, d_id);
}
break;
case 3: /* NAA <n> */
if (1 != c_set) {
n += sg_scnpr(b + n, blen - n, "%s << unexpected code set "
"%d for NAA >>\n", lip, c_set);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
naa = (ip[0] >> 4) & 0xff;
switch (naa) {
case 2: /* NAA 2: IEEE Extended */
if (8 != dlen) {
n += sg_scnpr(b + n, blen - n, "%s << unexpected NAA 2 "
"identifier length: 0x%x >>\n", lip, dlen);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
d_id = (((ip[0] & 0xf) << 8) | ip[1]);
c_id = sg_get_unaligned_be24(ip + 2);
vsi = sg_get_unaligned_be24(ip + 5);
if (do_long) {
n += sg_scnpr(b + n, blen - n, "%s NAA 2, vendor "
"specific identifier A: 0x%x\n", lip, d_id);
n += sg_scnpr(b + n, blen - n, "%s IEEE Company_id: "
"0x%x\n", lip, c_id);
n += sg_scnpr(b + n, blen - n, "%s vendor specific "
"identifier B: 0x%x\n", lip, vsi);
n += sg_scnpr(b + n, blen - n, "%s [0x", lip);
for (m = 0; m < 8; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "]\n");
}
n += sg_scnpr(b + n, blen - n, "%s 0x", lip);
for (m = 0; m < 8; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "\n");
break;
case 3: /* NAA 3: Locally assigned */
if (8 != dlen) {
n += sg_scnpr(b + n, blen - n, "%s << unexpected NAA 3 "
"identifier length: 0x%x >>\n", lip, dlen);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
if (do_long)
n += sg_scnpr(b + n, blen - n, "%s NAA 3, Locally "
"assigned:\n", lip);
n += sg_scnpr(b + n, blen - n, "%s 0x", lip);
for (m = 0; m < 8; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "\n");
break;
case 5: /* NAA 5: IEEE Registered */
if (8 != dlen) {
n += sg_scnpr(b + n, blen - n, "%s << unexpected NAA 5 "
"identifier length: 0x%x >>\n", lip, dlen);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
c_id = (((ip[0] & 0xf) << 20) | (ip[1] << 12) |
(ip[2] << 4) | ((ip[3] & 0xf0) >> 4));
vsei = ip[3] & 0xf;
for (m = 1; m < 5; ++m) {
vsei <<= 8;
vsei |= ip[3 + m];
}
if (do_long) {
n += sg_scnpr(b + n, blen - n, "%s NAA 5, IEEE "
"Company_id: 0x%x\n", lip, c_id);
n += sg_scnpr(b + n, blen - n, "%s Vendor Specific "
"Identifier: 0x%" PRIx64 "\n", lip, vsei);
n += sg_scnpr(b + n, blen - n, "%s [0x", lip);
for (m = 0; m < 8; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "]\n");
} else {
n += sg_scnpr(b + n, blen - n, "%s 0x", lip);
for (m = 0; m < 8; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "\n");
}
break;
case 6: /* NAA 6: IEEE Registered extended */
if (16 != dlen) {
n += sg_scnpr(b + n, blen - n, "%s << unexpected NAA 6 "
"identifier length: 0x%x >>\n", lip, dlen);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
c_id = (((ip[0] & 0xf) << 20) | (ip[1] << 12) |
(ip[2] << 4) | ((ip[3] & 0xf0) >> 4));
vsei = ip[3] & 0xf;
for (m = 1; m < 5; ++m) {
vsei <<= 8;
vsei |= ip[3 + m];
}
if (do_long) {
n += sg_scnpr(b + n, blen - n, "%s NAA 6, IEEE "
"Company_id: 0x%x\n", lip, c_id);
n += sg_scnpr(b + n, blen - n, "%s Vendor Specific "
"Identifier: 0x%" PRIx64 "\n", lip, vsei);
vsei = sg_get_unaligned_be64(ip + 8);
n += sg_scnpr(b + n, blen - n, "%s Vendor Specific "
"Identifier Extension: 0x%" PRIx64 "\n", lip,
vsei);
n += sg_scnpr(b + n, blen - n, "%s [0x", lip);
for (m = 0; m < 16; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "]\n");
} else {
n += sg_scnpr(b + n, blen - n, "%s 0x", lip);
for (m = 0; m < 16; ++m)
n += sg_scnpr(b + n, blen - n, "%02x", (my_uint)ip[m]);
n += sg_scnpr(b + n, blen - n, "\n");
}
break;
default:
n += sg_scnpr(b + n, blen - n, "%s << unexpected NAA [0x%x] "
">>\n", lip, naa);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
break;
case 4: /* Relative target port */
if ((1 != c_set) || (1 != assoc) || (4 != dlen)) {
n += sg_scnpr(b + n, blen - n, "%s << expected binary "
"code_set, target port association, length 4 >>\n",
lip);
n += hex2str(ip, dlen, "", 1, blen - n, b + n);
break;
}
d_id = sg_get_unaligned_be16(ip + 2);
n += sg_scnpr(b + n, blen - n, "%s Relative target port: 0x%x\n",
lip, d_id);
break;
case 5: /* (primary) Target port group */
if ((1 != c_set) || (1 != assoc) || (4 != dlen)) {
n += sg_scnpr(b + n, blen - n, "%s << expected binary "
"code_set, target port association, length 4 >>\n",
lip);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
d_id = sg_get_unaligned_be16(ip + 2);
n += sg_scnpr(b + n, blen - n, "%s Target port group: 0x%x\n",
lip, d_id);
break;
case 6: /* Logical unit group */
if ((1 != c_set) || (0 != assoc) || (4 != dlen)) {
n += sg_scnpr(b + n, blen - n, "%s << expected binary "
"code_set, logical unit association, length 4 >>\n",
lip);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
d_id = sg_get_unaligned_be16(ip + 2);
n += sg_scnpr(b + n, blen - n, "%s Logical unit group: 0x%x\n",
lip, d_id);
break;
case 7: /* MD5 logical unit identifier */
if ((1 != c_set) || (0 != assoc)) {
n += sg_scnpr(b + n, blen - n, "%s << expected binary "
"code_set, logical unit association >>\n", lip);
n += hex2str(ip, dlen, "", 1, blen - n, b + n);
break;
}
n += sg_scnpr(b + n, blen - n, "%s MD5 logical unit "
"identifier:\n", lip);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
case 8: /* SCSI name string */
if (3 != c_set) { /* accept ASCII as subset of UTF-8 */
if (2 == c_set) {
if (do_long)
n += sg_scnpr(b + n, blen - n, "%s << expected "
"UTF-8, use ASCII >>\n", lip);
} else {
n += sg_scnpr(b + n, blen - n, "%s << expected UTF-8 "
"code_set >>\n", lip);
n += hex2str(ip, dlen, lip, 0, blen - n, b + n);
break;
}
}
n += sg_scnpr(b + n, blen - n, "%s SCSI name string:\n", lip);
/* does %s print out UTF-8 ok??
* Seems to depend on the locale. Looks ok here with my
* locale setting: en_AU.UTF-8
*/
n += sg_scnpr(b + n, blen - n, "%s %.*s\n", lip, dlen,
(const char *)ip);
break;
case 9: /* Protocol specific port identifier */
/* added in spc4r36, PIV must be set, proto_id indicates */
/* whether UAS (USB) or SOP (PCIe) or ... */
if (! piv)
n += sg_scnpr(b + n, blen - n, " %s >>>> Protocol specific "
"port identifier expects protocol\n%s "
"identifier to be valid and it is not\n", lip, lip);
if (TPROTO_UAS == p_id) {
n += sg_scnpr(b + n, blen - n, "%s USB device address: "
"0x%x\n", lip, 0x7f & ip[0]);
n += sg_scnpr(b + n, blen - n, "%s USB interface number: "
"0x%x\n", lip, ip[2]);
} else if (TPROTO_SOP == p_id) {
n += sg_scnpr(b + n, blen - n, "%s PCIe routing ID, bus "
"number: 0x%x\n", lip, ip[0]);
n += sg_scnpr(b + n, blen - n, "%s function number: "
"0x%x\n", lip, ip[1]);
n += sg_scnpr(b + n, blen - n, "%s [or device number: "
"0x%x, function number: 0x%x]\n", lip,
(0x1f & (ip[1] >> 3)), 0x7 & ip[1]);
} else
n += sg_scnpr(b + n, blen - n, "%s >>>> unexpected protocol "
"identifier: %s\n%s with Protocol "
"specific port identifier\n", lip,
sg_get_trans_proto_str(p_id, sizeof(e), e), lip);
break;
case 0xa: /* UUID identifier */
n += sg_t10_uuid_desig2str(ip, dlen, c_set, do_long, false, lip,
blen - n, b + n);
break;
default: /* reserved */
n += sg_scnpr(b + n, blen - n, "%s reserved designator=0x%x\n",
lip, desig_type);
n += hex2str(ip, dlen, lip, 1, blen - n, b + n);
break;
}
return n;
}
static int
decode_sks(const char * lip, const uint8_t * descp, int add_d_len,
int sense_key, bool * processedp, int blen, char * b)
{
int progress, pr, rem, n;
n = 0;
if (NULL == lip)
lip = "";
switch (sense_key) {
case SPC_SK_ILLEGAL_REQUEST:
if (add_d_len < 6) {
n += sg_scnpr(b + n, blen - n, "Field pointer: ");
goto too_short;
}
/* abbreviate to fit on one line */
n += sg_scnpr(b + n, blen - n, "Field pointer:\n");
n += sg_scnpr(b + n, blen - n, "%s Error in %s: byte %d", lip,
(descp[4] & 0x40) ? "Command" : "Data parameters",
sg_get_unaligned_be16(descp + 5));
if (descp[4] & 0x08) {
n += sg_scnpr(b + n, blen - n, " bit %d\n", descp[4] & 0x07);
} else
n += sg_scnpr(b + n, blen - n, "\n");
break;
case SPC_SK_HARDWARE_ERROR:
case SPC_SK_MEDIUM_ERROR:
case SPC_SK_RECOVERED_ERROR:
n += sg_scnpr(b + n, blen - n, "Actual retry count: ");
if (add_d_len < 6)
goto too_short;
n += sg_scnpr(b + n, blen - n,"%u\n",
sg_get_unaligned_be16(descp + 5));
break;
case SPC_SK_NO_SENSE:
case SPC_SK_NOT_READY:
n += sg_scnpr(b + n, blen - n, "Progress indication: ");
if (add_d_len < 6)
goto too_short;
progress = sg_get_unaligned_be16(descp + 5);
pr = (progress * 100) / 65536;
rem = ((progress * 100) % 65536) / 656;
n += sg_scnpr(b + n, blen - n, "%d.%02d%%\n", pr, rem);
break;
case SPC_SK_COPY_ABORTED:
n += sg_scnpr(b + n, blen - n, "Segment pointer:\n");
if (add_d_len < 6)
goto too_short;
n += sg_scnpr(b + n, blen - n, "%s Relative to start of %s, "
"byte %d", lip, (descp[4] & 0x20) ?
"segment descriptor" : "parameter list",
sg_get_unaligned_be16(descp + 5));
if (descp[4] & 0x08)
n += sg_scnpr(b + n, blen - n, " bit %d\n", descp[4] & 0x07);
else
n += sg_scnpr(b + n, blen - n, "\n");
break;
case SPC_SK_UNIT_ATTENTION:
n += sg_scnpr(b + n, blen - n, "Unit attention condition queue:\n");
n += sg_scnpr(b + n, blen - n, "%s overflow flag is %d\n", lip,
!!(descp[4] & 0x1));
break;
default:
n += sg_scnpr(b + n, blen - n, "Sense_key: 0x%x unexpected\n",
sense_key);
*processedp = false;
break;
}
return n;
too_short:
n += sg_scnpr(b + n, blen - n, "%s\n", " >> descriptor too short");
*processedp = false;
return n;
}
#define TPGS_STATE_OPTIMIZED 0x0
#define TPGS_STATE_NONOPTIMIZED 0x1
#define TPGS_STATE_STANDBY 0x2
#define TPGS_STATE_UNAVAILABLE 0x3
#define TPGS_STATE_OFFLINE 0xe
#define TPGS_STATE_TRANSITIONING 0xf
static int
decode_tpgs_state(int st, char * b, int blen)
{
switch (st) {
case TPGS_STATE_OPTIMIZED:
return sg_scnpr(b, blen, "active/optimized");
case TPGS_STATE_NONOPTIMIZED:
return sg_scnpr(b, blen, "active/non optimized");
case TPGS_STATE_STANDBY:
return sg_scnpr(b, blen, "standby");
case TPGS_STATE_UNAVAILABLE:
return sg_scnpr(b, blen, "unavailable");
case TPGS_STATE_OFFLINE:
return sg_scnpr(b, blen, "offline");
case TPGS_STATE_TRANSITIONING:
return sg_scnpr(b, blen, "transitioning between states");
default:
return sg_scnpr(b, blen, "unknown: 0x%x", st);
}
}
static int
uds_referral_descriptor_str(char * b, int blen, const uint8_t * dp,
int alen, const char * lip)
{
int n = 0;
int dlen = alen - 2;
int k, j, g, f;
const uint8_t * tp;
char c[40];
if (NULL == lip)
lip = "";
n += sg_scnpr(b + n, blen - n, "%s Not all referrals: %d\n", lip,
!!(dp[2] & 0x1));
dp += 4;
for (k = 0, f = 1; (k + 4) < dlen; k += g, dp += g, ++f) {
int tpgd = dp[3];
uint64_t ull;
g = (tpgd * 4) + 20;
n += sg_scnpr(b + n, blen - n, "%s Descriptor %d\n", lip, f);
if ((k + g) > dlen) {
n += sg_scnpr(b + n, blen - n, "%s truncated descriptor, "
"stop\n", lip);
return n;
}
ull = sg_get_unaligned_be64(dp + 4);
n += sg_scnpr(b + n, blen - n, "%s first uds LBA: 0x%" PRIx64
"\n", lip, ull);
ull = sg_get_unaligned_be64(dp + 12);
n += sg_scnpr(b + n, blen - n, "%s last uds LBA: 0x%" PRIx64
"\n", lip, ull);
for (j = 0; j < tpgd; ++j) {
tp = dp + 20 + (j * 4);
decode_tpgs_state(tp[0] & 0xf, c, sizeof(c));
n += sg_scnpr(b + n, blen - n, "%s tpg: %d state: %s\n",
lip, sg_get_unaligned_be16(tp + 2), c);
}
}
return n;
}
static const char * dd_usage_reason_str_arr[] = {
"Unknown",
"resend this and further commands to:",
"resend this command to:",
"new subsiduary lu added to this administrative lu:",
"administrative lu associated with a preferred binding:",
};
/* Decode descriptor format sense descriptors (assumes sense buffer is
* in descriptor format). 'leadin' is string prepended to each line written
* to 'b', NULL treated as "". Returns the number of bytes written to 'b'
* excluding the trailing '\0'. If problem, returns 0. */
int
sg_get_sense_descriptors_str(const char * lip, const uint8_t * sbp,
int sb_len, int blen, char * b)
{
int add_sb_len, desc_len, k, j, sense_key;
int n, progress, pr, rem;
uint16_t sct_sc;
bool processed;
const uint8_t * descp;
const char * dtsp = " >> descriptor too short";
const char * eccp = "Extended copy command";
const char * ddp = "destination device";
char z[64];
if ((NULL == b) || (blen <= 0))
return 0;
b[0] = '\0';
if (lip)
sg_scnpr(z, sizeof(z), "%.60s ", lip);
else
sg_scnpr(z, sizeof(z), " ");
if ((sb_len < 8) || (0 == (add_sb_len = sbp[7])))
return 0;
add_sb_len = (add_sb_len < (sb_len - 8)) ? add_sb_len : (sb_len - 8);
sense_key = (sbp[1] & 0xf);
for (descp = (sbp + 8), k = 0, n = 0;
(k < add_sb_len) && (n < blen);
k += desc_len, descp += desc_len) {
int add_d_len = (k < (add_sb_len - 1)) ? descp[1] : -1;
if ((k + add_d_len + 2) > add_sb_len)
add_d_len = add_sb_len - k - 2;
desc_len = add_d_len + 2;
n += sg_scnpr(b + n, blen - n, "%s Descriptor type: ", lip);
processed = true;
switch (descp[0]) {
case 0:
n += sg_scnpr(b + n, blen - n, "Information: ");
if (add_d_len >= 10) {
if (! (0x80 & descp[2]))
n += sg_scnpr(b + n, blen - n, "Valid=0 (-> vendor "
"specific) ");
n += sg_scnpr(b + n, blen - n, "0x");
for (j = 0; j < 8; ++j)
n += sg_scnpr(b + n, blen - n, "%02x", descp[4 + j]);
n += sg_scnpr(b + n, blen - n, "\n");
} else {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
}
break;
case 1:
n += sg_scnpr(b + n, blen - n, "Command specific: ");
if (add_d_len >= 10) {
n += sg_scnpr(b + n, blen - n, "0x");
for (j = 0; j < 8; ++j)
n += sg_scnpr(b + n, blen - n, "%02x", descp[4 + j]);
n += sg_scnpr(b + n, blen - n, "\n");
} else {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
}
break;
case 2: /* Sense Key Specific */
n += sg_scnpr(b + n, blen - n, "Sense key specific: ");
n += decode_sks(lip, descp, add_d_len, sense_key, &processed,
blen - n, b + n);
break;
case 3:
n += sg_scnpr(b + n, blen - n, "Field replaceable unit code: ");
if (add_d_len >= 2)
n += sg_scnpr(b + n, blen - n, "0x%x\n", descp[3]);
else {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
}
break;
case 4:
n += sg_scnpr(b + n, blen - n, "Stream commands: ");
if (add_d_len >= 2) {
if (descp[3] & 0x80)
n += sg_scnpr(b + n, blen - n, "FILEMARK");
if (descp[3] & 0x40)
n += sg_scnpr(b + n, blen - n, "End Of Medium (EOM)");
if (descp[3] & 0x20)
n += sg_scnpr(b + n, blen - n, "Incorrect Length "
"Indicator (ILI)");
n += sg_scnpr(b + n, blen - n, "\n");
} else {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
}
break;
case 5:
n += sg_scnpr(b + n, blen - n, "Block commands: ");
if (add_d_len >= 2)
n += sg_scnpr(b + n, blen - n, "Incorrect Length Indicator "
"(ILI) %s\n",
(descp[3] & 0x20) ? "set" : "clear");
else {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
}
break;
case 6:
n += sg_scnpr(b + n, blen - n, "OSD object identification\n");
processed = false;
break;
case 7:
n += sg_scnpr(b + n, blen - n, "OSD response integrity check "
"value\n");
processed = false;
break;
case 8:
n += sg_scnpr(b + n, blen - n, "OSD attribute identification\n");
processed = false;
break;
case 9: /* this is defined in SAT (SAT-2) */
n += sg_scnpr(b + n, blen - n, "ATA Status Return: ");
if (add_d_len >= 12) {
int extend, count;
extend = descp[2] & 1;
count = descp[5] + (extend ? (descp[4] << 8) : 0);
n += sg_scnpr(b + n, blen - n, "extend=%d error=0x%x \n%s"
" count=0x%x ", extend, descp[3], lip,
count);
if (extend)
n += sg_scnpr(b + n, blen - n,
"lba=0x%02x%02x%02x%02x%02x%02x ",
descp[10], descp[8], descp[6], descp[11],
descp[9], descp[7]);
else
n += sg_scnpr(b + n, blen - n, "lba=0x%02x%02x%02x ",
descp[11], descp[9], descp[7]);
n += sg_scnpr(b + n, blen - n, "device=0x%x status=0x%x\n",
descp[12], descp[13]);
} else {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
}
break;
case 0xa:
/* Added in SPC-4 rev 17, became 'Another ...' in rev 34 */
n += sg_scnpr(b + n, blen - n, "Another progress indication: ");
if (add_d_len < 6) {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
break;
}
progress = sg_get_unaligned_be16(descp + 6);
pr = (progress * 100) / 65536;
rem = ((progress * 100) % 65536) / 656;
n += sg_scnpr(b + n, blen - n, "%d.02%d%%\n", pr, rem);
n += sg_scnpr(b + n, blen - n, "%s [sense_key=0x%x "
"asc,ascq=0x%x,0x%x]\n", lip, descp[2], descp[3],
descp[4]);
break;
case 0xb: /* Added in SPC-4 rev 23, defined in SBC-3 rev 22 */
n += sg_scnpr(b + n, blen - n, "User data segment referral: ");
if (add_d_len < 2) {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
break;
}
n += sg_scnpr(b + n, blen - n, "\n");
n += uds_referral_descriptor_str(b + n, blen - n, descp,
add_d_len, lip);
break;
case 0xc: /* Added in SPC-4 rev 28 */
n += sg_scnpr(b + n, blen - n, "Forwarded sense data\n");
if (add_d_len < 2) {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
break;
}
n += sg_scnpr(b + n, blen - n, "%s FSDT: %s\n", lip,
(descp[2] & 0x80) ? "set" : "clear");
j = descp[2] & 0xf;
n += sg_scnpr(b + n, blen - n, "%s Sense data source: ", lip);
switch (j) {
case 0:
n += sg_scnpr(b + n, blen - n, "%s source device\n", eccp);
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
n += sg_scnpr(b + n, blen - n, "%s %s %d\n", eccp, ddp, j - 1);
break;
default:
n += sg_scnpr(b + n, blen - n, "unknown [%d]\n", j);
}
{
char c[480];
sg_get_scsi_status_str(descp[3], sizeof(c) - 1, c);
c[sizeof(c) - 1] = '\0';
n += sg_scnpr(b + n, blen - n, "%s Forwarded status: %s\n",
lip, c);
if (add_d_len > 2) {
/* recursing; hope not to get carried away */
n += sg_scnpr(b + n, blen - n, "%s vvvvvvvvvvvvvvvv\n",
lip);
sg_get_sense_str(lip, descp + 4, add_d_len - 2, false,
sizeof(c), c);
n += sg_scnpr(b + n, blen - n, "%s", c);
n += sg_scnpr(b + n, blen - n, "%s ^^^^^^^^^^^^^^^^\n",
lip);
}
}
break;
case 0xd: /* Added in SBC-3 rev 36d */
/* this descriptor combines descriptors 0, 1, 2 and 3 */
n += sg_scnpr(b + n, blen - n, "Direct-access block device\n");
if (add_d_len < 28) {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
break;
}
if (0x20 & descp[2])
n += sg_scnpr(b + n, blen - n, "%s ILI (incorrect length "
"indication) set\n", lip);
if (0x80 & descp[4]) {
n += sg_scnpr(b + n, blen - n, "%s Sense key specific: ",
lip);
n += decode_sks(lip, descp, add_d_len, sense_key, &processed,
blen - n, b + n);
}
n += sg_scnpr(b + n, blen - n, "%s Field replaceable unit "
"code: 0x%x\n", lip, descp[7]);
if (0x80 & descp[2]) {
n += sg_scnpr(b + n, blen - n, "%s Information: 0x", lip);
for (j = 0; j < 8; ++j)
n += sg_scnpr(b + n, blen - n, "%02x", descp[8 + j]);
n += sg_scnpr(b + n, blen - n, "\n");
}
n += sg_scnpr(b + n, blen - n, "%s Command specific: 0x", lip);
for (j = 0; j < 8; ++j)
n += sg_scnpr(b + n, blen - n, "%02x", descp[16 + j]);
n += sg_scnpr(b + n, blen - n, "\n");
break;
case 0xe: /* Added in SPC-5 rev 6 (for Bind/Unbind) */
n += sg_scnpr(b + n, blen - n, "Device designation\n");
j = (int)SG_ARRAY_SIZE(dd_usage_reason_str_arr);
if (descp[3] < j)
n += sg_scnpr(b + n, blen - n, "%s Usage reason: %s\n",
lip, dd_usage_reason_str_arr[descp[3]]);
else
n += sg_scnpr(b + n, blen - n, "%s Usage reason: "
"reserved[%d]\n", lip, descp[3]);
n += sg_get_designation_descriptor_str(z, descp + 4, descp[1] - 2,
true, false, blen - n,
b + n);
break;
case 0xf: /* Added in SPC-5 rev 10 (for Write buffer) */
n += sg_scnpr(b + n, blen - n, "Microcode activation ");
if (add_d_len < 6) {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
break;
}
progress = sg_get_unaligned_be16(descp + 6);
n += sg_scnpr(b + n, blen - n, "time: ");
if (0 == progress)
n += sg_scnpr(b + n, blen - n, "unknown\n");
else
n += sg_scnpr(b + n, blen - n, "%d seconds\n", progress);
break;
case 0xde: /* NVME Status Field; vendor (sg3_utils) specific */
n += sg_scnpr(b + n, blen - n, "NVMe Status: ");
if (add_d_len < 6) {
n += sg_scnpr(b + n, blen - n, "%s\n", dtsp);
processed = false;
break;
}
n += sg_scnpr(b + n, blen - n, "DNR=%d, M=%d, ",
(int)!!(0x80 & descp[5]), (int)!!(0x40 & descp[5]));
sct_sc = sg_get_unaligned_be16(descp + 6);
n += sg_scnpr(b + n, blen - n, "SCT_SC=0x%x\n", sct_sc);
if (sct_sc > 0) {
char d[80];
n += sg_scnpr(b + n, blen - n, " %s\n",
sg_get_nvme_cmd_status_str(sct_sc, sizeof(d), d));
}
break;
default:
if (descp[0] >= 0x80)
n += sg_scnpr(b + n, blen - n, "Vendor specific [0x%x]\n",
descp[0]);
else
n += sg_scnpr(b + n, blen - n, "Unknown [0x%x]\n", descp[0]);
processed = false;
break;
}
if (! processed) {
if (add_d_len > 0) {
n += sg_scnpr(b + n, blen - n, "%s ", lip);
for (j = 0; j < add_d_len; ++j) {
if ((j > 0) && (0 == (j % 24)))
n += sg_scnpr(b + n, blen - n, "\n%s ", lip);
n += sg_scnpr(b + n, blen - n, "%02x ", descp[j + 2]);
}
n += sg_scnpr(b + n, blen - n, "\n");
}
}
if (add_d_len < 0)
n += sg_scnpr(b + n, blen - n, "%s short descriptor\n", lip);
}
return n;
}
/* Decode SAT ATA PASS-THROUGH fixed format sense. Shows "+" after 'count'
* and/or 'lba' values to indicate that not all data in those fields is shown.
* That extra field information may be available in the ATA pass-through
* results log page parameter with the corresponding 'log_index'. */
static int
sg_get_sense_sat_pt_fixed_str(const char * lip, const uint8_t * sp,
int slen, int blen, char * b)
{
int n = 0;
bool extend, count_upper_nz, lba_upper_nz;
if ((blen < 1) || (slen < 12))
return n;
if (NULL == lip)
lip = "";
if (SPC_SK_RECOVERED_ERROR != (0xf & sp[2]))
n += sg_scnpr(b + n, blen - n, "%s >> expected Sense key: Recovered "
"Error ??\n", lip);
/* Fixed sense command-specific information field starts at sp + 8 */
extend = !!(0x80 & sp[8]);
count_upper_nz = !!(0x40 & sp[8]);
lba_upper_nz = !!(0x20 & sp[8]);
/* Fixed sense information field starts at sp + 3 */
n += sg_scnpr(b + n, blen - n, "%s error=0x%x, status=0x%x, "
"device=0x%x, count(7:0)=0x%x%c\n", lip, sp[3], sp[4],
sp[5], sp[6], (count_upper_nz ? '+' : ' '));
n += sg_scnpr(b + n, blen - n, "%s extend=%d, log_index=0x%x, "
"lba_high,mid,low(7:0)=0x%x,0x%x,0x%x%c\n", lip,
(int)extend, (0xf & sp[8]), sp[9], sp[10], sp[11],
(lba_upper_nz ? '+' : ' '));
return n;
}
/* Fetch sense information */
int
sg_get_sense_str(const char * lip, const uint8_t * sbp, int sb_len,
bool raw_sinfo, int cblen, char * cbp)
{
bool descriptor_format = false;
bool sdat_ovfl = false;
bool valid_info_fld;
int len, progress, n, r, pr, rem, blen;
unsigned int info;
uint8_t resp_code;
const char * ebp = NULL;
char ebuff[64];
char b[256];
struct sg_scsi_sense_hdr ssh;
if ((NULL == cbp) || (cblen <= 0))
return 0;
else if (1 == cblen) {
cbp[0] = '\0';
return 0;
}
blen = sizeof(b);
n = 0;
if (NULL == lip)
lip = "";
if ((NULL == sbp) || (sb_len < 1)) {
n += sg_scnpr(cbp, cblen, "%s >>> sense buffer empty\n", lip);
return n;
}
resp_code = 0x7f & sbp[0];
valid_info_fld = !!(sbp[0] & 0x80);
len = sb_len;
if (sg_scsi_normalize_sense(sbp, sb_len, &ssh)) {
switch (ssh.response_code) {
case 0x70: /* fixed, current */
ebp = "Fixed format, current";
len = (sb_len > 7) ? (sbp[7] + 8) : sb_len;
len = (len > sb_len) ? sb_len : len;
sdat_ovfl = (len > 2) ? !!(sbp[2] & 0x10) : false;
break;
case 0x71: /* fixed, deferred */
/* error related to a previous command */
ebp = "Fixed format, <<<deferred>>>";
len = (sb_len > 7) ? (sbp[7] + 8) : sb_len;
len = (len > sb_len) ? sb_len : len;
sdat_ovfl = (len > 2) ? !!(sbp[2] & 0x10) : false;
break;
case 0x72: /* descriptor, current */
descriptor_format = true;
ebp = "Descriptor format, current";
sdat_ovfl = (sb_len > 4) ? !!(sbp[4] & 0x80) : false;
break;
case 0x73: /* descriptor, deferred */
descriptor_format = true;
ebp = "Descriptor format, <<<deferred>>>";
sdat_ovfl = (sb_len > 4) ? !!(sbp[4] & 0x80) : false;
break;
case 0x0:
ebp = "Response code: 0x0 (?)";
break;
default:
sg_scnpr(ebuff, sizeof(ebuff), "Unknown response code: 0x%x",
ssh.response_code);
ebp = ebuff;
break;
}
n += sg_scnpr(cbp + n, cblen - n, "%s%s; Sense key: %s\n", lip, ebp,
sg_lib_sense_key_desc[ssh.sense_key]);
if (sdat_ovfl)
n += sg_scnpr(cbp + n, cblen - n, "%s<<<Sense data overflow "
"(SDAT_OVFL)>>>\n", lip);
if (descriptor_format) {
n += sg_scnpr(cbp + n, cblen - n, "%s%s\n", lip,
sg_get_asc_ascq_str(ssh.asc, ssh.ascq, blen, b));
n += sg_get_sense_descriptors_str(lip, sbp, len,
cblen - n, cbp + n);
} else if ((len > 12) && (0 == ssh.asc) &&
(ASCQ_ATA_PT_INFO_AVAILABLE == ssh.ascq)) {
/* SAT ATA PASS-THROUGH fixed format */
n += sg_scnpr(cbp + n, cblen - n, "%s%s\n", lip,
sg_get_asc_ascq_str(ssh.asc, ssh.ascq, blen, b));
n += sg_get_sense_sat_pt_fixed_str(lip, sbp, len,
cblen - n, cbp + n);
} else if (len > 2) { /* fixed format */
if (len > 12)
n += sg_scnpr(cbp + n, cblen - n, "%s%s\n", lip,
sg_get_asc_ascq_str(ssh.asc, ssh.ascq, blen, b));
r = 0;
if (strlen(lip) > 0)
r += sg_scnpr(b + r, blen - r, "%s", lip);
if (len > 6) {
info = sg_get_unaligned_be32(sbp + 3);
if (valid_info_fld)
r += sg_scnpr(b + r, blen - r, " Info fld=0x%x [%u] ",
info, info);
else if (info > 0)
r += sg_scnpr(b + r, blen - r, " Valid=0, Info fld=0x%x "
"[%u] ", info, info);
} else
info = 0;
if (sbp[2] & 0xe0) {
if (sbp[2] & 0x80)
r += sg_scnpr(b + r, blen - r, " FMK");
/* current command has read a filemark */
if (sbp[2] & 0x40)
r += sg_scnpr(b + r, blen - r, " EOM");
/* end-of-medium condition exists */
if (sbp[2] & 0x20)
r += sg_scnpr(b + r, blen - r, " ILI");
/* incorrect block length requested */
r += sg_scnpr(b + r, blen - r, "\n");
} else if (valid_info_fld || (info > 0))
r += sg_scnpr(b + r, blen - r, "\n");
if ((len >= 14) && sbp[14])
r += sg_scnpr(b + r, blen - r, "%s Field replaceable unit "
"code: %d\n", lip, sbp[14]);
if ((len >= 18) && (sbp[15] & 0x80)) {
/* sense key specific decoding */
switch (ssh.sense_key) {
case SPC_SK_ILLEGAL_REQUEST:
r += sg_scnpr(b + r, blen - r, "%s Sense Key Specific: "
"Error in %s: byte %d", lip,
((sbp[15] & 0x40) ?
"Command" : "Data parameters"),
sg_get_unaligned_be16(sbp + 16));
if (sbp[15] & 0x08)
r += sg_scnpr(b + r, blen - r, " bit %d\n",
sbp[15] & 0x07);
else
r += sg_scnpr(b + r, blen - r, "\n");
break;
case SPC_SK_NO_SENSE:
case SPC_SK_NOT_READY:
progress = sg_get_unaligned_be16(sbp + 16);
pr = (progress * 100) / 65536;
rem = ((progress * 100) % 65536) / 656;
r += sg_scnpr(b + r, blen - r, "%s Progress indication: "
"%d.%02d%%\n", lip, pr, rem);
break;
case SPC_SK_HARDWARE_ERROR:
case SPC_SK_MEDIUM_ERROR:
case SPC_SK_RECOVERED_ERROR:
r += sg_scnpr(b + r, blen - r, "%s Actual retry count: "
"0x%02x%02x\n", lip, sbp[16], sbp[17]);
break;
case SPC_SK_COPY_ABORTED:
r += sg_scnpr(b + r, blen - r, "%s Segment pointer: ",
lip);
r += sg_scnpr(b + r, blen - r, "Relative to start of %s, "
"byte %d", ((sbp[15] & 0x20) ?
"segment descriptor" : "parameter list"),
sg_get_unaligned_be16(sbp + 16));
if (sbp[15] & 0x08)
r += sg_scnpr(b + r, blen - r, " bit %d\n",
sbp[15] & 0x07);
else
r += sg_scnpr(b + r, blen - r, "\n");
break;
case SPC_SK_UNIT_ATTENTION:
r += sg_scnpr(b + r, blen - r, "%s Unit attention "
"condition queue: ", lip);
r += sg_scnpr(b + r, blen - r, "overflow flag is %d\n",
!!(sbp[15] & 0x1));
break;
default:
r += sg_scnpr(b + r, blen - r, "%s Sense_key: 0x%x "
"unexpected\n", lip, ssh.sense_key);
break;
}
}
if (r > 0)
n += sg_scnpr(cbp + n, cblen - n, "%s", b);
} else
n += sg_scnpr(cbp + n, cblen - n, "%s fixed descriptor length "
"too short, len=%d\n", lip, len);
} else { /* unable to normalise sense buffer, something irregular */
if (sb_len < 4) { /* Too short */
n += sg_scnpr(cbp + n, cblen - n, "%ssense buffer too short (4 "
"byte minimum)\n", lip);
goto check_raw;
}
if (0x7f == resp_code) { /* Vendor specific */
n += sg_scnpr(cbp + n, cblen - n, "%sVendor specific sense "
"buffer, in hex:\n", lip);
n += hex2str(sbp, sb_len, lip, -1, cblen - n, cbp + n);
return n; /* no need to check raw, just output in hex */
}
/* non-extended SCSI-1 sense data ?? */
r = 0;
if (strlen(lip) > 0)
r += sg_scnpr(b + r, blen - r, "%s", lip);
r += sg_scnpr(b + r, blen - r, "Probably uninitialized data.\n%s "
"Try to view as SCSI-1 non-extended sense:\n", lip);
r += sg_scnpr(b + r, blen - r, " AdValid=%d Error class=%d Error "
"code=%d\n", valid_info_fld, ((sbp[0] >> 4) & 0x7),
(sbp[0] & 0xf));
if (valid_info_fld)
sg_scnpr(b + r, blen - r, "%s lba=0x%x\n", lip,
sg_get_unaligned_be24(sbp + 1) & 0x1fffff);
n += sg_scnpr(cbp + n, cblen - n, "%s\n", b);
}
check_raw:
if (raw_sinfo) {
int calculated_len;
char z[64];
n += sg_scnpr(cbp + n, cblen - n, "%s Raw sense data (in hex), "
"sb_len=%d", lip, sb_len);
if (n >= (cblen - 1))
return n;
if ((sb_len > 7) && (sbp[0] >= 0x70) && (sbp[0] < 0x74)) {
calculated_len = sbp[7] + 8;
n += sg_scnpr(cbp + n, cblen - n, ", calculated_len=%d\n",
calculated_len);
} else {
calculated_len = sb_len;
n += sg_scnpr(cbp + n, cblen - n, "\n");
}
if (n >= (cblen - 1))
return n;
sg_scnpr(z, sizeof(z), "%.50s ", lip);
n += hex2str(sbp, calculated_len, z, -1, cblen - n, cbp + n);
}
return n;
}
/* Print sense information */
void
sg_print_sense(const char * leadin, const uint8_t * sbp, int sb_len,
bool raw_sinfo)
{
uint32_t pg_sz = sg_get_page_size();
char *cp;
uint8_t *free_cp;
cp = (char *)sg_memalign(pg_sz, pg_sz, &free_cp, false);
if (NULL == cp)
return;
sg_get_sense_str(leadin, sbp, sb_len, raw_sinfo, pg_sz, cp);
pr2ws("%s", cp);
free(free_cp);
}
/* This examines exit_status and if an error message is known it is output
* as a string to 'b' and true is returned. If 'longer' is true and extra
* information is available then it is added to the output. If no error
* message is available a null character is output and false is returned.
* If exit_status is zero (no error) and 'longer' is true then the string
* 'No errors' is output; if 'longer' is false then a null character is
* output; in both cases true is returned. If exit_status is negative then
* a null character is output and false is returned. All messages are a
* single line (less than 80 characters) with no trailing LF. The output
* string including the trailing null character is no longer than b_len.
* exit_status represents the Unix exit status available after a utility
* finishes executing (for whatever reason). */
bool sg_exit2str(int exit_status, bool longer, int b_len, char *b)
{
const struct sg_value_2names_t * ess = sg_exit_str_arr;
if ((b_len < 1) || (NULL == b))
return false;
/* if there is a valid buffer, initialize it to a valid empty string */
b[0] = '\0';
if (exit_status < 0)
return false;
else if ((0 == exit_status) || (SG_LIB_OK_FALSE == exit_status)) {
if (longer)
goto fini;
return true;
}
if ((exit_status > SG_LIB_OS_BASE_ERR) && /* 51 to 96 inclusive */
(exit_status < SG_LIB_CAT_MALFORMED)) {
snprintf(b, b_len, "%s%s", (longer ? "OS error: " : ""),
safe_strerror(exit_status - SG_LIB_OS_BASE_ERR));
return true;
} else if ((exit_status > 128) && (exit_status < 255)) {
snprintf(b, b_len, "Utility stopped/aborted by signal number: %d",
exit_status - 128);
return true;
}
fini:
for ( ; ess->name; ++ess) {
if (exit_status == ess->value)
break;
}
if (ess->name) {
if (longer && ess->name2)
snprintf(b, b_len, "%s, %s", ess->name, ess->name2);
else
snprintf(b, b_len, "%s", ess->name);
return true;
}
return false;
}
static bool
sg_if_can2fp(const char * leadin, int exit_status, FILE * fp)
{
char b[256];
const char * s = leadin ? leadin : "";
if ((0 == exit_status) || (SG_LIB_OK_FALSE == exit_status))
return true; /* don't print anything */
else if (sg_exit2str(exit_status, false, sizeof(b), b)) {
fprintf(fp, "%s%s\n", s, b);
return true;
} else
return false;
}
/* This examines exit_status and if an error message is known it is output
* to stdout/stderr and true is returned. If no error message is
* available nothing is output and false is returned. If exit_status is
* zero (no error) nothing is output and true is returned. If exit_status
* is negative then nothing is output and false is returned. If leadin is
* non-NULL then it is printed before the error message. All messages are
* a single line with a trailing LF. */
bool
sg_if_can2stdout(const char * leadin, int exit_status)
{
return sg_if_can2fp(leadin, exit_status, stdout);
}
/* See sg_if_can2stdout() comments */
bool
sg_if_can2stderr(const char * leadin, int exit_status)
{
return sg_if_can2fp(leadin, exit_status,
sg_warnings_strm ? sg_warnings_strm : stderr);
}
/* If os_err_num is within bounds then the returned value is 'os_err_num +
* SG_LIB_OS_BASE_ERR' otherwise SG_LIB_OS_BASE_ERR is returned. If
* os_err_num is 0 then 0 is returned. */
int
sg_convert_errno(int os_err_num)
{
if (os_err_num <= 0) {
if (os_err_num < 0)
return SG_LIB_OS_BASE_ERR;
return os_err_num; /* os_err_num of 0 maps to 0 */
}
if (os_err_num < (SG_LIB_CAT_MALFORMED - SG_LIB_OS_BASE_ERR))
return SG_LIB_OS_BASE_ERR + os_err_num;
return SG_LIB_OS_BASE_ERR;
}
static const char * const bad_sense_cat = "Bad sense category";
/* Yield string associated with sense category. Returns 'b' (or pointer
* to "Bad sense category" if 'b' is NULL). If sense_cat unknown then
* yield "Sense category: <sense_cat_val>" string. The original 'sense
* category' concept has been expanded to most detected errors and is
* returned by these utilities as their exit status value (an (unsigned)
* 8 bit value where 0 means good (i.e. no errors)). Uses sg_exit2str()
* function. */
const char *
sg_get_category_sense_str(int sense_cat, int b_len, char * b, int verbose)
{
if (NULL == b)
return bad_sense_cat;
if (b_len <= 0)
return b;
if (! sg_exit2str(sense_cat, (verbose > 0), b_len, b)) {
int n = sg_scnpr(b, b_len, "Sense category: %d", sense_cat);
if ((0 == verbose) && (n < (b_len - 1)))
sg_scnpr(b + n, b_len - n, ", try '-v' option for more "
"information");
}
return b; /* Note that a valid C string is returned in all cases */
}
/* See description in sg_lib.h header file */
bool
sg_scsi_normalize_sense(const uint8_t * sbp, int sb_len,
struct sg_scsi_sense_hdr * sshp)
{
uint8_t resp_code;
if (sshp)
memset(sshp, 0, sizeof(struct sg_scsi_sense_hdr));
if ((NULL == sbp) || (sb_len < 1))
return false;
resp_code = 0x7f & sbp[0];
if ((resp_code < 0x70) || (resp_code > 0x73))
return false;
if (sshp) {
sshp->response_code = resp_code;
if (sshp->response_code >= 0x72) { /* descriptor format */
if (sb_len > 1)
sshp->sense_key = (0xf & sbp[1]);
if (sb_len > 2)
sshp->asc = sbp[2];
if (sb_len > 3)
sshp->ascq = sbp[3];
if (sb_len > 7)
sshp->additional_length = sbp[7];
sshp->byte4 = sbp[4]; /* bit 7: SDAT_OVFL bit */
/* sbp[5] and sbp[6] reserved for descriptor format */
} else { /* fixed format */
if (sb_len > 2)
sshp->sense_key = (0xf & sbp[2]);
if (sb_len > 7) {
sb_len = (sb_len < (sbp[7] + 8)) ? sb_len : (sbp[7] + 8);
if (sb_len > 12)
sshp->asc = sbp[12];
if (sb_len > 13)
sshp->ascq = sbp[13];
}
if (sb_len > 6) { /* lower 3 bytes of INFO field */
sshp->byte4 = sbp[4];
sshp->byte5 = sbp[5];
sshp->byte6 = sbp[6];
}
}
}
return true;
}
/* Returns a SG_LIB_CAT_* value. If cannot decode sense buffer (sbp) or a
* less common sense key then return SG_LIB_CAT_SENSE .*/
int
sg_err_category_sense(const uint8_t * sbp, int sb_len)
{
struct sg_scsi_sense_hdr ssh;
if ((sbp && (sb_len > 2)) &&
(sg_scsi_normalize_sense(sbp, sb_len, &ssh))) {
switch (ssh.sense_key) { /* 0 to 0x1f */
case SPC_SK_NO_SENSE:
return SG_LIB_CAT_NO_SENSE;
case SPC_SK_RECOVERED_ERROR:
return SG_LIB_CAT_RECOVERED;
case SPC_SK_NOT_READY:
return SG_LIB_CAT_NOT_READY;
case SPC_SK_MEDIUM_ERROR:
case SPC_SK_HARDWARE_ERROR:
case SPC_SK_BLANK_CHECK:
return SG_LIB_CAT_MEDIUM_HARD;
case SPC_SK_UNIT_ATTENTION:
return SG_LIB_CAT_UNIT_ATTENTION;
/* used to return SG_LIB_CAT_MEDIA_CHANGED when ssh.asc==0x28 */
case SPC_SK_ILLEGAL_REQUEST:
if ((0x20 == ssh.asc) && (0x0 == ssh.ascq))
return SG_LIB_CAT_INVALID_OP;
else if ((0x21 == ssh.asc) && (0x0 == ssh.ascq))
return SG_LIB_LBA_OUT_OF_RANGE;
else
return SG_LIB_CAT_ILLEGAL_REQ;
break;
case SPC_SK_ABORTED_COMMAND:
if (0x10 == ssh.asc)
return SG_LIB_CAT_PROTECTION;
else
return SG_LIB_CAT_ABORTED_COMMAND;
case SPC_SK_MISCOMPARE:
return SG_LIB_CAT_MISCOMPARE;
case SPC_SK_DATA_PROTECT:
return SG_LIB_CAT_DATA_PROTECT;
case SPC_SK_COPY_ABORTED:
return SG_LIB_CAT_COPY_ABORTED;
case SPC_SK_COMPLETED:
case SPC_SK_VOLUME_OVERFLOW:
return SG_LIB_CAT_SENSE;
default:
; /* reserved and vendor specific sense keys fall through */
}
}
return SG_LIB_CAT_SENSE;
}
/* Beware: gives wrong answer for variable length command (opcode=0x7f) */
int
sg_get_command_size(uint8_t opcode)
{
switch ((opcode >> 5) & 0x7) {
case 0:
return 6;
case 3: case 5:
return 12;
case 4:
return 16;
default: /* 1, 2, 6, 7 */
return 10;
}
}
void
sg_get_command_name(const uint8_t * cdbp, int peri_type, int buff_len,
char * buff)
{
int service_action;
if ((NULL == buff) || (buff_len < 1))
return;
else if (1 == buff_len) {
buff[0] = '\0';
return;
}
if (NULL == cdbp) {
sg_scnpr(buff, buff_len, "%s", "<null> command pointer");
return;
}
service_action = (SG_VARIABLE_LENGTH_CMD == cdbp[0]) ?
sg_get_unaligned_be16(cdbp + 8) : (cdbp[1] & 0x1f);
sg_get_opcode_sa_name(cdbp[0], service_action, peri_type, buff_len, buff);
}
struct op_code2sa_t {
int op_code;
int pdt_match; /* -1->all; 0->disk,ZBC,RCB, 1->tape+adc+smc */
struct sg_lib_value_name_t * arr;
const char * prefix;
};
static struct op_code2sa_t op_code2sa_arr[] = {
{SG_VARIABLE_LENGTH_CMD, -1, sg_lib_variable_length_arr, NULL},
{SG_MAINTENANCE_IN, -1, sg_lib_maint_in_arr, NULL},
{SG_MAINTENANCE_OUT, -1, sg_lib_maint_out_arr, NULL},
{SG_SERVICE_ACTION_IN_12, -1, sg_lib_serv_in12_arr, NULL},
{SG_SERVICE_ACTION_OUT_12, -1, sg_lib_serv_out12_arr, NULL},
{SG_SERVICE_ACTION_IN_16, -1, sg_lib_serv_in16_arr, NULL},
{SG_SERVICE_ACTION_OUT_16, -1, sg_lib_serv_out16_arr, NULL},
{SG_SERVICE_ACTION_BIDI, -1, sg_lib_serv_bidi_arr, NULL},
{SG_PERSISTENT_RESERVE_IN, -1, sg_lib_pr_in_arr, "Persistent reserve in"},
{SG_PERSISTENT_RESERVE_OUT, -1, sg_lib_pr_out_arr,
"Persistent reserve out"},
{SG_3PARTY_COPY_OUT, -1, sg_lib_xcopy_sa_arr, NULL},
{SG_3PARTY_COPY_IN, -1, sg_lib_rec_copy_sa_arr, NULL},
{SG_READ_BUFFER, -1, sg_lib_read_buff_arr, "Read buffer(10)"},
{SG_READ_BUFFER_16, -1, sg_lib_read_buff_arr, "Read buffer(16)"},
{SG_READ_ATTRIBUTE, -1, sg_lib_read_attr_arr, "Read attribute"},
{SG_READ_POSITION, 1, sg_lib_read_pos_arr, "Read position"},
{SG_SANITIZE, 0, sg_lib_sanitize_sa_arr, "Sanitize"},
{SG_WRITE_BUFFER, -1, sg_lib_write_buff_arr, "Write buffer"},
{SG_ZONING_IN, 0, sg_lib_zoning_in_arr, NULL},
{SG_ZONING_OUT, 0, sg_lib_zoning_out_arr, NULL},
{0xffff, -1, NULL, NULL},
};
void
sg_get_opcode_sa_name(uint8_t cmd_byte0, int service_action,
int peri_type, int buff_len, char * buff)
{
int d_pdt;
const struct sg_lib_value_name_t * vnp;
const struct op_code2sa_t * osp;
char b[80];
if ((NULL == buff) || (buff_len < 1))
return;
else if (1 == buff_len) {
buff[0] = '\0';
return;
}
if (peri_type < 0)
peri_type = 0;
d_pdt = sg_lib_pdt_decay(peri_type);
for (osp = op_code2sa_arr; osp->arr; ++osp) {
if ((int)cmd_byte0 == osp->op_code) {
if ((osp->pdt_match < 0) || (d_pdt == osp->pdt_match)) {
vnp = get_value_name(osp->arr, service_action, peri_type);
if (vnp) {
if (osp->prefix)
sg_scnpr(buff, buff_len, "%s, %s", osp->prefix,
vnp->name);
else
sg_scnpr(buff, buff_len, "%s", vnp->name);
} else {
sg_get_opcode_name(cmd_byte0, peri_type, sizeof(b), b);
sg_scnpr(buff, buff_len, "%s service action=0x%x", b,
service_action);
}
} else
sg_get_opcode_name(cmd_byte0, peri_type, buff_len, buff);
return;
}
}
sg_get_opcode_name(cmd_byte0, peri_type, buff_len, buff);
}
void
sg_get_opcode_name(uint8_t cmd_byte0, int peri_type, int buff_len,
char * buff)
{
const struct sg_lib_value_name_t * vnp;
int grp;
if ((NULL == buff) || (buff_len < 1))
return;
else if (1 == buff_len) {
buff[0] = '\0';
return;
}
if (SG_VARIABLE_LENGTH_CMD == cmd_byte0) {
sg_scnpr(buff, buff_len, "%s", "Variable length");
return;
}
grp = (cmd_byte0 >> 5) & 0x7;
switch (grp) {
case 0:
case 1:
case 2:
case 4:
case 5:
vnp = get_value_name(sg_lib_normal_opcodes, cmd_byte0, peri_type);
if (vnp)
sg_scnpr(buff, buff_len, "%s", vnp->name);
else
sg_scnpr(buff, buff_len, "Opcode=0x%x", (int)cmd_byte0);
break;
case 3:
sg_scnpr(buff, buff_len, "Reserved [0x%x]", (int)cmd_byte0);
break;
case 6:
case 7:
sg_scnpr(buff, buff_len, "Vendor specific [0x%x]", (int)cmd_byte0);
break;
}
}
/* Fetch NVMe command name given first byte (byte offset 0 in 64 byte
* command) of command. Gets Admin NVMe command name if 'admin' is true
* (e.g. opcode=0x6 -> Identify), otherwise gets NVM command set name
* (e.g. opcode=0 -> Flush). Returns 'buff'. */
char *
sg_get_nvme_opcode_name(uint8_t cmd_byte0, bool admin, int buff_len,
char * buff)
{
const struct sg_lib_simple_value_name_t * vnp = admin ?
sg_lib_nvme_admin_cmd_arr : sg_lib_nvme_nvm_cmd_arr;
if ((NULL == buff) || (buff_len < 1))
return buff;
else if (1 == buff_len) {
buff[0] = '\0';
return buff;
}
for ( ; vnp->name; ++vnp) {
if (cmd_byte0 == (uint8_t)vnp->value) {
snprintf(buff, buff_len, "%s", vnp->name);
return buff;
}
}
if (admin) {
if (cmd_byte0 >= 0xc0)
snprintf(buff, buff_len, "Vendor specific opcode: 0x%x",
cmd_byte0);
else if (cmd_byte0 >= 0x80)
snprintf(buff, buff_len, "Command set specific opcode: 0x%x",
cmd_byte0);
else
snprintf(buff, buff_len, "Unknown opcode: 0x%x", cmd_byte0);
} else { /* NVM (non-Admin) command set */
if (cmd_byte0 >= 0x80)
snprintf(buff, buff_len, "Vendor specific opcode: 0x%x",
cmd_byte0);
else
snprintf(buff, buff_len, "Unknown opcode: 0x%x", cmd_byte0);
}
return buff;
}
/* Iterates to next designation descriptor in the device identification
* VPD page. The 'initial_desig_desc' should point to start of first
* descriptor with 'page_len' being the number of valid bytes in that
* and following descriptors. To start, 'off' should point to a negative
* value, thereafter it should point to the value yielded by the previous
* call. If 0 returned then 'initial_desig_desc + *off' should be a valid
* descriptor; returns -1 if normal end condition and -2 for an abnormal
* termination. Matches association, designator_type and/or code_set when
* any of those values are greater than or equal to zero. */
int
sg_vpd_dev_id_iter(const uint8_t * initial_desig_desc, int page_len,
int * off, int m_assoc, int m_desig_type, int m_code_set)
{
bool fltr = ((m_assoc >= 0) || (m_desig_type >= 0) || (m_code_set >= 0));
int k = *off;
const uint8_t * bp = initial_desig_desc;
while ((k + 3) < page_len) {
k = (k < 0) ? 0 : (k + bp[k + 3] + 4);
if ((k + 4) > page_len)
break;
if (fltr) {
if (m_code_set >= 0) {
if ((bp[k] & 0xf) != m_code_set)
continue;
}
if (m_assoc >= 0) {
if (((bp[k + 1] >> 4) & 0x3) != m_assoc)
continue;
}
if (m_desig_type >= 0) {
if ((bp[k + 1] & 0xf) != m_desig_type)
continue;
}
}
*off = k;
return 0;
}
return (k == page_len) ? -1 : -2;
}
static const char * sg_sfs_spc_reserved = "SPC Reserved";
static const char * sg_sfs_sbc_reserved = "SBC Reserved";
static const char * sg_sfs_ssc_reserved = "SSC Reserved";
static const char * sg_sfs_zbc_reserved = "ZBC Reserved";
static const char * sg_sfs_reserved = "Reserved";
/* Yield SCSI Feature Set (sfs) string. When 'peri_type' is < -1 (or > 31)
* returns pointer to string (same as 'buff') associated with 'sfs_code'.
* When 'peri_type' is between -1 (for SPC) and 31 (inclusive) then a match
* on both 'sfs_code' and 'peri_type' is required. If 'foundp' is not NULL
* then where it points is set to true if a match is found else it is set to
* false. If 'buff' is not NULL then in the case of a match a descriptive
* string is written to 'buff' while if there is not a not then a string
* ending in "Reserved" is written (and may be prefixed with SPC, SBC, SSC
* or ZBC). Returns 'buff' (i.e. a pointer value) even if it is NULL.
* Example:
* char b[64];
* ...
* printf("%s\n", sg_get_sfs_str(sfs_code, -2, sizeof(b), b, NULL, 0));
*/
const char *
sg_get_sfs_str(uint16_t sfs_code, int peri_type, int buff_len, char * buff,
bool * foundp, int verbose)
{
const struct sg_lib_value_name_t * vnp = NULL;
int n = 0;
int my_pdt;
if ((NULL == buff) || (buff_len < 1)) {
if (foundp)
*foundp = false;
return NULL;
} else if (1 == buff_len) {
buff[0] = '\0';
if (foundp)
*foundp = false;
return NULL;
}
my_pdt = ((peri_type < -1) || (peri_type > 0x1f)) ? -2 : peri_type;
vnp = get_value_name(sg_lib_scsi_feature_sets, sfs_code, my_pdt);
if (vnp && (-2 != my_pdt)) {
if (peri_type != vnp->peri_dev_type)
vnp = NULL; /* shouldn't really happen */
}
if (foundp)
*foundp = vnp ? true : false;
if (sfs_code < 0x100) { /* SPC Feature Sets */
if (vnp) {
if (verbose)
n += sg_scnpr(buff, buff_len, "SPC %s", vnp->name);
else
n += sg_scnpr(buff, buff_len, "%s", vnp->name);
} else
n += sg_scnpr(buff, buff_len, "%s", sg_sfs_spc_reserved);
} else if (sfs_code < 0x200) { /* SBC Feature Sets */
if (vnp) {
if (verbose)
n += sg_scnpr(buff, buff_len, "SBC %s", vnp->name);
else
n += sg_scnpr(buff, buff_len, "%s", vnp->name);
} else
n += sg_scnpr(buff, buff_len, "%s", sg_sfs_sbc_reserved);
} else if (sfs_code < 0x300) { /* SSC Feature Sets */
if (vnp) {
if (verbose)
n += sg_scnpr(buff, buff_len, "SSC %s", vnp->name);
else
n += sg_scnpr(buff, buff_len, "%s", vnp->name);
} else
n += sg_scnpr(buff, buff_len, "%s", sg_sfs_ssc_reserved);
} else if (sfs_code < 0x400) { /* ZBC Feature Sets */
if (vnp) {
if (verbose)
n += sg_scnpr(buff, buff_len, "ZBC %s", vnp->name);
else
n += sg_scnpr(buff, buff_len, "%s", vnp->name);
} else
n += sg_scnpr(buff, buff_len, "%s", sg_sfs_zbc_reserved);
} else { /* Other SCSI Feature Sets */
if (vnp) {
if (verbose)
n += sg_scnpr(buff, buff_len, "[unrecognized PDT] %s",
vnp->name);
else
n += sg_scnpr(buff, buff_len, "%s", vnp->name);
} else
n += sg_scnpr(buff, buff_len, "%s", sg_sfs_reserved);
}
if (verbose > 4)
pr2ws("%s: length of returned string (n) %d\n", __func__, n);
return buff;
}
/* This is a heuristic that takes into account the command bytes and length
* to decide whether the presented unstructured sequence of bytes could be
* a SCSI command. If so it returns true otherwise false. Vendor specific
* SCSI commands (i.e. opcodes from 0xc0 to 0xff), if presented, are assumed
* to follow SCSI conventions (i.e. length of 6, 10, 12 or 16 bytes). The
* only SCSI commands considered above 16 bytes of length are the Variable
* Length Commands (opcode 0x7f) and the XCDB wrapped commands (opcode 0x7e).
* Both have an inbuilt length field which can be cross checked with clen.
* No NVMe commands (64 bytes long plus some extra added by some OSes) have
* opcodes 0x7e or 0x7f yet. ATA is register based but SATA has FIS
* structures that are sent across the wire. The FIS register structure is
* used to move a command from a SATA host to device, but the ATA 'command'
* is not the first byte. So it is harder to say what will happen if a
* FIS structure is presented as a SCSI command, hopfully there is a low
* probability this function will yield true in that case. */
bool
sg_is_scsi_cdb(const uint8_t * cdbp, int clen)
{
uint8_t opcode;
uint8_t top3bits;
if (clen < 6)
return false;
opcode = cdbp[0];
top3bits = opcode >> 5;
if (0x3 == top3bits) {
int ilen, sa;
if ((clen < 12) || (clen % 4))
return false; /* must be modulo 4 and 12 or more bytes */
switch (opcode) {
case 0x7e: /* Extended cdb (XCDB) */
ilen = 4 + sg_get_unaligned_be16(cdbp + 2);
return (ilen == clen);
case 0x7f: /* Variable Length cdb */
ilen = 8 + cdbp[7];
sa = sg_get_unaligned_be16(cdbp + 8);
/* service action (sa) 0x0 is reserved */
return ((ilen == clen) && sa);
default:
return false;
}
} else if (clen <= 16) {
switch (clen) {
case 6:
if (top3bits > 0x5) /* vendor */
return true;
return (0x0 == top3bits); /* 6 byte cdb */
case 10:
if (top3bits > 0x5) /* vendor */
return true;
return ((0x1 == top3bits) || (0x2 == top3bits)); /* 10 byte cdb */
case 16:
if (top3bits > 0x5) /* vendor */
return true;
return (0x4 == top3bits); /* 16 byte cdb */
case 12:
if (top3bits > 0x5) /* vendor */
return true;
return (0x5 == top3bits); /* 12 byte cdb */
default:
return false;
}
}
/* NVMe probably falls out here, clen > 16 and (opcode < 0x60 or
* opcode > 0x7f). */
return false;
}
/* Yield string associated with NVMe command status value in sct_sc. It
* expects to decode DW3 bits 27:17 from the completion queue. Bits 27:25
* are the Status Code Type (SCT) and bits 24:17 are the Status Code (SC).
* Bit 17 in DW3 should be bit 0 in sct_sc. If no status string is found
* a string of the form "Reserved [0x<sct_sc_in_hex>]" is generated.
* Returns 'buff'. Does nothing if buff_len<=0 or if buff is NULL.*/
char *
sg_get_nvme_cmd_status_str(uint16_t sct_sc, int b_len, char * b)
{
int k;
uint16_t s = 0x3ff & sct_sc;
const struct sg_lib_value_name_t * vp = sg_lib_nvme_cmd_status_arr;
if ((b_len <= 0) || (NULL == b))
return b;
else if (1 == b_len) {
b[0] = '\0';
return b;
}
for (k = 0; (vp->name && (k < 1000)); ++k, ++vp) {
if (s == (uint16_t)vp->value) {
strncpy(b, vp->name, b_len);
b[b_len - 1] = '\0';
return b;
}
}
if (k >= 1000)
pr2ws("%s: where is sentinel for sg_lib_nvme_cmd_status_arr ??\n",
__func__);
snprintf(b, b_len, "Reserved [0x%x]", sct_sc);
return b;
}
/* Attempts to map NVMe status value ((SCT << 8) | SC) to SCSI status,
* sense_key, asc and ascq tuple. If successful returns true and writes to
* non-NULL pointer arguments; otherwise returns false. */
bool
sg_nvme_status2scsi(uint16_t sct_sc, uint8_t * status_p, uint8_t * sk_p,
uint8_t * asc_p, uint8_t * ascq_p)
{
int k, ind;
uint16_t s = 0x3ff & sct_sc;
struct sg_lib_value_name_t * vp = sg_lib_nvme_cmd_status_arr;
struct sg_lib_4tuple_u8 * mp = sg_lib_scsi_status_sense_arr;
for (k = 0; (vp->name && (k < 1000)); ++k, ++vp) {
if (s == (uint16_t)vp->value)
break;
}
if (k >= 1000) {
pr2ws("%s: where is sentinel for sg_lib_nvme_cmd_status_arr ??\n",
__func__);
return false;
}
if (NULL == vp->name)
return false;
ind = vp->peri_dev_type;
for (k = 0; (0xff != mp->t2) && k < 1000; ++k, ++mp)
; /* count entries for valid index range */
if (k >= 1000) {
pr2ws("%s: where is sentinel for sg_lib_scsi_status_sense_arr ??\n",
__func__);
return false;
} else if (ind >= k)
return false;
mp = sg_lib_scsi_status_sense_arr + ind;
if (status_p)
*status_p = mp->t1;
if (sk_p)
*sk_p = mp->t2;
if (asc_p)
*asc_p = mp->t3;
if (ascq_p)
*ascq_p = mp->t4;
return true;
}
/* Add vendor (sg3_utils) specific sense descriptor for the NVMe Status
* field. Assumes descriptor (i.e. not fixed) sense. Assumes sbp has room. */
void
sg_nvme_desc2sense(uint8_t * sbp, bool dnr, bool more, uint16_t sct_sc)
{
int len = sbp[7] + 8;
sbp[len] = 0xde; /* vendor specific descriptor type */
sbp[len + 1] = 6; /* descriptor is 8 bytes long */
memset(sbp + len + 2, 0, 6);
if (dnr)
sbp[len + 5] = 0x80;
if (more)
sbp[len + 5] |= 0x40;
sg_put_unaligned_be16(sct_sc, sbp + len + 6);
sbp[7] += 8;
}
/* Build minimum sense buffer, either descriptor type (desc=true) or fixed
* type (desc=false). Assume sbp has enough room (8 or 14 bytes
* respectively). sbp should have room for 32 or 18 bytes respectively */
void
sg_build_sense_buffer(bool desc, uint8_t *sbp, uint8_t skey, uint8_t asc,
uint8_t ascq)
{
if (desc) {
sbp[0] = 0x72; /* descriptor, current */
sbp[1] = skey;
sbp[2] = asc;
sbp[3] = ascq;
sbp[7] = 0;
} else {
sbp[0] = 0x70; /* fixed, current */
sbp[2] = skey;
sbp[7] = 0xa; /* Assumes length is 18 bytes */
sbp[12] = asc;
sbp[13] = ascq;
}
}
/* safe_strerror() contributed by Clayton Weaver <cgweav at email dot com>
* Allows for situation in which strerror() is given a wild value (or the
* C library is incomplete) and returns NULL. Still not thread safe.
*/
static char safe_errbuf[64] = {'u', 'n', 'k', 'n', 'o', 'w', 'n', ' ',
'e', 'r', 'r', 'n', 'o', ':', ' ', 0};
char *
safe_strerror(int errnum)
{
char * errstr;
if (errnum < 0)
errnum = -errnum;
errstr = strerror(errnum);
if (NULL == errstr) {
size_t len = strlen(safe_errbuf);
sg_scnpr(safe_errbuf + len, sizeof(safe_errbuf) - len, "%i", errnum);
return safe_errbuf;
}
return errstr;
}
static void
trimTrailingSpaces(char * b)
{
int k;
for (k = ((int)strlen(b) - 1); k >= 0; --k) {
if (' ' != b[k])
break;
}
if ('\0' != b[k + 1])
b[k + 1] = '\0';
}
/* Read binary starting at 'str' for 'len' bytes and output as ASCII
* hexadecinal into file pointer (fp). 16 bytes per line are output with an
* additional space between 8th and 9th byte on each line (for readability).
* 'no_ascii' selects one of 3 output format types:
* > 0 each line has address then up to 16 ASCII-hex bytes
* = 0 in addition, the bytes are listed in ASCII to the right
* < 0 only the ASCII-hex bytes are listed (i.e. without address) */
void
dStrHexFp(const char* str, int len, int no_ascii, FILE * fp)
{
const char * p = str;
const char * formatstr;
uint8_t c;
char buff[82];
int a = 0;
int bpstart = 5;
const int cpstart = 60;
int cpos = cpstart;
int bpos = bpstart;
int i, k, blen;
if (len <= 0)
return;
blen = (int)sizeof(buff);
if (0 == no_ascii) /* address at left and ASCII at right */
formatstr = "%.76s\n";
else /* previously when > 0 str was "%.58s\n" */
formatstr = "%s\n"; /* when < 0 str was: "%.48s\n" */
memset(buff, ' ', 80);
buff[80] = '\0';
if (no_ascii < 0) {
bpstart = 0;
bpos = bpstart;
for (k = 0; k < len; k++) {
c = *p++;
if (bpos == (bpstart + (8 * 3)))
bpos++;
sg_scnpr(&buff[bpos], blen - bpos, "%.2x", (int)(uint8_t)c);
buff[bpos + 2] = ' ';
if ((k > 0) && (0 == ((k + 1) % 16))) {
trimTrailingSpaces(buff);
fprintf(fp, formatstr, buff);
bpos = bpstart;
memset(buff, ' ', 80);
} else
bpos += 3;
}
if (bpos > bpstart) {
buff[bpos + 2] = '\0';
trimTrailingSpaces(buff);
fprintf(fp, "%s\n", buff);
}
return;
}
/* no_ascii>=0, start each line with address (offset) */
k = sg_scnpr(buff + 1, blen - 1, "%.2x", a);
buff[k + 1] = ' ';
for (i = 0; i < len; i++) {
c = *p++;
bpos += 3;
if (bpos == (bpstart + (9 * 3)))
bpos++;
sg_scnpr(&buff[bpos], blen - bpos, "%.2x", (int)(uint8_t)c);
buff[bpos + 2] = ' ';
if (no_ascii)
buff[cpos++] = ' ';
else {
if (! my_isprint(c))
c = '.';
buff[cpos++] = c;
}
if (cpos > (cpstart + 15)) {
if (no_ascii)
trimTrailingSpaces(buff);
fprintf(fp, formatstr, buff);
bpos = bpstart;
cpos = cpstart;
a += 16;
memset(buff, ' ', 80);
k = sg_scnpr(buff + 1, blen - 1, "%.2x", a);
buff[k + 1] = ' ';
}
}
if (cpos > cpstart) {
buff[cpos] = '\0';
if (no_ascii)
trimTrailingSpaces(buff);
fprintf(fp, "%s\n", buff);
}
}
void
dStrHex(const char* str, int len, int no_ascii)
{
dStrHexFp(str, len, no_ascii, stdout);
}
void
dStrHexErr(const char* str, int len, int no_ascii)
{
dStrHexFp(str, len, no_ascii,
(sg_warnings_strm ? sg_warnings_strm : stderr));
}
#define DSHS_LINE_BLEN 160
#define DSHS_BPL 16
/* Read 'len' bytes from 'str' and output as ASCII-Hex bytes (space
* separated) to 'b' not to exceed 'b_len' characters. Each line
* starts with 'leadin' (NULL for no leadin) and there are 16 bytes
* per line with an extra space between the 8th and 9th bytes. 'format'
* is 0 for repeat in printable ASCII ('.' for non printable) to
* right of each line; 1 don't (so just output ASCII hex). Returns
* number of bytes written to 'b' excluding the trailing '\0'. */
int
dStrHexStr(const char * str, int len, const char * leadin, int format,
int b_len, char * b)
{
int bpstart, bpos, k, n, prior_ascii_len;
bool want_ascii;
char buff[DSHS_LINE_BLEN + 2];
char a[DSHS_BPL + 1];
const char * p = str;
if (len <= 0) {
if (b_len > 0)
b[0] = '\0';
return 0;
}
if (b_len <= 0)
return 0;
want_ascii = !format;
if (want_ascii) {
memset(a, ' ', DSHS_BPL);
a[DSHS_BPL] = '\0';
}
if (leadin) {
bpstart = strlen(leadin);
/* Cap leadin at (DSHS_LINE_BLEN - 70) characters */
if (bpstart > (DSHS_LINE_BLEN - 70))
bpstart = DSHS_LINE_BLEN - 70;
} else
bpstart = 0;
bpos = bpstart;
prior_ascii_len = bpstart + (DSHS_BPL * 3) + 1;
n = 0;
memset(buff, ' ', DSHS_LINE_BLEN);
buff[DSHS_LINE_BLEN] = '\0';
if (bpstart > 0)
memcpy(buff, leadin, bpstart);
for (k = 0; k < len; k++) {
uint8_t c = *p++;
if (bpos == (bpstart + ((DSHS_BPL / 2) * 3)))
bpos++; /* for extra space in middle of each line's hex */
sg_scnpr(buff + bpos, (int)sizeof(buff) - bpos, "%.2x",
(int)(uint8_t)c);
buff[bpos + 2] = ' ';
if (want_ascii)
a[k % DSHS_BPL] = my_isprint(c) ? c : '.';
if ((k > 0) && (0 == ((k + 1) % DSHS_BPL))) {
trimTrailingSpaces(buff);
if (want_ascii) {
n += sg_scnpr(b + n, b_len - n, "%-*s %s\n",
prior_ascii_len, buff, a);
memset(a, ' ', DSHS_BPL);
} else
n += sg_scnpr(b + n, b_len - n, "%s\n", buff);
if (n >= (b_len - 1))
return n;
memset(buff, ' ', DSHS_LINE_BLEN);
bpos = bpstart;
if (bpstart > 0)
memcpy(buff, leadin, bpstart);
} else
bpos += 3;
}
if (bpos > bpstart) {
trimTrailingSpaces(buff);
if (want_ascii)
n += sg_scnpr(b + n, b_len - n, "%-*s %s\n", prior_ascii_len,
buff, a);
else
n += sg_scnpr(b + n, b_len - n, "%s\n", buff);
}
return n;
}
void
hex2stdout(const uint8_t * b_str, int len, int no_ascii)
{
dStrHex((const char *)b_str, len, no_ascii);
}
void
hex2stderr(const uint8_t * b_str, int len, int no_ascii)
{
dStrHexErr((const char *)b_str, len, no_ascii);
}
int
hex2str(const uint8_t * b_str, int len, const char * leadin, int format,
int b_len, char * b)
{
return dStrHexStr((const char *)b_str, len, leadin, format, b_len, b);
}
/* Returns true when executed on big endian machine; else returns false.
* Useful for displaying ATA identify words (which need swapping on a
* big endian machine). */
bool
sg_is_big_endian()
{
union u_t {
uint16_t s;
uint8_t c[sizeof(uint16_t)];
} u;
u.s = 0x0102;
return (u.c[0] == 0x01); /* The lowest address contains
the most significant byte */
}
bool
sg_all_zeros(const uint8_t * bp, int b_len)
{
if ((NULL == bp) || (b_len <= 0))
return false;
for (--b_len; b_len >= 0; --b_len) {
if (0x0 != bp[b_len])
return false;
}
return true;
}
bool
sg_all_ffs(const uint8_t * bp, int b_len)
{
if ((NULL == bp) || (b_len <= 0))
return false;
for (--b_len; b_len >= 0; --b_len) {
if (0xff != bp[b_len])
return false;
}
return true;
}
static uint16_t
swapb_uint16(uint16_t u)
{
uint16_t r;
r = (u >> 8) & 0xff;
r |= ((u & 0xff) << 8);
return r;
}
/* Note the ASCII-hex output goes to stdout. [Most other output from functions
* in this file go to sg_warnings_strm (default stderr).]
* 'no_ascii' allows for 3 output types:
* > 0 each line has address then up to 8 ASCII-hex 16 bit words
* = 0 in addition, the ASCI bytes pairs are listed to the right
* = -1 only the ASCII-hex words are listed (i.e. without address)
* = -2 only the ASCII-hex words, formatted for "hdparm --Istdin"
* < -2 same as -1
* If 'swapb' is true then bytes in each word swapped. Needs to be set
* for ATA IDENTIFY DEVICE response on big-endian machines. */
void
dWordHex(const uint16_t* words, int num, int no_ascii, bool swapb)
{
const uint16_t * p = words;
uint16_t c;
char buff[82];
uint8_t upp, low;
int a = 0;
const int bpstart = 3;
const int cpstart = 52;
int cpos = cpstart;
int bpos = bpstart;
int i, k, blen;
if (num <= 0)
return;
blen = (int)sizeof(buff);
memset(buff, ' ', 80);
buff[80] = '\0';
if (no_ascii < 0) {
for (k = 0; k < num; k++) {
c = *p++;
if (swapb)
c = swapb_uint16(c);
bpos += 5;
sg_scnpr(buff + bpos, blen - bpos, "%.4x", (my_uint)c);
buff[bpos + 4] = ' ';
if ((k > 0) && (0 == ((k + 1) % 8))) {
if (-2 == no_ascii)
printf("%.39s\n", buff +8);
else
printf("%.47s\n", buff);
bpos = bpstart;
memset(buff, ' ', 80);
}
}
if (bpos > bpstart) {
if (-2 == no_ascii)
printf("%.39s\n", buff +8);
else
printf("%.47s\n", buff);
}
return;
}
/* no_ascii>=0, start each line with address (offset) */
k = sg_scnpr(buff + 1, blen - 1, "%.2x", a);
buff[k + 1] = ' ';
for (i = 0; i < num; i++) {
c = *p++;
if (swapb)
c = swapb_uint16(c);
bpos += 5;
sg_scnpr(buff + bpos, blen - bpos, "%.4x", (my_uint)c);
buff[bpos + 4] = ' ';
if (no_ascii) {
buff[cpos++] = ' ';
buff[cpos++] = ' ';
buff[cpos++] = ' ';
} else {
upp = (c >> 8) & 0xff;
low = c & 0xff;
if (! my_isprint(upp))
upp = '.';
buff[cpos++] = upp;
if (! my_isprint(low))
low = '.';
buff[cpos++] = low;
buff[cpos++] = ' ';
}
if (cpos > (cpstart + 23)) {
printf("%.76s\n", buff);
bpos = bpstart;
cpos = cpstart;
a += 8;
memset(buff, ' ', 80);
k = sg_scnpr(buff + 1, blen - 1, "%.2x", a);
buff[k + 1] = ' ';
}
}
if (cpos > cpstart)
printf("%.76s\n", buff);
}
/* If the number in 'buf' can not be decoded or the multiplier is unknown
* then -1 is returned. Accepts a hex prefix (0x or 0X) or a decimal
* multiplier suffix (as per GNU's dd (since 2002: SI and IEC 60027-2)).
* Main (SI) multipliers supported: K, M, G. Ignore leading spaces and
* tabs; accept comma, hyphen, space, tab and hash as terminator.
* Handles zero and positive values up to 2**31-1 .
* Experimental: left argument (must in with hexadecimal digit) added
* to, or multiplied, by right argument. No embedded spaces.
* Examples: '3+1k' (evaluates to 1027) and '0x34+1m'. */
int
sg_get_num(const char * buf)
{
bool is_hex = false;
int res, num, n, len;
unsigned int unum;
char * cp;
const char * b;
const char * b2p;
char c = 'c';
char c2 = '\0'; /* keep static checker happy */
char c3 = '\0'; /* keep static checker happy */
char lb[16];
if ((NULL == buf) || ('\0' == buf[0]))
return -1;
len = strlen(buf);
n = strspn(buf, " \t");
if (n > 0) {
if (n == len)
return -1;
buf += n;
len -= n;
}
/* following hack to keep C++ happy */
cp = strpbrk((char *)buf, " \t,#-");
if (cp) {
len = cp - buf;
n = (int)sizeof(lb) - 1;
len = (len < n) ? len : n;
memcpy(lb, buf, len);
lb[len] = '\0';
b = lb;
} else
b = buf;
b2p = b;
if (('0' == b[0]) && (('x' == b[1]) || ('X' == b[1]))) {
res = sscanf(b + 2, "%x%c", &unum, &c);
num = unum;
is_hex = true;
b2p = b + 2;
} else if ('H' == toupper((int)b[len - 1])) {
res = sscanf(b, "%x", &unum);
num = unum;
} else
res = sscanf(b, "%d%c%c%c", &num, &c, &c2, &c3);
if (res < 1)
return -1;
else if (1 == res)
return num;
else {
c = toupper((int)c);
if (is_hex) {
if (! ((c == '+') || (c == 'X')))
return -1;
}
if (res > 2)
c2 = toupper((int)c2);
if (res > 3)
c3 = toupper((int)c3);
switch (c) {
case 'C':
return num;
case 'W':
return num * 2;
case 'B':
return num * 512;
case 'K':
if (2 == res)
return num * 1024;
if (('B' == c2) || ('D' == c2))
return num * 1000;
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1024;
return -1;
case 'M':
if (2 == res)
return num * 1048576;
if (('B' == c2) || ('D' == c2))
return num * 1000000;
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1048576;
return -1;
case 'G':
if (2 == res)
return num * 1073741824;
if (('B' == c2) || ('D' == c2))
return num * 1000000000;
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1073741824;
return -1;
case 'X': /* experimental: multiplication */
/* left argument must end with hexadecimal digit */
cp = (char *)strchr(b2p, 'x');
if (NULL == cp)
cp = (char *)strchr(b2p, 'X');
if (cp) {
n = sg_get_num(cp + 1);
if (-1 != n)
return num * n;
}
return -1;
case '+': /* experimental: addition */
/* left argument must end with hexadecimal digit */
cp = (char *)strchr(b2p, '+');
if (cp) {
n = sg_get_num(cp + 1);
if (-1 != n)
return num + n;
}
return -1;
default:
pr2ws("unrecognized multiplier\n");
return -1;
}
}
}
/* If the number in 'buf' can not be decoded then -1 is returned. Accepts a
* hex prefix (0x or 0X) or a 'h' (or 'H') suffix; otherwise decimal is
* assumed. Does not accept multipliers. Accept a comma (","), hyphen ("-"),
* a whitespace or newline as terminator. */
int
sg_get_num_nomult(const char * buf)
{
int res, len, num;
unsigned int unum;
char * commap;
if ((NULL == buf) || ('\0' == buf[0]))
return -1;
len = strlen(buf);
commap = (char *)strchr(buf + 1, ',');
if (('0' == buf[0]) && (('x' == buf[1]) || ('X' == buf[1]))) {
res = sscanf(buf + 2, "%x", &unum);
num = unum;
} else if (commap && ('H' == toupper((int)*(commap - 1)))) {
res = sscanf(buf, "%x", &unum);
num = unum;
} else if ((NULL == commap) && ('H' == toupper((int)buf[len - 1]))) {
res = sscanf(buf, "%x", &unum);
num = unum;
} else
res = sscanf(buf, "%d", &num);
if (1 == res)
return num;
else
return -1;
}
/* If the number in 'buf' can not be decoded or the multiplier is unknown
* then -1LL is returned. Accepts a hex prefix (0x or 0X), hex suffix
* (h or H), or a decimal multiplier suffix (as per GNU's dd (since 2002:
* SI and IEC 60027-2)). Main (SI) multipliers supported: K, M, G, T, P
* and E. Ignore leading spaces and tabs; accept comma, hyphen, space, tab
* and hash as terminator. Handles zero and positive values up to 2**63-1 .
* Experimental: left argument (must in with hexadecimal digit) added
* to, or multiplied by right argument. No embedded spaces.
* Examples: '3+1k' (evaluates to 1027) and '0x34+1m'. */
int64_t
sg_get_llnum(const char * buf)
{
bool is_hex = false;
int res, len, n;
int64_t num, ll;
uint64_t unum;
char * cp;
const char * b;
const char * b2p;
char c = 'c';
char c2 = '\0'; /* keep static checker happy */
char c3 = '\0'; /* keep static checker happy */
char lb[32];
if ((NULL == buf) || ('\0' == buf[0]))
return -1LL;
len = strlen(buf);
n = strspn(buf, " \t");
if (n > 0) {
if (n == len)
return -1LL;
buf += n;
len -= n;
}
/* following hack to keep C++ happy */
cp = strpbrk((char *)buf, " \t,#-");
if (cp) {
len = cp - buf;
n = (int)sizeof(lb) - 1;
len = (len < n) ? len : n;
memcpy(lb, buf, len);
lb[len] = '\0';
b = lb;
} else
b = buf;
b2p = b;
if (('0' == b[0]) && (('x' == b[1]) || ('X' == b[1]))) {
res = sscanf(b + 2, "%" SCNx64 "%c", &unum, &c);
num = unum;
is_hex = true;
b2p = b + 2;
} else if ('H' == toupper((int)b[len - 1])) {
res = sscanf(b, "%" SCNx64 , &unum);
num = unum;
} else
res = sscanf(b, "%" SCNd64 "%c%c%c", &num, &c, &c2, &c3);
if (res < 1)
return -1LL;
else if (1 == res)
return num;
else {
c = toupper((int)c);
if (is_hex) {
if (! ((c == '+') || (c == 'X')))
return -1;
}
if (res > 2)
c2 = toupper((int)c2);
if (res > 3)
c3 = toupper((int)c3);
switch (c) {
case 'C':
return num;
case 'W':
return num * 2;
case 'B':
return num * 512;
case 'K': /* kilo or kibi */
if (2 == res)
return num * 1024;
if (('B' == c2) || ('D' == c2))
return num * 1000;
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1024; /* KiB */
return -1LL;
case 'M': /* mega or mebi */
if (2 == res)
return num * 1048576; /* M */
if (('B' == c2) || ('D' == c2))
return num * 1000000; /* MB */
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1048576; /* MiB */
return -1LL;
case 'G': /* giga or gibi */
if (2 == res)
return num * 1073741824; /* G */
if (('B' == c2) || ('D' == c2))
return num * 1000000000; /* GB */
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1073741824; /* GiB */
return -1LL;
case 'T': /* tera or tebi */
if (2 == res)
return num * 1099511627776LL; /* T */
if (('B' == c2) || ('D' == c2))
return num * 1000000000000LL; /* TB */
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1099511627776LL; /* TiB */
return -1LL;
case 'P': /* peta or pebi */
if (2 == res)
return num * 1099511627776LL * 1024;
if (('B' == c2) || ('D' == c2))
return num * 1000000000000LL * 1000;
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1099511627776LL * 1024;
return -1LL;
case 'E': /* exa or exbi */
if (2 == res)
return num * 1099511627776LL * 1024 * 1024;
if (('B' == c2) || ('D' == c2))
return num * 1000000000000LL * 1000 * 1000;
if (('I' == c2) && (4 == res) && ('B' == c3))
return num * 1099511627776LL * 1024 * 1024;
return -1LL;
case 'X': /* experimental: decimal (left arg) multiplication */
cp = (char *)strchr(b2p, 'x');
if (NULL == cp)
cp = (char *)strchr(b2p, 'X');
if (cp) {
ll = sg_get_llnum(cp + 1);
if (-1LL != ll)
return num * ll;
}
return -1LL;
case '+': /* experimental: decimal (left arg) addition */
cp = (char *)strchr(b2p, '+');
if (cp) {
ll = sg_get_llnum(cp + 1);
if (-1LL != ll)
return num + ll;
}
return -1LL;
default:
pr2ws("unrecognized multiplier\n");
return -1LL;
}
}
}
/* If the number in 'buf' can not be decoded then -1 is returned. Accepts a
* hex prefix (0x or 0X) or a 'h' (or 'H') suffix; otherwise decimal is
* assumed. Does not accept multipliers. Accept a comma (","), hyphen ("-"),
* a whitespace or newline as terminator. Only decimal numbers can represent
* negative numbers and '-1' must be treated separately. */
int64_t
sg_get_llnum_nomult(const char * buf)
{
int res, len;
int64_t num;
uint64_t unum;
if ((NULL == buf) || ('\0' == buf[0]))
return -1;
len = strlen(buf);
if (('0' == buf[0]) && (('x' == buf[1]) || ('X' == buf[1]))) {
res = sscanf(buf + 2, "%" SCNx64 "", &unum);
num = unum;
} else if ('H' == toupper(buf[len - 1])) {
res = sscanf(buf, "%" SCNx64 "", &unum);
num = unum;
} else
res = sscanf(buf, "%" SCNd64 "", &num);
return (1 == res) ? num : -1;
}
/* Read ASCII hex bytes or binary from fname (a file named '-' taken as
* stdin). If reading ASCII hex then there should be either one entry per
* line or a comma, space or tab separated list of bytes. If no_space is
* set then a string of ACSII hex digits is expected, 2 per byte. Everything
* from and including a '#' on a line is ignored. Returns 0 if ok, or an
* error code. If the error code is SG_LIB_LBA_OUT_OF_RANGE then mp_arr
* would be exceeded and both mp_arr and mp_arr_len are written to. */
int
sg_f2hex_arr(const char * fname, bool as_binary, bool no_space,
uint8_t * mp_arr, int * mp_arr_len, int max_arr_len)
{
bool has_stdin, split_line;
int fn_len, in_len, k, j, m, fd, err;
int off = 0;
int ret = 0;
unsigned int h;
const char * lcp;
FILE * fp;
struct stat a_stat;
char line[512];
char carry_over[4];
if ((NULL == fname) || (NULL == mp_arr) || (NULL == mp_arr_len)) {
pr2ws("%s: bad arguments\n", __func__);
return SG_LIB_LOGIC_ERROR;
}
fn_len = strlen(fname);
if (0 == fn_len)
return SG_LIB_SYNTAX_ERROR;
has_stdin = ((1 == fn_len) && ('-' == fname[0])); /* read from stdin */
if (as_binary) {
if (has_stdin)
fd = STDIN_FILENO;
else {
fd = open(fname, O_RDONLY);
if (fd < 0) {
err = errno;
pr2ws("unable to open binary file %s: %s\n", fname,
safe_strerror(err));
return sg_convert_errno(err);
}
}
k = read(fd, mp_arr, max_arr_len);
if (k <= 0) {
if (0 == k) {
ret = SG_LIB_SYNTAX_ERROR;
pr2ws("read 0 bytes from binary file %s\n", fname);
} else {
ret = sg_convert_errno(errno);
pr2ws("read from binary file %s: %s\n", fname,
safe_strerror(errno));
}
goto bin_fini;
}
if ((0 == fstat(fd, &a_stat)) && S_ISFIFO(a_stat.st_mode)) {
/* pipe; keep reading till error or 0 read */
while (k < max_arr_len) {
m = read(fd, mp_arr + k, max_arr_len - k);
if (0 == m)
break;
if (m < 0) {
err = errno;
pr2ws("read from binary pipe %s: %s\n", fname,
safe_strerror(err));
ret = sg_convert_errno(err);
goto bin_fini;
}
k += m;
}
}
*mp_arr_len = k;
bin_fini:
if ((fd >= 0) && (! has_stdin))
close(fd);
return ret;
}
/* So read the file as ASCII hex */
if (has_stdin)
fp = stdin;
else {
fp = fopen(fname, "r");
if (NULL == fp) {
err = errno;
pr2ws("Unable to open %s for reading: %s\n", fname,
safe_strerror(err));
ret = sg_convert_errno(err);
goto fini;
}
}
carry_over[0] = 0;
for (j = 0; j < 512; ++j) {
if (NULL == fgets(line, sizeof(line), fp))
break;
in_len = strlen(line);
if (in_len > 0) {
if ('\n' == line[in_len - 1]) {
--in_len;
line[in_len] = '\0';
split_line = false;
} else
split_line = true;
}
if (in_len < 1) {
carry_over[0] = 0;
continue;
}
if (carry_over[0]) {
if (isxdigit(line[0])) {
carry_over[1] = line[0];
carry_over[2] = '\0';
if (1 == sscanf(carry_over, "%4x", &h))
mp_arr[off - 1] = h; /* back up and overwrite */
else {
pr2ws("%s: carry_over error ['%s'] around line %d\n",
__func__, carry_over, j + 1);
ret = SG_LIB_SYNTAX_ERROR;
goto fini;
}
lcp = line + 1;
--in_len;
} else
lcp = line;
carry_over[0] = 0;
} else
lcp = line;
m = strspn(lcp, " \t");
if (m == in_len)
continue;
lcp += m;
in_len -= m;
if ('#' == *lcp)
continue;
k = strspn(lcp, "0123456789aAbBcCdDeEfF ,\t");
if ((k < in_len) && ('#' != lcp[k]) && ('\r' != lcp[k])) {
pr2ws("%s: syntax error at line %d, pos %d\n", __func__,
j + 1, m + k + 1);
ret = SG_LIB_SYNTAX_ERROR;
goto fini;
}
if (no_space) {
for (k = 0; isxdigit(*lcp) && isxdigit(*(lcp + 1));
++k, lcp += 2) {
if (1 != sscanf(lcp, "%2x", &h)) {
pr2ws("%s: bad hex number in line %d, pos %d\n",
__func__, j + 1, (int)(lcp - line + 1));
ret = SG_LIB_SYNTAX_ERROR;
goto fini;
}
if ((off + k) >= max_arr_len) {
pr2ws("%s: array length exceeded\n", __func__);
*mp_arr_len = max_arr_len;
ret = SG_LIB_LBA_OUT_OF_RANGE;
goto fini;
}
mp_arr[off + k] = h;
}
if (isxdigit(*lcp) && (! isxdigit(*(lcp + 1))))
carry_over[0] = *lcp;
off += k;
} else {
for (k = 0; k < 1024; ++k) {
if (1 == sscanf(lcp, "%10x", &h)) {
if (h > 0xff) {
pr2ws("%s: hex number larger than 0xff in line "
"%d, pos %d\n", __func__, j + 1,
(int)(lcp - line + 1));
ret = SG_LIB_SYNTAX_ERROR;
goto fini;
}
if (split_line && (1 == strlen(lcp))) {
/* single trailing hex digit might be a split pair */
carry_over[0] = *lcp;
}
if ((off + k) >= max_arr_len) {
pr2ws("%s: array length exceeded\n", __func__);
ret = SG_LIB_LBA_OUT_OF_RANGE;
*mp_arr_len = max_arr_len;
goto fini;
}
mp_arr[off + k] = h;
lcp = strpbrk(lcp, " ,\t");
if (NULL == lcp)
break;
lcp += strspn(lcp, " ,\t");
if ('\0' == *lcp)
break;
} else {
if (('#' == *lcp) || ('\r' == *lcp)) {
--k;
break;
}
pr2ws("%s: error in line %d, at pos %d\n", __func__,
j + 1, (int)(lcp - line + 1));
ret = SG_LIB_SYNTAX_ERROR;
goto fini;
}
}
off += (k + 1);
}
}
*mp_arr_len = off;
if (stdin != fp)
fclose(fp);
return 0;
fini:
if (fp && (stdin != fp))
fclose(fp);
return ret;
}
/* Extract character sequence from ATA words as in the model string
* in a IDENTIFY DEVICE response. Returns number of characters
* written to 'ochars' before 0 character is found or 'num' words
* are processed. */
int
sg_ata_get_chars(const uint16_t * word_arr, int start_word,
int num_words, bool is_big_endian, char * ochars)
{
int k;
char * op = ochars;
for (k = start_word; k < (start_word + num_words); ++k) {
char a, b;
uint16_t s = word_arr[k];
if (is_big_endian) {
a = s & 0xff;
b = (s >> 8) & 0xff;
} else {
a = (s >> 8) & 0xff;
b = s & 0xff;
}
if (a == 0)
break;
*op++ = a;
if (b == 0)
break;
*op++ = b;
}
return op - ochars;
}
#ifdef SG_LIB_FREEBSD
#include <sys/param.h>
#elif defined(SG_LIB_WIN32)
#include <windows.h>
#endif
uint32_t
sg_get_page_size(void)
{
#if defined(HAVE_SYSCONF) && defined(_SC_PAGESIZE)
return (uint32_t)sysconf(_SC_PAGESIZE); /* POSIX.1 (was getpagesize()) */
#elif defined(SG_LIB_WIN32)
static bool got_page_size = false;
static uint32_t win_page_size;
if (! got_page_size) {
SYSTEM_INFO si;
GetSystemInfo(&si);
win_page_size = si.dwPageSize;
got_page_size = true;
}
return win_page_size;
#elif defined(SG_LIB_FREEBSD)
return PAGE_SIZE;
#else
return 4096; /* give up, pick likely figure */
#endif
}
/* Returns pointer to heap (or NULL) that is aligned to a align_to byte
* boundary. Sends back *buff_to_free pointer in third argument that may be
* different from the return value. If it is different then the *buff_to_free
* pointer should be freed (rather than the returned value) when the heap is
* no longer needed. If align_to is 0 then aligns to OS's page size. Sets all
* returned heap to zeros. If num_bytes is 0 then set to page size. */
uint8_t *
sg_memalign(uint32_t num_bytes, uint32_t align_to, uint8_t ** buff_to_free,
bool vb)
{
size_t psz;
if (buff_to_free) /* make sure buff_to_free is NULL if alloc fails */
*buff_to_free = NULL;
psz = (align_to > 0) ? align_to : sg_get_page_size();
if (0 == num_bytes)
num_bytes = psz; /* ugly to handle otherwise */
#ifdef HAVE_POSIX_MEMALIGN
{
int err;
uint8_t * res;
void * wp = NULL;
err = posix_memalign(&wp, psz, num_bytes);
if (err || (NULL == wp)) {
pr2ws("%s: posix_memalign: error [%d], out of memory?\n",
__func__, err);
return NULL;
}
memset(wp, 0, num_bytes);
if (buff_to_free)
*buff_to_free = (uint8_t *)wp;
res = (uint8_t *)wp;
if (vb) {
pr2ws("%s: posix_ma, len=%d, ", __func__, num_bytes);
if (buff_to_free)
pr2ws("wrkBuffp=%p, ", (void *)res);
pr2ws("psz=%u, rp=%p\n", (unsigned int)psz, (void *)res);
}
return res;
}
#else
{
void * wrkBuff;
uint8_t * res;
sg_uintptr_t align_1 = psz - 1;
wrkBuff = (uint8_t *)calloc(num_bytes + psz, 1);
if (NULL == wrkBuff) {
if (buff_to_free)
*buff_to_free = NULL;
return NULL;
} else if (buff_to_free)
*buff_to_free = (uint8_t *)wrkBuff;
res = (uint8_t *)(void *)
(((sg_uintptr_t)wrkBuff + align_1) & (~align_1));
if (vb) {
pr2ws("%s: hack, len=%d, ", __func__, num_bytes);
if (buff_to_free)
pr2ws("buff_to_free=%p, ", wrkBuff);
pr2ws("align_1=%lu, rp=%p\n", align_1, (void *)res);
}
return res;
}
#endif
}
/* If byte_count is 0 or less then the OS page size is used as denominator.
* Returns true if the remainder of ((unsigned)pointer % byte_count) is 0,
* else returns false. */
bool
sg_is_aligned(const void * pointer, int byte_count)
{
return 0 == ((sg_uintptr_t)pointer %
((byte_count > 0) ? (uint32_t)byte_count :
sg_get_page_size()));
}
/* Does similar job to sg_get_unaligned_be*() but this function starts at
* a given start_bit (i.e. within byte, so 7 is MSbit of byte and 0 is LSbit)
* offset. Maximum number of num_bits is 64. For example, these two
* invocations are equivalent (and should yield the same result);
* sg_get_big_endian(from_bp, 7, 16)
* sg_get_unaligned_be16(from_bp) */
uint64_t
sg_get_big_endian(const uint8_t * from_bp, int start_bit /* 0 to 7 */,
int num_bits /* 1 to 64 */)
{
uint64_t res;
int sbit_o1 = start_bit + 1;
res = (*from_bp++ & ((1 << sbit_o1) - 1));
num_bits -= sbit_o1;
while (num_bits > 0) {
res <<= 8;
res |= *from_bp++;
num_bits -= 8;
}
if (num_bits < 0)
res >>= (-num_bits);
return res;
}
/* Does similar job to sg_put_unaligned_be*() but this function starts at
* a given start_bit offset. Maximum number of num_bits is 64. Preserves
* residual bits in partially written bytes. start_bit 7 is MSb. */
void
sg_set_big_endian(uint64_t val, uint8_t * to,
int start_bit /* 0 to 7 */, int num_bits /* 1 to 64 */)
{
int sbit_o1 = start_bit + 1;
int mask, num, k, x;
if ((NULL == to) || (start_bit > 7) || (num_bits > 64)) {
pr2ws("%s: bad args: start_bit=%d, num_bits=%d\n", __func__,
start_bit, num_bits);
return;
}
mask = (8 != sbit_o1) ? ((1 << sbit_o1) - 1) : 0xff;
k = start_bit - ((num_bits - 1) % 8);
if (0 != k)
val <<= ((k > 0) ? k : (8 + k));
num = (num_bits + 15 - sbit_o1) / 8;
for (k = 0; k < num; ++k) {
if ((sbit_o1 - num_bits) > 0)
mask &= ~((1 << (sbit_o1 - num_bits)) - 1);
if (k < (num - 1))
x = (val >> ((num - k - 1) * 8)) & 0xff;
else
x = val & 0xff;
to[k] = (to[k] & ~mask) | (x & mask);
mask = 0xff;
num_bits -= sbit_o1;
sbit_o1 = 8;
}
}
const char *
sg_lib_version()
{
return sg_lib_version_str;
}
#ifdef SG_LIB_MINGW
/* Non Unix OSes distinguish between text and binary files.
Set text mode on fd. Does nothing in Unix. Returns negative number on
failure. */
#include <fcntl.h>
int
sg_set_text_mode(int fd)
{
return setmode(fd, O_TEXT);
}
/* Set binary mode on fd. Does nothing in Unix. Returns negative number on
failure. */
int
sg_set_binary_mode(int fd)
{
return setmode(fd, O_BINARY);
}
#else
/* For Unix the following functions are dummies. */
int
sg_set_text_mode(int fd)
{
return fd; /* fd should be >= 0 */
}
int
sg_set_binary_mode(int fd)
{
return fd;
}
#endif