blob: 7ce21fa95b6058ec89b88ccba8e68473851fd527 [file] [log] [blame]
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_UNORDERED_TEST_OBJECTS_HEADER)
#define BOOST_UNORDERED_TEST_OBJECTS_HEADER
#include "../helpers/count.hpp"
#include "../helpers/fwd.hpp"
#include "../helpers/memory.hpp"
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <cstddef>
namespace test {
// Note that the default hash function will work for any equal_to (but not
// very well).
class object;
class movable;
class implicitly_convertible;
class hash;
class less;
class equal_to;
template <class T> class allocator1;
template <class T> class allocator2;
object generate(object const*, random_generator);
movable generate(movable const*, random_generator);
implicitly_convertible generate(
implicitly_convertible const*, random_generator);
inline void ignore_variable(void const*) {}
class object : private counted_object
{
friend class hash;
friend class equal_to;
friend class less;
int tag1_, tag2_;
public:
explicit object(int t1 = 0, int t2 = 0) : tag1_(t1), tag2_(t2) {}
~object()
{
tag1_ = -1;
tag2_ = -1;
}
friend bool operator==(object const& x1, object const& x2)
{
return x1.tag1_ == x2.tag1_ && x1.tag2_ == x2.tag2_;
}
friend bool operator!=(object const& x1, object const& x2)
{
return x1.tag1_ != x2.tag1_ || x1.tag2_ != x2.tag2_;
}
friend bool operator<(object const& x1, object const& x2)
{
return x1.tag1_ < x2.tag1_ ||
(x1.tag1_ == x2.tag1_ && x1.tag2_ < x2.tag2_);
}
friend object generate(object const*, random_generator g)
{
int* x = 0;
return object(generate(x, g), generate(x, g));
}
friend std::ostream& operator<<(std::ostream& out, object const& o)
{
return out << "(" << o.tag1_ << "," << o.tag2_ << ")";
}
};
class movable : private counted_object
{
friend class hash;
friend class equal_to;
friend class less;
int tag1_, tag2_;
BOOST_COPYABLE_AND_MOVABLE(movable)
public:
explicit movable(int t1 = 0, int t2 = 0) : tag1_(t1), tag2_(t2) {}
movable(movable const& x)
: counted_object(x), tag1_(x.tag1_), tag2_(x.tag2_)
{
BOOST_TEST(x.tag1_ != -1);
}
movable(BOOST_RV_REF(movable) x)
: counted_object(x), tag1_(x.tag1_), tag2_(x.tag2_)
{
BOOST_TEST(x.tag1_ != -1);
x.tag1_ = -1;
x.tag2_ = -1;
}
movable& operator=(BOOST_COPY_ASSIGN_REF(movable) x) // Copy assignment
{
BOOST_TEST(x.tag1_ != -1);
tag1_ = x.tag1_;
tag2_ = x.tag2_;
return *this;
}
movable& operator=(BOOST_RV_REF(movable) x) // Move assignment
{
BOOST_TEST(x.tag1_ != -1);
tag1_ = x.tag1_;
tag2_ = x.tag2_;
x.tag1_ = -1;
x.tag2_ = -1;
return *this;
}
~movable()
{
tag1_ = -1;
tag2_ = -1;
}
friend bool operator==(movable const& x1, movable const& x2)
{
BOOST_TEST(x1.tag1_ != -1 && x2.tag1_ != -1);
return x1.tag1_ == x2.tag1_ && x1.tag2_ == x2.tag2_;
}
friend bool operator!=(movable const& x1, movable const& x2)
{
BOOST_TEST(x1.tag1_ != -1 && x2.tag1_ != -1);
return x1.tag1_ != x2.tag1_ || x1.tag2_ != x2.tag2_;
}
friend bool operator<(movable const& x1, movable const& x2)
{
BOOST_TEST(x1.tag1_ != -1 && x2.tag1_ != -1);
return x1.tag1_ < x2.tag1_ ||
(x1.tag1_ == x2.tag1_ && x1.tag2_ < x2.tag2_);
}
friend movable generate(movable const*, random_generator g)
{
int* x = 0;
return movable(generate(x, g), generate(x, g));
}
friend std::ostream& operator<<(std::ostream& out, movable const& o)
{
return out << "(" << o.tag1_ << "," << o.tag2_ << ")";
}
};
class implicitly_convertible : private counted_object
{
int tag1_, tag2_;
public:
explicit implicitly_convertible(int t1 = 0, int t2 = 0)
: tag1_(t1), tag2_(t2)
{
}
operator object() const { return object(tag1_, tag2_); }
operator movable() const { return movable(tag1_, tag2_); }
friend implicitly_convertible generate(
implicitly_convertible const*, random_generator g)
{
int* x = 0;
return implicitly_convertible(generate(x, g), generate(x, g));
}
friend std::ostream& operator<<(
std::ostream& out, implicitly_convertible const& o)
{
return out << "(" << o.tag1_ << "," << o.tag2_ << ")";
}
};
// Note: This is a deliberately bad hash function.
class hash
{
int type_;
public:
hash() : type_(0) {}
explicit hash(int t) : type_(t) {}
std::size_t operator()(object const& x) const
{
int result;
switch (type_) {
case 1:
result = x.tag1_;
break;
case 2:
result = x.tag2_;
break;
default:
result = x.tag1_ + x.tag2_;
}
return static_cast<std::size_t>(result);
}
std::size_t operator()(movable const& x) const
{
int result;
switch (type_) {
case 1:
result = x.tag1_;
break;
case 2:
result = x.tag2_;
break;
default:
result = x.tag1_ + x.tag2_;
}
return static_cast<std::size_t>(result);
}
std::size_t operator()(int x) const
{
int result;
switch (type_) {
case 1:
result = x;
break;
case 2:
result = x * 7;
break;
default:
result = x * 256;
}
return static_cast<std::size_t>(result);
}
friend bool operator==(hash const& x1, hash const& x2)
{
return x1.type_ == x2.type_;
}
friend bool operator!=(hash const& x1, hash const& x2)
{
return x1.type_ != x2.type_;
}
};
std::size_t hash_value(test::object const& x) { return hash()(x); }
std::size_t hash_value(test::movable const& x) { return hash()(x); }
class less
{
int type_;
public:
explicit less(int t = 0) : type_(t) {}
bool operator()(object const& x1, object const& x2) const
{
switch (type_) {
case 1:
return x1.tag1_ < x2.tag1_;
case 2:
return x1.tag2_ < x2.tag2_;
default:
return x1 < x2;
}
}
bool operator()(movable const& x1, movable const& x2) const
{
switch (type_) {
case 1:
return x1.tag1_ < x2.tag1_;
case 2:
return x1.tag2_ < x2.tag2_;
default:
return x1 < x2;
}
}
std::size_t operator()(int x1, int x2) const { return x1 < x2; }
friend bool operator==(less const& x1, less const& x2)
{
return x1.type_ == x2.type_;
}
};
class equal_to
{
int type_;
public:
equal_to() : type_(0) {}
explicit equal_to(int t) : type_(t) {}
bool operator()(object const& x1, object const& x2) const
{
switch (type_) {
case 1:
return x1.tag1_ == x2.tag1_;
case 2:
return x1.tag2_ == x2.tag2_;
default:
return x1 == x2;
}
}
bool operator()(movable const& x1, movable const& x2) const
{
switch (type_) {
case 1:
return x1.tag1_ == x2.tag1_;
case 2:
return x1.tag2_ == x2.tag2_;
default:
return x1 == x2;
}
}
std::size_t operator()(int x1, int x2) const { return x1 == x2; }
friend bool operator==(equal_to const& x1, equal_to const& x2)
{
return x1.type_ == x2.type_;
}
friend bool operator!=(equal_to const& x1, equal_to const& x2)
{
return x1.type_ != x2.type_;
}
friend less create_compare(equal_to x) { return less(x.type_); }
};
// allocator1 only has the old fashioned 'construct' method and has
// a few less typedefs. allocator2 uses a custom pointer class.
template <class T> class allocator1
{
public:
int tag_;
typedef T value_type;
template <class U> struct rebind
{
typedef allocator1<U> other;
};
allocator1() : tag_(0) { detail::tracker.allocator_ref(); }
explicit allocator1(int t) : tag_(t) { detail::tracker.allocator_ref(); }
template <class Y> allocator1(allocator1<Y> const& x) : tag_(x.tag_)
{
detail::tracker.allocator_ref();
}
allocator1(allocator1 const& x) : tag_(x.tag_)
{
detail::tracker.allocator_ref();
}
~allocator1() { detail::tracker.allocator_unref(); }
T* allocate(std::size_t n)
{
T* ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*)ptr, n, sizeof(T), tag_);
return ptr;
}
T* allocate(std::size_t n, void const*)
{
T* ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*)ptr, n, sizeof(T), tag_);
return ptr;
}
void deallocate(T* p, std::size_t n)
{
detail::tracker.track_deallocate((void*)p, n, sizeof(T), tag_);
::operator delete((void*)p);
}
#if BOOST_UNORDERED_CXX11_CONSTRUCTION
template <typename U, typename... Args> void construct(U* p, Args&&... args)
{
detail::tracker.track_construct((void*)p, sizeof(U), tag_);
new (p) U(boost::forward<Args>(args)...);
}
template <typename U> void destroy(U* p)
{
detail::tracker.track_destroy((void*)p, sizeof(U), tag_);
p->~U();
// Work around MSVC buggy unused parameter warning.
ignore_variable(&p);
}
#else
private:
// I'm going to claim in the documentation that construct/destroy
// is never used when C++11 support isn't available, so might as
// well check that in the text.
// TODO: Or maybe just disallow them for values?
template <typename U> void construct(U* p);
template <typename U, typename A0> void construct(U* p, A0 const&);
template <typename U, typename A0, typename A1>
void construct(U* p, A0 const&, A1 const&);
template <typename U, typename A0, typename A1, typename A2>
void construct(U* p, A0 const&, A1 const&, A2 const&);
template <typename U> void destroy(U* p);
public:
#endif
bool operator==(allocator1 const& x) const { return tag_ == x.tag_; }
bool operator!=(allocator1 const& x) const { return tag_ != x.tag_; }
enum
{
is_select_on_copy = false,
is_propagate_on_swap = false,
is_propagate_on_assign = false,
is_propagate_on_move = false
};
};
template <class T> class ptr;
template <class T> class const_ptr;
struct void_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T> friend class ptr;
private:
#endif
void* ptr_;
public:
void_ptr() : ptr_(0) {}
template <typename T> explicit void_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_ptr const& x) const { return ptr_ != x.ptr_; }
};
class void_const_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T> friend class const_ptr;
private:
#endif
void* ptr_;
public:
void_const_ptr() : ptr_(0) {}
template <typename T>
explicit void_const_ptr(const_ptr<T> const& x) : ptr_(x.ptr_)
{
}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_const_ptr const& x) const { return ptr_ != x.ptr_; }
};
template <class T> class ptr
{
friend class allocator2<T>;
friend class const_ptr<T>;
friend struct void_ptr;
T* ptr_;
ptr(T* x) : ptr_(x) {}
public:
ptr() : ptr_(0) {}
explicit ptr(void_ptr const& x) : ptr_((T*)x.ptr_) {}
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
ptr& operator++()
{
++ptr_;
return *this;
}
ptr operator++(int)
{
ptr tmp(*this);
++ptr_;
return tmp;
}
ptr operator+(std::ptrdiff_t s) const { return ptr<T>(ptr_ + s); }
friend ptr operator+(std::ptrdiff_t s, ptr p) { return ptr<T>(s + p.ptr_); }
T& operator[](std::ptrdiff_t s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(ptr const& x) const { return ptr_ >= x.ptr_; }
};
template <class T> class const_ptr
{
friend class allocator2<T>;
friend struct const_void_ptr;
T const* ptr_;
const_ptr(T const* ptr) : ptr_(ptr) {}
public:
const_ptr() : ptr_(0) {}
const_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
explicit const_ptr(void_const_ptr const& x) : ptr_((T const*)x.ptr_) {}
T const& operator*() const { return *ptr_; }
T const* operator->() const { return ptr_; }
const_ptr& operator++()
{
++ptr_;
return *this;
}
const_ptr operator++(int)
{
const_ptr tmp(*this);
++ptr_;
return tmp;
}
const_ptr operator+(std::ptrdiff_t s) const { return const_ptr(ptr_ + s); }
friend const_ptr operator+(std::ptrdiff_t s, const_ptr p)
{
return ptr<T>(s + p.ptr_);
}
T const& operator[](int s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
operator bool() const { return !!ptr_; }
bool operator==(const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(const_ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(const_ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(const_ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(const_ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(const_ptr const& x) const { return ptr_ >= x.ptr_; }
};
template <class T> class allocator2
{
#ifdef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
public:
#else
template <class> friend class allocator2;
#endif
int tag_;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef void_ptr void_pointer;
typedef void_const_ptr const_void_pointer;
typedef ptr<T> pointer;
typedef const_ptr<T> const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind
{
typedef allocator2<U> other;
};
allocator2() : tag_(0) { detail::tracker.allocator_ref(); }
explicit allocator2(int t) : tag_(t) { detail::tracker.allocator_ref(); }
template <class Y> allocator2(allocator2<Y> const& x) : tag_(x.tag_)
{
detail::tracker.allocator_ref();
}
allocator2(allocator2 const& x) : tag_(x.tag_)
{
detail::tracker.allocator_ref();
}
~allocator2() { detail::tracker.allocator_unref(); }
pointer address(reference r) { return pointer(&r); }
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer allocate(size_type n)
{
pointer p(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*)p.ptr_, n, sizeof(T), tag_);
return p;
}
pointer allocate(size_type n, void const*)
{
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*)ptr, n, sizeof(T), tag_);
return ptr;
}
void deallocate(pointer p, size_type n)
{
detail::tracker.track_deallocate((void*)p.ptr_, n, sizeof(T), tag_);
::operator delete((void*)p.ptr_);
}
void construct(T* p, T const& t)
{
detail::tracker.track_construct((void*)p, sizeof(T), tag_);
new (p) T(t);
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args> void construct(T* p, BOOST_FWD_REF(Args)... args)
{
detail::tracker.track_construct((void*)p, sizeof(T), tag_);
new (p) T(boost::forward<Args>(args)...);
}
#endif
void destroy(T* p)
{
detail::tracker.track_destroy((void*)p, sizeof(T), tag_);
p->~T();
}
size_type max_size() const
{
return (std::numeric_limits<size_type>::max)();
}
bool operator==(allocator2 const& x) const { return tag_ == x.tag_; }
bool operator!=(allocator2 const& x) const { return tag_ != x.tag_; }
enum
{
is_select_on_copy = false,
is_propagate_on_swap = false,
is_propagate_on_assign = false,
is_propagate_on_move = false
};
};
template <class T>
bool equivalent_impl(
allocator1<T> const& x, allocator1<T> const& y, test::derived_type)
{
return x == y;
}
template <class T>
bool equivalent_impl(
allocator2<T> const& x, allocator2<T> const& y, test::derived_type)
{
return x == y;
}
}
#endif