blob: eac4266b4eadc13493c5b7415e07ee8602b0bd47 [file] [log] [blame]
[/
Copyright 2000 Beman Dawes & John Maddock.
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt
or copy at http://boost.org/LICENSE_1_0.txt
]
[article Compressed_Pair
[quickbook 1.5]
[authors [Cleary, Steve]]
[authors [Dawes, Beman]]
[authors [Hinnant, Howard]]
[authors [Maddock, John]]
[copyright 2000 Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[section Overview]
All of the contents of `<boost/compressed_pair.hpp>` are defined inside
`namespace boost`.
The class `compressed_pair` is very similar to `std::pair`, but if either of
the template arguments are empty classes, then the ['empty base-class
optimisation] is applied to compress the size of the pair.
[endsect]
[section Synopsis]
template <class T1, class T2>
class compressed_pair
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y);
explicit compressed_pair(first_param_type x);
explicit compressed_pair(second_param_type y);
compressed_pair& operator=(const compressed_pair&);
first_reference first();
first_const_reference first() const;
second_reference second();
second_const_reference second() const;
void swap(compressed_pair& y);
};
The two members of the pair can be accessed using the member functions
`first()` and `second()`. Note that not all member functions can be
instantiated for all template parameter types. In particular
`compressed_pair` can be instantiated for reference and array types,
however in these cases the range of constructors that can be used are
limited. If types `T1` and `T2` are the same type, then there is only
one version of the single-argument constructor, and this constructor
initialises both values in the pair to the passed value.
Note that if either member is a POD type, then that member is not
zero-initialized by the `compressed_pair` default constructor: it's up
to you to supply an initial value for these types if you want them to have
a default value.
Note that `compressed_pair` can not be instantiated if either of the
template arguments is a union type, unless there is compiler support for
`boost::is_union`, or if `boost::is_union` is specialised for the union
type.
Finally, a word of caution for Visual C++ 6 users: if either argument is an
empty type, then assigning to that member will produce memory corruption,
unless the empty type has a "do nothing" assignment operator defined. This
is due to a bug in the way VC6 generates implicit assignment operators.
[endsect]
[section Acknowledgments]
Based on contributions by Steve Cleary, Beman Dawes, Howard Hinnant and
John Maddock.
Maintained by [@mailto:john@johnmaddock.co.uk John Maddock].
[endsect]