blob: 9dffde159df377ddef2e266b12e726e705646f3e [file] [log] [blame]
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2016 Daniel James
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_IMPLEMENTATION_HPP
#define BOOST_UNORDERED_DETAIL_IMPLEMENTATION_HPP
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/assert.hpp>
#include <boost/core/no_exceptions_support.hpp>
#include <boost/core/pointer_traits.hpp>
#include <boost/detail/select_type.hpp>
#include <boost/limits.hpp>
#include <boost/move/move.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/repetition/enum.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/preprocessor/seq/size.hpp>
#include <boost/swap.hpp>
#include <boost/throw_exception.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits/add_lvalue_reference.hpp>
#include <boost/type_traits/aligned_storage.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/type_traits/integral_constant.hpp>
#include <boost/type_traits/is_base_of.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/type_traits/is_empty.hpp>
#include <boost/type_traits/is_nothrow_move_assignable.hpp>
#include <boost/type_traits/is_nothrow_move_constructible.hpp>
#include <boost/type_traits/is_nothrow_swappable.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/unordered/detail/fwd.hpp>
#include <boost/utility/addressof.hpp>
#include <boost/utility/enable_if.hpp>
#include <cmath>
#include <iterator>
#include <stdexcept>
#include <utility>
#if !defined(BOOST_NO_CXX11_HDR_TYPE_TRAITS)
#include <type_traits>
#endif
////////////////////////////////////////////////////////////////////////////////
// Configuration
//
// Unless documented elsewhere these configuration macros should be considered
// an implementation detail, I'll try not to break them, but you never know.
// Use Sun C++ workarounds
// I'm not sure which versions of the compiler require these workarounds, so
// I'm just using them of everything older than the current test compilers
// (as of May 2017).
#if !defined(BOOST_UNORDERED_SUN_WORKAROUNDS1)
#if BOOST_COMP_SUNPRO && BOOST_COMP_SUNPRO < BOOST_VERSION_NUMBER(5, 20, 0)
#define BOOST_UNORDERED_SUN_WORKAROUNDS1 1
#else
#define BOOST_UNORDERED_SUN_WORKAROUNDS1 0
#endif
#endif
// BOOST_UNORDERED_EMPLACE_LIMIT = The maximum number of parameters in
// emplace (not including things like hints). Don't set it to a lower value, as
// that might break something.
#if !defined BOOST_UNORDERED_EMPLACE_LIMIT
#define BOOST_UNORDERED_EMPLACE_LIMIT 10
#endif
// BOOST_UNORDERED_USE_ALLOCATOR_TRAITS - Pick which version of
// allocator_traits to use.
//
// 0 = Own partial implementation
// 1 = std::allocator_traits
// 2 = boost::container::allocator_traits
#if !defined(BOOST_UNORDERED_USE_ALLOCATOR_TRAITS)
#if !defined(BOOST_NO_CXX11_ALLOCATOR)
#define BOOST_UNORDERED_USE_ALLOCATOR_TRAITS 1
#elif defined(BOOST_MSVC)
#if BOOST_MSVC < 1400
// Use container's allocator_traits for older versions of Visual
// C++ as I don't test with them.
#define BOOST_UNORDERED_USE_ALLOCATOR_TRAITS 2
#endif
#endif
#endif
#if !defined(BOOST_UNORDERED_USE_ALLOCATOR_TRAITS)
#define BOOST_UNORDERED_USE_ALLOCATOR_TRAITS 0
#endif
// BOOST_UNORDERED_TUPLE_ARGS
//
// Maximum number of std::tuple members to support, or 0 if std::tuple
// isn't avaiable. More are supported when full C++11 is used.
// Already defined, so do nothing
#if defined(BOOST_UNORDERED_TUPLE_ARGS)
// Assume if we have C++11 tuple it's properly variadic,
// and just use a max number of 10 arguments.
#elif !defined(BOOST_NO_CXX11_HDR_TUPLE)
#define BOOST_UNORDERED_TUPLE_ARGS 10
// Visual C++ has a decent enough tuple for piecewise construction,
// so use that if available, using _VARIADIC_MAX for the maximum
// number of parameters. Note that this comes after the check
// for a full C++11 tuple.
#elif defined(BOOST_MSVC)
#if !BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT
#define BOOST_UNORDERED_TUPLE_ARGS 0
#elif defined(_VARIADIC_MAX)
#define BOOST_UNORDERED_TUPLE_ARGS _VARIADIC_MAX
#else
#define BOOST_UNORDERED_TUPLE_ARGS 5
#endif
// Assume that we don't have std::tuple
#else
#define BOOST_UNORDERED_TUPLE_ARGS 0
#endif
#if BOOST_UNORDERED_TUPLE_ARGS
#include <tuple>
#endif
// BOOST_UNORDERED_CXX11_CONSTRUCTION
//
// Use C++11 construction, requires variadic arguments, good construct support
// in allocator_traits and piecewise construction of std::pair
// Otherwise allocators aren't used for construction/destruction
#if BOOST_UNORDERED_HAVE_PIECEWISE_CONSTRUCT && \
!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) && BOOST_UNORDERED_TUPLE_ARGS
#if BOOST_COMP_SUNPRO && BOOST_LIB_STD_GNU
// Sun C++ std::pair piecewise construction doesn't seem to be exception safe.
// (At least for Sun C++ 12.5 using libstdc++).
#define BOOST_UNORDERED_CXX11_CONSTRUCTION 0
#elif BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 7, 0)
// Piecewise construction in GCC 4.6 doesn't work for uncopyable types.
#define BOOST_UNORDERED_CXX11_CONSTRUCTION 0
#elif BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 0 && \
!defined(BOOST_NO_SFINAE_EXPR)
#define BOOST_UNORDERED_CXX11_CONSTRUCTION 1
#elif BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 1
#define BOOST_UNORDERED_CXX11_CONSTRUCTION 1
#endif
#endif
#if !defined(BOOST_UNORDERED_CXX11_CONSTRUCTION)
#define BOOST_UNORDERED_CXX11_CONSTRUCTION 0
#endif
// BOOST_UNORDERED_SUPPRESS_DEPRECATED
//
// Define to stop deprecation attributes
#if defined(BOOST_UNORDERED_SUPPRESS_DEPRECATED)
#define BOOST_UNORDERED_DEPRECATED(msg)
#endif
// BOOST_UNORDERED_DEPRECATED
//
// Wrapper around various depreaction attributes.
#if defined(__has_cpp_attribute) && \
(!defined(__cplusplus) || __cplusplus >= 201402)
#if __has_cpp_attribute(deprecated) && !defined(BOOST_UNORDERED_DEPRECATED)
#define BOOST_UNORDERED_DEPRECATED(msg) [[deprecated(msg)]]
#endif
#endif
#if !defined(BOOST_UNORDERED_DEPRECATED)
#if defined(__GNUC__) && __GNUC__ >= 4
#define BOOST_UNORDERED_DEPRECATED(msg) __attribute__((deprecated))
#elif defined(_MSC_VER) && _MSC_VER >= 1400
#define BOOST_UNORDERED_DEPRECATED(msg) __declspec(deprecated(msg))
#elif defined(_MSC_VER) && _MSC_VER >= 1310
#define BOOST_UNORDERED_DEPRECATED(msg) __declspec(deprecated)
#else
#define BOOST_UNORDERED_DEPRECATED(msg)
#endif
#endif
// BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES
#if !defined(BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES)
#if BOOST_COMP_CLANG && __cplusplus >= 201703
#define BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES 1
#endif
#endif
#if !defined(BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES)
#define BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES 0
#endif
namespace boost {
namespace unordered {
namespace iterator_detail {
template <typename Node> struct iterator;
template <typename Node> struct c_iterator;
template <typename Node> struct l_iterator;
template <typename Node> struct cl_iterator;
}
}
}
namespace boost {
namespace unordered {
namespace detail {
template <typename Types> struct table;
template <typename NodePointer> struct bucket;
struct ptr_bucket;
template <typename A, typename T> struct node;
template <typename T> struct ptr_node;
static const float minimum_max_load_factor = 1e-3f;
static const std::size_t default_bucket_count = 11;
struct move_tag
{
};
struct empty_emplace
{
};
struct no_key
{
no_key() {}
template <class T> no_key(T const&) {}
};
namespace func {
template <class T> inline void ignore_unused_variable_warning(T const&)
{
}
}
//////////////////////////////////////////////////////////////////////////
// iterator SFINAE
template <typename I>
struct is_forward : boost::is_base_of<std::forward_iterator_tag,
typename std::iterator_traits<I>::iterator_category>
{
};
template <typename I, typename ReturnType>
struct enable_if_forward
: boost::enable_if_c<boost::unordered::detail::is_forward<I>::value,
ReturnType>
{
};
template <typename I, typename ReturnType>
struct disable_if_forward
: boost::disable_if_c<boost::unordered::detail::is_forward<I>::value,
ReturnType>
{
};
}
}
}
////////////////////////////////////////////////////////////////////////////////
// primes
// clang-format off
#define BOOST_UNORDERED_PRIMES \
(17ul)(29ul)(37ul)(53ul)(67ul)(79ul) \
(97ul)(131ul)(193ul)(257ul)(389ul)(521ul)(769ul) \
(1031ul)(1543ul)(2053ul)(3079ul)(6151ul)(12289ul)(24593ul) \
(49157ul)(98317ul)(196613ul)(393241ul)(786433ul) \
(1572869ul)(3145739ul)(6291469ul)(12582917ul)(25165843ul) \
(50331653ul)(100663319ul)(201326611ul)(402653189ul)(805306457ul) \
(1610612741ul)(3221225473ul)(4294967291ul)
// clang-format on
namespace boost {
namespace unordered {
namespace detail {
template <class T> struct prime_list_template
{
static std::size_t const value[];
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
static std::ptrdiff_t const length;
#else
static std::ptrdiff_t const length =
BOOST_PP_SEQ_SIZE(BOOST_UNORDERED_PRIMES);
#endif
};
template <class T>
std::size_t const prime_list_template<T>::value[] = {
BOOST_PP_SEQ_ENUM(BOOST_UNORDERED_PRIMES)};
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
template <class T>
std::ptrdiff_t const prime_list_template<T>::length = BOOST_PP_SEQ_SIZE(
BOOST_UNORDERED_PRIMES);
#endif
#undef BOOST_UNORDERED_PRIMES
typedef prime_list_template<std::size_t> prime_list;
// no throw
inline std::size_t next_prime(std::size_t num)
{
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end =
prime_list_begin + prime_list::length;
std::size_t const* bound =
std::lower_bound(prime_list_begin, prime_list_end, num);
if (bound == prime_list_end)
bound--;
return *bound;
}
// no throw
inline std::size_t prev_prime(std::size_t num)
{
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end =
prime_list_begin + prime_list::length;
std::size_t const* bound =
std::upper_bound(prime_list_begin, prime_list_end, num);
if (bound != prime_list_begin)
bound--;
return *bound;
}
//////////////////////////////////////////////////////////////////////////
// insert_size/initial_size
template <class I>
inline std::size_t insert_size(I i, I j,
typename boost::unordered::detail::enable_if_forward<I, void*>::type =
0)
{
return static_cast<std::size_t>(std::distance(i, j));
}
template <class I>
inline std::size_t insert_size(I, I,
typename boost::unordered::detail::disable_if_forward<I, void*>::type =
0)
{
return 1;
}
template <class I>
inline std::size_t initial_size(I i, I j,
std::size_t num_buckets =
boost::unordered::detail::default_bucket_count)
{
return (std::max)(
boost::unordered::detail::insert_size(i, j), num_buckets);
}
//////////////////////////////////////////////////////////////////////////
// compressed
template <typename T, int Index> struct compressed_base : private T
{
compressed_base(T const& x) : T(x) {}
compressed_base(T& x, move_tag) : T(boost::move(x)) {}
T& get() { return *this; }
T const& get() const { return *this; }
};
template <typename T, int Index> struct uncompressed_base
{
uncompressed_base(T const& x) : value_(x) {}
uncompressed_base(T& x, move_tag) : value_(boost::move(x)) {}
T& get() { return value_; }
T const& get() const { return value_; }
private:
T value_;
};
template <typename T, int Index>
struct generate_base
: boost::detail::if_true<
boost::is_empty<T>::value>::BOOST_NESTED_TEMPLATE
then<boost::unordered::detail::compressed_base<T, Index>,
boost::unordered::detail::uncompressed_base<T, Index> >
{
};
template <typename T1, typename T2>
struct compressed
: private boost::unordered::detail::generate_base<T1, 1>::type,
private boost::unordered::detail::generate_base<T2, 2>::type
{
typedef typename generate_base<T1, 1>::type base1;
typedef typename generate_base<T2, 2>::type base2;
typedef T1 first_type;
typedef T2 second_type;
first_type& first() { return static_cast<base1*>(this)->get(); }
first_type const& first() const
{
return static_cast<base1 const*>(this)->get();
}
second_type& second() { return static_cast<base2*>(this)->get(); }
second_type const& second() const
{
return static_cast<base2 const*>(this)->get();
}
template <typename First, typename Second>
compressed(First const& x1, Second const& x2) : base1(x1), base2(x2)
{
}
compressed(compressed const& x) : base1(x.first()), base2(x.second()) {}
compressed(compressed& x, move_tag m)
: base1(x.first(), m), base2(x.second(), m)
{
}
void assign(compressed const& x)
{
first() = x.first();
second() = x.second();
}
void move_assign(compressed& x)
{
first() = boost::move(x.first());
second() = boost::move(x.second());
}
void swap(compressed& x)
{
boost::swap(first(), x.first());
boost::swap(second(), x.second());
}
private:
// Prevent assignment just to make use of assign or
// move_assign explicit.
compressed& operator=(compressed const&);
};
//////////////////////////////////////////////////////////////////////////
// pair_traits
//
// Used to get the types from a pair without instantiating it.
template <typename Pair> struct pair_traits
{
typedef typename Pair::first_type first_type;
typedef typename Pair::second_type second_type;
};
template <typename T1, typename T2> struct pair_traits<std::pair<T1, T2> >
{
typedef T1 first_type;
typedef T2 second_type;
};
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable : 4512) // assignment operator could not be generated.
#pragma warning(disable : 4345) // behavior change: an object of POD type
// constructed with an initializer of the form ()
// will be default-initialized.
#endif
//////////////////////////////////////////////////////////////////////////
// Bits and pieces for implementing traits
template <typename T>
typename boost::add_lvalue_reference<T>::type make();
struct choice9
{
typedef char (&type)[9];
};
struct choice8 : choice9
{
typedef char (&type)[8];
};
struct choice7 : choice8
{
typedef char (&type)[7];
};
struct choice6 : choice7
{
typedef char (&type)[6];
};
struct choice5 : choice6
{
typedef char (&type)[5];
};
struct choice4 : choice5
{
typedef char (&type)[4];
};
struct choice3 : choice4
{
typedef char (&type)[3];
};
struct choice2 : choice3
{
typedef char (&type)[2];
};
struct choice1 : choice2
{
typedef char (&type)[1];
};
choice1 choose();
typedef choice1::type yes_type;
typedef choice2::type no_type;
struct private_type
{
private_type const& operator,(int) const;
};
template <typename T> no_type is_private_type(T const&);
yes_type is_private_type(private_type const&);
struct convert_from_anything
{
template <typename T> convert_from_anything(T const&);
};
}
}
}
////////////////////////////////////////////////////////////////////////////
// emplace_args
//
// Either forwarding variadic arguments, or storing the arguments in
// emplace_args##n
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_UNORDERED_EMPLACE_TEMPLATE typename... Args
#define BOOST_UNORDERED_EMPLACE_ARGS BOOST_FWD_REF(Args)... args
#define BOOST_UNORDERED_EMPLACE_FORWARD boost::forward<Args>(args)...
#else
#define BOOST_UNORDERED_EMPLACE_TEMPLATE typename Args
#define BOOST_UNORDERED_EMPLACE_ARGS Args const& args
#define BOOST_UNORDERED_EMPLACE_FORWARD args
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
#define BOOST_UNORDERED_EARGS_MEMBER(z, n, _) \
typedef BOOST_FWD_REF(BOOST_PP_CAT(A, n)) BOOST_PP_CAT(Arg, n); \
BOOST_PP_CAT(Arg, n) BOOST_PP_CAT(a, n);
#else
#define BOOST_UNORDERED_EARGS_MEMBER(z, n, _) \
typedef typename boost::add_lvalue_reference<BOOST_PP_CAT(A, n)>::type \
BOOST_PP_CAT(Arg, n); \
BOOST_PP_CAT(Arg, n) BOOST_PP_CAT(a, n);
#endif
#define BOOST_UNORDERED_FWD_PARAM(z, n, a) \
BOOST_FWD_REF(BOOST_PP_CAT(A, n)) BOOST_PP_CAT(a, n)
#define BOOST_UNORDERED_CALL_FORWARD(z, i, a) \
boost::forward<BOOST_PP_CAT(A, i)>(BOOST_PP_CAT(a, i))
#define BOOST_UNORDERED_EARGS_INIT(z, n, _) \
BOOST_PP_CAT(a, n)(BOOST_PP_CAT(b, n))
#define BOOST_UNORDERED_EARGS(z, n, _) \
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
struct BOOST_PP_CAT(emplace_args, n) \
{ \
BOOST_PP_REPEAT_##z(n, BOOST_UNORDERED_EARGS_MEMBER, _) BOOST_PP_CAT( \
emplace_args, n)(BOOST_PP_ENUM_BINARY_PARAMS_Z(z, n, Arg, b)) \
: BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_EARGS_INIT, _) \
{ \
} \
}; \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
inline BOOST_PP_CAT(emplace_args, n)<BOOST_PP_ENUM_PARAMS_Z(z, n, A)> \
create_emplace_args(BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, b)) \
{ \
BOOST_PP_CAT(emplace_args, n)<BOOST_PP_ENUM_PARAMS_Z(z, n, A)> e( \
BOOST_PP_ENUM_PARAMS_Z(z, n, b)); \
return e; \
}
namespace boost {
namespace unordered {
namespace detail {
template <typename A0> struct emplace_args1
{
BOOST_UNORDERED_EARGS_MEMBER(1, 0, _)
explicit emplace_args1(Arg0 b0) : a0(b0) {}
};
template <typename A0>
inline emplace_args1<A0> create_emplace_args(BOOST_FWD_REF(A0) b0)
{
emplace_args1<A0> e(b0);
return e;
}
template <typename A0, typename A1> struct emplace_args2
{
BOOST_UNORDERED_EARGS_MEMBER(1, 0, _)
BOOST_UNORDERED_EARGS_MEMBER(1, 1, _)
emplace_args2(Arg0 b0, Arg1 b1) : a0(b0), a1(b1) {}
};
template <typename A0, typename A1>
inline emplace_args2<A0, A1> create_emplace_args(
BOOST_FWD_REF(A0) b0, BOOST_FWD_REF(A1) b1)
{
emplace_args2<A0, A1> e(b0, b1);
return e;
}
template <typename A0, typename A1, typename A2> struct emplace_args3
{
BOOST_UNORDERED_EARGS_MEMBER(1, 0, _)
BOOST_UNORDERED_EARGS_MEMBER(1, 1, _)
BOOST_UNORDERED_EARGS_MEMBER(1, 2, _)
emplace_args3(Arg0 b0, Arg1 b1, Arg2 b2) : a0(b0), a1(b1), a2(b2) {}
};
template <typename A0, typename A1, typename A2>
inline emplace_args3<A0, A1, A2> create_emplace_args(
BOOST_FWD_REF(A0) b0, BOOST_FWD_REF(A1) b1, BOOST_FWD_REF(A2) b2)
{
emplace_args3<A0, A1, A2> e(b0, b1, b2);
return e;
}
BOOST_UNORDERED_EARGS(1, 4, _)
BOOST_UNORDERED_EARGS(1, 5, _)
BOOST_UNORDERED_EARGS(1, 6, _)
BOOST_UNORDERED_EARGS(1, 7, _)
BOOST_UNORDERED_EARGS(1, 8, _)
BOOST_UNORDERED_EARGS(1, 9, _)
BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
BOOST_UNORDERED_EARGS, _)
}
}
}
#undef BOOST_UNORDERED_DEFINE_EMPLACE_ARGS
#undef BOOST_UNORDERED_EARGS_MEMBER
#undef BOOST_UNORDERED_EARGS_INIT
#endif
////////////////////////////////////////////////////////////////////////////////
//
// Some utilities for implementing allocator_traits, but useful elsewhere so
// they're always defined.
namespace boost {
namespace unordered {
namespace detail {
////////////////////////////////////////////////////////////////////////////
// Integral_constrant, true_type, false_type
//
// Uses the standard versions if available.
#if !defined(BOOST_NO_CXX11_HDR_TYPE_TRAITS)
using std::integral_constant;
using std::true_type;
using std::false_type;
#else
template <typename T, T Value> struct integral_constant
{
enum
{
value = Value
};
};
typedef boost::unordered::detail::integral_constant<bool, true> true_type;
typedef boost::unordered::detail::integral_constant<bool, false>
false_type;
#endif
////////////////////////////////////////////////////////////////////////////
// Explicitly call a destructor
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable : 4100) // unreferenced formal parameter
#endif
namespace func {
template <class T> inline void destroy(T* x) { x->~T(); }
}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
//////////////////////////////////////////////////////////////////////////
// value_base
//
// Space used to store values.
template <typename ValueType> struct value_base
{
typedef ValueType value_type;
typename boost::aligned_storage<sizeof(value_type),
boost::alignment_of<value_type>::value>::type data_;
value_base() : data_() {}
void* address() { return this; }
value_type& value() { return *(ValueType*)this; }
value_type const& value() const { return *(ValueType const*)this; }
value_type* value_ptr() { return (ValueType*)this; }
value_type const* value_ptr() const { return (ValueType const*)this; }
private:
value_base& operator=(value_base const&);
};
//////////////////////////////////////////////////////////////////////////
// optional
// TODO: Use std::optional when available.
template <typename T> class optional
{
BOOST_MOVABLE_BUT_NOT_COPYABLE(optional)
boost::unordered::detail::value_base<T> value_;
bool has_value_;
void destroy()
{
if (has_value_) {
boost::unordered::detail::func::destroy(value_.value_ptr());
has_value_ = false;
}
}
void move(optional<T>& x)
{
BOOST_ASSERT(!has_value_ && x.has_value_);
new (value_.value_ptr()) T(boost::move(x.value_.value()));
boost::unordered::detail::func::destroy(x.value_.value_ptr());
has_value_ = true;
x.has_value_ = false;
}
public:
optional() BOOST_NOEXCEPT : has_value_(false) {}
optional(BOOST_RV_REF(optional<T>) x) : has_value_(false)
{
if (x.has_value_) {
move(x);
}
}
explicit optional(T const& x) : has_value_(true)
{
new (value_.value_ptr()) T(x);
}
optional& operator=(BOOST_RV_REF(optional<T>) x)
{
destroy();
if (x.has_value_) {
move(x);
}
return *this;
}
~optional() { destroy(); }
bool has_value() const { return has_value_; }
T& operator*() { return value_.value(); }
T const& operator*() const { return value_.value(); }
T* operator->() { return value_.value_ptr(); }
T const* operator->() const { return value_.value_ptr(); }
bool operator==(optional<T> const& x)
{
return has_value_ ? x.has_value_ && value_.value() == x.value_.value()
: !x.has_value_;
}
bool operator!=(optional<T> const& x) { return !((*this) == x); }
void swap(optional<T>& x)
{
if (has_value_ != x.has_value_) {
if (has_value_) {
x.move(*this);
} else {
move(x);
}
} else if (has_value_) {
boost::swap(value_.value(), x.value_.value());
}
}
friend void swap(optional<T>& x, optional<T>& y) { x.swap(y); }
};
}
}
}
////////////////////////////////////////////////////////////////////////////
// Expression test mechanism
//
// When SFINAE expressions are available, define
// BOOST_UNORDERED_HAS_FUNCTION which can check if a function call is
// supported by a class, otherwise define BOOST_UNORDERED_HAS_MEMBER which
// can detect if a class has the specified member, but not that it has the
// correct type, this is good enough for a passable impression of
// allocator_traits.
#if !defined(BOOST_NO_SFINAE_EXPR)
namespace boost {
namespace unordered {
namespace detail {
template <typename T, long unsigned int> struct expr_test;
template <typename T> struct expr_test<T, sizeof(char)> : T
{
};
}
}
}
#define BOOST_UNORDERED_CHECK_EXPRESSION(count, result, expression) \
template <typename U> \
static \
typename boost::unordered::detail::expr_test<BOOST_PP_CAT(choice, result), \
sizeof(for_expr_test(((expression), 0)))>::type \
test(BOOST_PP_CAT(choice, count))
#define BOOST_UNORDERED_DEFAULT_EXPRESSION(count, result) \
template <typename U> \
static BOOST_PP_CAT(choice, result)::type test(BOOST_PP_CAT(choice, count))
#define BOOST_UNORDERED_HAS_FUNCTION(name, thing, args, _) \
struct BOOST_PP_CAT(has_, name) \
{ \
template <typename U> static char for_expr_test(U const&); \
BOOST_UNORDERED_CHECK_EXPRESSION( \
1, 1, boost::unordered::detail::make<thing>().name args); \
BOOST_UNORDERED_DEFAULT_EXPRESSION(2, 2); \
\
enum \
{ \
value = sizeof(test<T>(choose())) == sizeof(choice1::type) \
}; \
}
#else
namespace boost {
namespace unordered {
namespace detail {
template <typename T> struct identity
{
typedef T type;
};
}
}
}
#define BOOST_UNORDERED_CHECK_MEMBER(count, result, name, member) \
\
typedef \
typename boost::unordered::detail::identity<member>::type BOOST_PP_CAT( \
check, count); \
\
template <BOOST_PP_CAT(check, count) e> struct BOOST_PP_CAT(test, count) \
{ \
typedef BOOST_PP_CAT(choice, result) type; \
}; \
\
template <class U> \
static typename BOOST_PP_CAT(test, count)<&U::name>::type test( \
BOOST_PP_CAT(choice, count))
#define BOOST_UNORDERED_DEFAULT_MEMBER(count, result) \
template <class U> \
static BOOST_PP_CAT(choice, result)::type test(BOOST_PP_CAT(choice, count))
#define BOOST_UNORDERED_HAS_MEMBER(name) \
struct BOOST_PP_CAT(has_, name) \
{ \
struct impl \
{ \
struct base_mixin \
{ \
int name; \
}; \
struct base : public T, public base_mixin \
{ \
}; \
\
BOOST_UNORDERED_CHECK_MEMBER(1, 1, name, int base_mixin::*); \
BOOST_UNORDERED_DEFAULT_MEMBER(2, 2); \
\
enum \
{ \
value = sizeof(choice2::type) == sizeof(test<base>(choose())) \
}; \
}; \
\
enum \
{ \
value = impl::value \
}; \
}
#endif
////////////////////////////////////////////////////////////////////////////
// TRAITS TYPE DETECTION MECHANISM
//
// Used to implement traits that use a type if present, or a
// default otherwise.
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1400
#define BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(tname) \
template <typename Tp, typename Default> struct default_type_##tname \
{ \
\
template <typename X> \
static choice1::type test(choice1, typename X::tname* = 0); \
\
template <typename X> static choice2::type test(choice2, void* = 0); \
\
struct DefaultWrap \
{ \
typedef Default tname; \
}; \
\
enum \
{ \
value = (1 == sizeof(test<Tp>(choose()))) \
}; \
\
typedef typename boost::detail::if_true<value>::BOOST_NESTED_TEMPLATE \
then<Tp, DefaultWrap>::type::tname type; \
}
#else
namespace boost {
namespace unordered {
namespace detail {
template <typename T, typename T2> struct sfinae : T2
{
};
}
}
}
#define BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(tname) \
template <typename Tp, typename Default> struct default_type_##tname \
{ \
\
template <typename X> \
static typename boost::unordered::detail::sfinae<typename X::tname, \
choice1>::type test(choice1); \
\
template <typename X> static choice2::type test(choice2); \
\
struct DefaultWrap \
{ \
typedef Default tname; \
}; \
\
enum \
{ \
value = (1 == sizeof(test<Tp>(choose()))) \
}; \
\
typedef typename boost::detail::if_true<value>::BOOST_NESTED_TEMPLATE \
then<Tp, DefaultWrap>::type::tname type; \
}
#endif
#define BOOST_UNORDERED_DEFAULT_TYPE(T, tname, arg) \
typename default_type_##tname<T, arg>::type
////////////////////////////////////////////////////////////////////////////////
//
// Allocator traits
//
// First our implementation, then later light wrappers around the alternatives
#if BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 0
#include <boost/limits.hpp>
#include <boost/pointer_to_other.hpp>
#include <boost/utility/enable_if.hpp>
namespace boost {
namespace unordered {
namespace detail {
template <typename Alloc, typename T> struct rebind_alloc;
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <template <typename, typename...> class Alloc, typename U,
typename T, typename... Args>
struct rebind_alloc<Alloc<U, Args...>, T>
{
typedef Alloc<T, Args...> type;
};
#else
template <template <typename> class Alloc, typename U, typename T>
struct rebind_alloc<Alloc<U>, T>
{
typedef Alloc<T> type;
};
template <template <typename, typename> class Alloc, typename U,
typename T, typename A0>
struct rebind_alloc<Alloc<U, A0>, T>
{
typedef Alloc<T, A0> type;
};
template <template <typename, typename, typename> class Alloc, typename U,
typename T, typename A0, typename A1>
struct rebind_alloc<Alloc<U, A0, A1>, T>
{
typedef Alloc<T, A0, A1> type;
};
#endif
template <typename Alloc, typename T> struct rebind_wrap
{
template <typename X>
static choice1::type test(
choice1, typename X::BOOST_NESTED_TEMPLATE rebind<T>::other* = 0);
template <typename X> static choice2::type test(choice2, void* = 0);
enum
{
value = (1 == sizeof(test<Alloc>(choose())))
};
struct fallback
{
template <typename U> struct rebind
{
typedef typename rebind_alloc<Alloc, T>::type other;
};
};
typedef
typename boost::detail::if_true<value>::BOOST_NESTED_TEMPLATE then<
Alloc, fallback>::type::BOOST_NESTED_TEMPLATE rebind<T>::other type;
};
}
}
}
namespace boost {
namespace unordered {
namespace detail {
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(pointer);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(const_pointer);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(void_pointer);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(const_void_pointer);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(difference_type);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(size_type);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(
propagate_on_container_copy_assignment);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(
propagate_on_container_move_assignment);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(propagate_on_container_swap);
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(is_always_equal);
#if !defined(BOOST_NO_SFINAE_EXPR)
template <typename T>
BOOST_UNORDERED_HAS_FUNCTION(
select_on_container_copy_construction, U const, (), 0);
template <typename T>
BOOST_UNORDERED_HAS_FUNCTION(max_size, U const, (), 0);
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <typename T, typename ValueType, typename... Args>
BOOST_UNORDERED_HAS_FUNCTION(construct, U,
(boost::unordered::detail::make<ValueType*>(),
boost::unordered::detail::make<Args const>()...),
2);
#else
template <typename T, typename ValueType>
BOOST_UNORDERED_HAS_FUNCTION(construct, U,
(boost::unordered::detail::make<ValueType*>(),
boost::unordered::detail::make<ValueType const>()),
2);
#endif
template <typename T, typename ValueType>
BOOST_UNORDERED_HAS_FUNCTION(
destroy, U, (boost::unordered::detail::make<ValueType*>()), 1);
#else
template <typename T>
BOOST_UNORDERED_HAS_MEMBER(select_on_container_copy_construction);
template <typename T> BOOST_UNORDERED_HAS_MEMBER(max_size);
template <typename T, typename ValueType>
BOOST_UNORDERED_HAS_MEMBER(construct);
template <typename T, typename ValueType>
BOOST_UNORDERED_HAS_MEMBER(destroy);
#endif
}
}
}
namespace boost {
namespace unordered {
namespace detail {
namespace func {
template <typename Alloc>
inline Alloc call_select_on_container_copy_construction(
const Alloc& rhs,
typename boost::enable_if_c<
boost::unordered::detail::has_select_on_container_copy_construction<
Alloc>::value,
void*>::type = 0)
{
return rhs.select_on_container_copy_construction();
}
template <typename Alloc>
inline Alloc call_select_on_container_copy_construction(
const Alloc& rhs,
typename boost::disable_if_c<
boost::unordered::detail::has_select_on_container_copy_construction<
Alloc>::value,
void*>::type = 0)
{
return rhs;
}
template <typename SizeType, typename Alloc>
inline SizeType call_max_size(const Alloc& a,
typename boost::enable_if_c<
boost::unordered::detail::has_max_size<Alloc>::value, void*>::type =
0)
{
return a.max_size();
}
template <typename SizeType, typename Alloc>
inline SizeType call_max_size(const Alloc&,
typename boost::disable_if_c<
boost::unordered::detail::has_max_size<Alloc>::value, void*>::type =
0)
{
return (std::numeric_limits<SizeType>::max)();
}
} // namespace func.
}
}
}
namespace boost {
namespace unordered {
namespace detail {
template <typename Alloc> struct allocator_traits
{
typedef Alloc allocator_type;
typedef typename Alloc::value_type value_type;
typedef BOOST_UNORDERED_DEFAULT_TYPE(
Alloc, pointer, value_type*) pointer;
template <typename T>
struct pointer_to_other : boost::pointer_to_other<pointer, T>
{
};
typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc, const_pointer,
typename pointer_to_other<const value_type>::type) const_pointer;
// typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc, void_pointer,
// typename pointer_to_other<void>::type)
// void_pointer;
//
// typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc, const_void_pointer,
// typename pointer_to_other<const void>::type)
// const_void_pointer;
typedef BOOST_UNORDERED_DEFAULT_TYPE(
Alloc, difference_type, std::ptrdiff_t) difference_type;
typedef BOOST_UNORDERED_DEFAULT_TYPE(
Alloc, size_type, std::size_t) size_type;
#if !defined(BOOST_NO_CXX11_TEMPLATE_ALIASES)
template <typename T>
using rebind_alloc = typename rebind_wrap<Alloc, T>::type;
template <typename T>
using rebind_traits =
boost::unordered::detail::allocator_traits<rebind_alloc<T> >;
#endif
static pointer allocate(Alloc& a, size_type n) { return a.allocate(n); }
// I never use this, so I'll just comment it out for now.
//
// static pointer allocate(Alloc& a, size_type n,
// const_void_pointer hint)
// { return DEFAULT_FUNC(allocate, pointer)(a, n, hint); }
static void deallocate(Alloc& a, pointer p, size_type n)
{
a.deallocate(p, n);
}
public:
#if BOOST_UNORDERED_CXX11_CONSTRUCTION
template <typename T, typename... Args>
static
typename boost::enable_if_c<boost::unordered::detail::has_construct<
Alloc, T, Args...>::value>::type
construct(Alloc& a, T* p, BOOST_FWD_REF(Args)... x)
{
a.construct(p, boost::forward<Args>(x)...);
}
template <typename T, typename... Args>
static
typename boost::disable_if_c<boost::unordered::detail::has_construct<
Alloc, T, Args...>::value>::type
construct(Alloc&, T* p, BOOST_FWD_REF(Args)... x)
{
new (static_cast<void*>(p)) T(boost::forward<Args>(x)...);
}
template <typename T>
static typename boost::enable_if_c<
boost::unordered::detail::has_destroy<Alloc, T>::value>::type
destroy(Alloc& a, T* p)
{
a.destroy(p);
}
template <typename T>
static typename boost::disable_if_c<
boost::unordered::detail::has_destroy<Alloc, T>::value>::type
destroy(Alloc&, T* p)
{
boost::unordered::detail::func::destroy(p);
}
#elif !defined(BOOST_NO_SFINAE_EXPR)
template <typename T>
static typename boost::enable_if_c<
boost::unordered::detail::has_construct<Alloc, T>::value>::type
construct(Alloc& a, T* p, T const& x)
{
a.construct(p, x);
}
template <typename T>
static typename boost::disable_if_c<
boost::unordered::detail::has_construct<Alloc, T>::value>::type
construct(Alloc&, T* p, T const& x)
{
new (static_cast<void*>(p)) T(x);
}
template <typename T>
static typename boost::enable_if_c<
boost::unordered::detail::has_destroy<Alloc, T>::value>::type
destroy(Alloc& a, T* p)
{
a.destroy(p);
}
template <typename T>
static typename boost::disable_if_c<
boost::unordered::detail::has_destroy<Alloc, T>::value>::type
destroy(Alloc&, T* p)
{
boost::unordered::detail::func::destroy(p);
}
#else
// If we don't have SFINAE expressions, only call construct for the
// copy constructor for the allocator's value_type - as that's
// the only construct method that old fashioned allocators support.
template <typename T>
static void construct(Alloc& a, T* p, T const& x,
typename boost::enable_if_c<
boost::unordered::detail::has_construct<Alloc, T>::value &&
boost::is_same<T, value_type>::value,
void*>::type = 0)
{
a.construct(p, x);
}
template <typename T>
static void construct(Alloc&, T* p, T const& x,
typename boost::disable_if_c<
boost::unordered::detail::has_construct<Alloc, T>::value &&
boost::is_same<T, value_type>::value,
void*>::type = 0)
{
new (static_cast<void*>(p)) T(x);
}
template <typename T>
static void destroy(Alloc& a, T* p,
typename boost::enable_if_c<
boost::unordered::detail::has_destroy<Alloc, T>::value &&
boost::is_same<T, value_type>::value,
void*>::type = 0)
{
a.destroy(p);
}
template <typename T>
static void destroy(Alloc&, T* p,
typename boost::disable_if_c<
boost::unordered::detail::has_destroy<Alloc, T>::value &&
boost::is_same<T, value_type>::value,
void*>::type = 0)
{
boost::unordered::detail::func::destroy(p);
}
#endif
static size_type max_size(const Alloc& a)
{
return boost::unordered::detail::func::call_max_size<size_type>(a);
}
// Allocator propagation on construction
static Alloc select_on_container_copy_construction(Alloc const& rhs)
{
return boost::unordered::detail::func::
call_select_on_container_copy_construction(rhs);
}
// Allocator propagation on assignment and swap.
// Return true if lhs is modified.
typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc,
propagate_on_container_copy_assignment,
false_type) propagate_on_container_copy_assignment;
typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc,
propagate_on_container_move_assignment,
false_type) propagate_on_container_move_assignment;
typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc, propagate_on_container_swap,
false_type) propagate_on_container_swap;
typedef BOOST_UNORDERED_DEFAULT_TYPE(Alloc, is_always_equal,
typename boost::is_empty<Alloc>::type) is_always_equal;
};
}
}
}
#undef BOOST_UNORDERED_DEFAULT_TYPE_TMPLT
#undef BOOST_UNORDERED_DEFAULT_TYPE
////////////////////////////////////////////////////////////////////////////////
//
// std::allocator_traits
#elif BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 1
#include <memory>
namespace boost {
namespace unordered {
namespace detail {
BOOST_UNORDERED_DEFAULT_TYPE_TMPLT(is_always_equal);
template <typename Alloc>
struct allocator_traits : std::allocator_traits<Alloc>
{
// As is_always_equal was introduced in C++17, std::allocator_traits
// doesn't always have it. So use it when available, implement it
// ourselves when not. Would be simpler not to bother with
// std::allocator_traits, but I feel like I should try to use
// it where possible.
typedef BOOST_UNORDERED_DEFAULT_TYPE(std::allocator_traits<Alloc>,
is_always_equal,
BOOST_UNORDERED_DEFAULT_TYPE(Alloc, is_always_equal,
typename boost::is_empty<Alloc>::type)) is_always_equal;
};
template <typename Alloc, typename T> struct rebind_wrap
{
typedef typename std::allocator_traits<Alloc>::template rebind_alloc<T>
type;
};
}
}
}
////////////////////////////////////////////////////////////////////////////////
//
// boost::container::allocator_traits
#elif BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 2
#include <boost/container/allocator_traits.hpp>
namespace boost {
namespace unordered {
namespace detail {
template <typename Alloc>
struct allocator_traits : boost::container::allocator_traits<Alloc>
{
};
template <typename Alloc, typename T>
struct rebind_wrap : boost::container::allocator_traits<
Alloc>::template portable_rebind_alloc<T>
{
};
}
}
}
#else
#error "Invalid BOOST_UNORDERED_USE_ALLOCATOR_TRAITS value."
#endif
////////////////////////////////////////////////////////////////////////////
// Functions used to construct nodes. Emulates variadic construction,
// piecewise construction etc.
////////////////////////////////////////////////////////////////////////////
// construct_value
//
// Only use allocator_traits::construct, allocator_traits::destroy when full
// C++11 support is available.
#if BOOST_UNORDERED_CXX11_CONSTRUCTION
#define BOOST_UNORDERED_CALL_CONSTRUCT1(Traits, alloc, address, a0) \
Traits::construct(alloc, address, a0)
#define BOOST_UNORDERED_CALL_DESTROY(Traits, alloc, x) Traits::destroy(alloc, x)
#elif !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
namespace boost {
namespace unordered {
namespace detail {
namespace func {
template <typename T, typename... Args>
inline void construct_value(T* address, BOOST_FWD_REF(Args)... args)
{
new ((void*)address) T(boost::forward<Args>(args)...);
}
}
}
}
}
#define BOOST_UNORDERED_CALL_CONSTRUCT1(Traits, alloc, address, a0) \
boost::unordered::detail::func::construct_value(address, a0)
#define BOOST_UNORDERED_CALL_DESTROY(Traits, alloc, x) \
boost::unordered::detail::func::destroy(x)
#else
namespace boost {
namespace unordered {
namespace detail {
namespace func {
template <typename T> inline void construct_value(T* address)
{
new ((void*)address) T();
}
template <typename T, typename A0>
inline void construct_value(T* address, BOOST_FWD_REF(A0) a0)
{
new ((void*)address) T(boost::forward<A0>(a0));
}
}
}
}
}
#define BOOST_UNORDERED_CALL_CONSTRUCT1(Traits, alloc, address, a0) \
boost::unordered::detail::func::construct_value(address, a0)
#define BOOST_UNORDERED_CALL_DESTROY(Traits, alloc, x) \
boost::unordered::detail::func::destroy(x)
#endif
////////////////////////////////////////////////////////////////////////////
// Construct from tuple
//
// Used to emulate piecewise construction.
#define BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(z, n, namespace_) \
template <typename Alloc, typename T, \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
void construct_from_tuple(Alloc&, T* ptr, \
namespace_::tuple<BOOST_PP_ENUM_PARAMS_Z(z, n, A)> const& x) \
{ \
new ((void*)ptr) \
T(BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_GET_TUPLE_ARG, namespace_)); \
}
#define BOOST_UNORDERED_GET_TUPLE_ARG(z, n, namespace_) namespace_::get<n>(x)
// construct_from_tuple for boost::tuple
// The workaround for old Sun compilers comes later in the file.
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
namespace boost {
namespace unordered {
namespace detail {
namespace func {
template <typename Alloc, typename T>
void construct_from_tuple(Alloc&, T* ptr, boost::tuple<>)
{
new ((void*)ptr) T();
}
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 1, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 2, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 3, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 4, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 5, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 6, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 7, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 8, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 9, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 10, boost)
}
}
}
}
#endif
// construct_from_tuple for std::tuple
#if !BOOST_UNORDERED_CXX11_CONSTRUCTION && BOOST_UNORDERED_TUPLE_ARGS
namespace boost {
namespace unordered {
namespace detail {
namespace func {
template <typename Alloc, typename T>
void construct_from_tuple(Alloc&, T* ptr, std::tuple<>)
{
new ((void*)ptr) T();
}
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 1, std)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 2, std)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 3, std)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 4, std)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 5, std)
#if BOOST_UNORDERED_TUPLE_ARGS >= 6
BOOST_PP_REPEAT_FROM_TO(6, BOOST_PP_INC(BOOST_UNORDERED_TUPLE_ARGS),
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE, std)
#endif
}
}
}
}
#endif
#undef BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE
#undef BOOST_UNORDERED_GET_TUPLE_ARG
// construct_from_tuple for boost::tuple on old versions of sunpro.
//
// Old versions of Sun C++ had problems with template overloads of
// boost::tuple, so to fix it I added a distinct type for each length to
// the overloads. That means there's no possible ambiguity between the
// different overloads, so that the compiler doesn't get confused
#if BOOST_UNORDERED_SUN_WORKAROUNDS1
#define BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(z, n, namespace_) \
template <typename Alloc, typename T, \
BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
void construct_from_tuple_impl(boost::unordered::detail::func::length<n>, \
Alloc&, T* ptr, \
namespace_::tuple<BOOST_PP_ENUM_PARAMS_Z(z, n, A)> const& x) \
{ \
new ((void*)ptr) \
T(BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_GET_TUPLE_ARG, namespace_)); \
}
#define BOOST_UNORDERED_GET_TUPLE_ARG(z, n, namespace_) namespace_::get<n>(x)
namespace boost {
namespace unordered {
namespace detail {
namespace func {
template <int N> struct length
{
};
template <typename Alloc, typename T>
void construct_from_tuple_impl(
boost::unordered::detail::func::length<0>, Alloc&, T* ptr,
boost::tuple<>)
{
new ((void*)ptr) T();
}
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 1, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 2, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 3, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 4, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 5, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 6, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 7, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 8, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 9, boost)
BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE(1, 10, boost)
template <typename Alloc, typename T, typename Tuple>
void construct_from_tuple(Alloc& alloc, T* ptr, Tuple const& x)
{
construct_from_tuple_impl(boost::unordered::detail::func::length<
boost::tuples::length<Tuple>::value>(),
alloc, ptr, x);
}
}
}
}
}
#undef BOOST_UNORDERED_CONSTRUCT_FROM_TUPLE
#undef BOOST_UNORDERED_GET_TUPLE_ARG
#endif
namespace boost {
namespace unordered {
namespace detail {
namespace func {
////////////////////////////////////////////////////////////////////////
// Trait to check for piecewise construction.
template <typename A0> struct use_piecewise
{
static choice1::type test(
choice1, boost::unordered::piecewise_construct_t);
static choice2::type test(choice2, ...);
enum
{
value = sizeof(choice1::type) ==
sizeof(test(choose(), boost::unordered::detail::make<A0>()))
};
};
#if BOOST_UNORDERED_CXX11_CONSTRUCTION
////////////////////////////////////////////////////////////////////////
// Construct from variadic parameters
template <typename Alloc, typename T, typename... Args>
inline void construct_from_args(
Alloc& alloc, T* address, BOOST_FWD_REF(Args)... args)
{
boost::unordered::detail::allocator_traits<Alloc>::construct(
alloc, address, boost::forward<Args>(args)...);
}
// For backwards compatibility, implement a special case for
// piecewise_construct with boost::tuple
template <typename A0> struct detect_boost_tuple
{
template <typename T0, typename T1, typename T2, typename T3,
typename T4, typename T5, typename T6, typename T7, typename T8,
typename T9>
static choice1::type test(choice1,
boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> const&);
static choice2::type test(choice2, ...);
enum
{
value = sizeof(choice1::type) ==
sizeof(test(choose(), boost::unordered::detail::make<A0>()))
};
};
// Special case for piecewise_construct
template <typename Alloc, typename A, typename B, typename A0,
typename A1, typename A2>
inline typename boost::enable_if_c<use_piecewise<A0>::value &&
detect_boost_tuple<A1>::value &&
detect_boost_tuple<A2>::value,
void>::type
construct_from_args(Alloc& alloc, std::pair<A, B>* address,
BOOST_FWD_REF(A0), BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
boost::unordered::detail::func::construct_from_tuple(
alloc, boost::addressof(address->first), boost::forward<A1>(a1));
BOOST_TRY
{
boost::unordered::detail::func::construct_from_tuple(
alloc, boost::addressof(address->second), boost::forward<A2>(a2));
}
BOOST_CATCH(...)
{
boost::unordered::detail::func::destroy(
boost::addressof(address->first));
BOOST_RETHROW
}
BOOST_CATCH_END
}
#elif !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
////////////////////////////////////////////////////////////////////////
// Construct from variadic parameters
template <typename Alloc, typename T, typename... Args>
inline void construct_from_args(
Alloc&, T* address, BOOST_FWD_REF(Args)... args)
{
new ((void*)address) T(boost::forward<Args>(args)...);
}
// Special case for piecewise_construct
template <typename Alloc, typename A, typename B, typename A0,
typename A1, typename A2>
inline typename enable_if<use_piecewise<A0>, void>::type
construct_from_args(Alloc& alloc, std::pair<A, B>* address,
BOOST_FWD_REF(A0), BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
boost::unordered::detail::func::construct_from_tuple(
alloc, boost::addressof(address->first), boost::forward<A1>(a1));
BOOST_TRY
{
boost::unordered::detail::func::construct_from_tuple(
alloc, boost::addressof(address->second), boost::forward<A2>(a2));
}
BOOST_CATCH(...)
{
boost::unordered::detail::func::destroy(
boost::addressof(address->first));
BOOST_RETHROW
}
BOOST_CATCH_END
}
#else // BOOST_NO_CXX11_VARIADIC_TEMPLATES
////////////////////////////////////////////////////////////////////////
// Construct from emplace_args
// Explicitly write out first three overloads for the sake of sane
// error messages.
template <typename Alloc, typename T, typename A0>
inline void construct_from_args(
Alloc&, T* address, emplace_args1<A0> const& args)
{
new ((void*)address) T(boost::forward<A0>(args.a0));
}
template <typename Alloc, typename T, typename A0, typename A1>
inline void construct_from_args(
Alloc&, T* address, emplace_args2<A0, A1> const& args)
{
new ((void*)address)
T(boost::forward<A0>(args.a0), boost::forward<A1>(args.a1));
}
template <typename Alloc, typename T, typename A0, typename A1,
typename A2>
inline void construct_from_args(
Alloc&, T* address, emplace_args3<A0, A1, A2> const& args)
{
new ((void*)address) T(boost::forward<A0>(args.a0),
boost::forward<A1>(args.a1), boost::forward<A2>(args.a2));
}
// Use a macro for the rest.
#define BOOST_UNORDERED_CONSTRUCT_IMPL(z, num_params, _) \
template <typename Alloc, typename T, \
BOOST_PP_ENUM_PARAMS_Z(z, num_params, typename A)> \
inline void construct_from_args(Alloc&, T* address, \
boost::unordered::detail::BOOST_PP_CAT(emplace_args, num_params) < \
BOOST_PP_ENUM_PARAMS_Z(z, num_params, A) > const& args) \
{ \
new ((void*)address) \
T(BOOST_PP_ENUM_##z(num_params, BOOST_UNORDERED_CALL_FORWARD, args.a)); \
}
BOOST_UNORDERED_CONSTRUCT_IMPL(1, 4, _)
BOOST_UNORDERED_CONSTRUCT_IMPL(1, 5, _)
BOOST_UNORDERED_CONSTRUCT_IMPL(1, 6, _)
BOOST_UNORDERED_CONSTRUCT_IMPL(1, 7, _)
BOOST_UNORDERED_CONSTRUCT_IMPL(1, 8, _)
BOOST_UNORDERED_CONSTRUCT_IMPL(1, 9, _)
BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
BOOST_UNORDERED_CONSTRUCT_IMPL, _)
#undef BOOST_UNORDERED_CONSTRUCT_IMPL
// Construct with piecewise_construct
template <typename Alloc, typename A, typename B, typename A0,
typename A1, typename A2>
inline void construct_from_args(Alloc& alloc, std::pair<A, B>* address,
boost::unordered::detail::emplace_args3<A0, A1, A2> const& args,
typename enable_if<use_piecewise<A0>, void*>::type = 0)
{
boost::unordered::detail::func::construct_from_tuple(
alloc, boost::addressof(address->first), args.a1);
BOOST_TRY
{
boost::unordered::detail::func::construct_from_tuple(
alloc, boost::addressof(address->second), args.a2);
}
BOOST_CATCH(...)
{
boost::unordered::detail::func::destroy(
boost::addressof(address->first));
BOOST_RETHROW
}
BOOST_CATCH_END
}
#endif // BOOST_NO_CXX11_VARIADIC_TEMPLATES
}
}
}
}
namespace boost {
namespace unordered {
namespace detail {
///////////////////////////////////////////////////////////////////
//
// Node construction
template <typename NodeAlloc> struct node_constructor
{
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
node_allocator& alloc_;
node_pointer node_;
node_constructor(node_allocator& n) : alloc_(n), node_() {}
~node_constructor();
void create_node();
// no throw
node_pointer release()
{
BOOST_ASSERT(node_);
node_pointer p = node_;
node_ = node_pointer();
return p;
}
void reclaim(node_pointer p)
{
BOOST_ASSERT(!node_);
node_ = p;
BOOST_UNORDERED_CALL_DESTROY(
node_allocator_traits, alloc_, node_->value_ptr());
}
private:
node_constructor(node_constructor const&);
node_constructor& operator=(node_constructor const&);
};
template <typename Alloc> node_constructor<Alloc>::~node_constructor()
{
if (node_) {
boost::unordered::detail::func::destroy(boost::to_address(node_));
node_allocator_traits::deallocate(alloc_, node_, 1);
}
}
template <typename Alloc> void node_constructor<Alloc>::create_node()
{
BOOST_ASSERT(!node_);
node_ = node_allocator_traits::allocate(alloc_, 1);
new ((void*)boost::to_address(node_)) node();
}
template <typename NodeAlloc> struct node_tmp
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node_allocator_traits::value_type node;
NodeAlloc& alloc_;
node_pointer node_;
explicit node_tmp(node_pointer n, NodeAlloc& a) : alloc_(a), node_(n) {}
~node_tmp();
// no throw
node_pointer release()
{
node_pointer p = node_;
node_ = node_pointer();
return p;
}
};
template <typename Alloc> node_tmp<Alloc>::~node_tmp()
{
if (node_) {
BOOST_UNORDERED_CALL_DESTROY(
node_allocator_traits, alloc_, node_->value_ptr());
boost::unordered::detail::func::destroy(boost::to_address(node_));
node_allocator_traits::deallocate(alloc_, node_, 1);
}
}
}
}
}
namespace boost {
namespace unordered {
namespace detail {
namespace func {
// Some nicer construct_node functions, might try to
// improve implementation later.
template <typename Alloc, BOOST_UNORDERED_EMPLACE_TEMPLATE>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_from_args(Alloc& alloc, BOOST_UNORDERED_EMPLACE_ARGS)
{
node_constructor<Alloc> a(alloc);
a.create_node();
construct_from_args(
alloc, a.node_->value_ptr(), BOOST_UNORDERED_EMPLACE_FORWARD);
return a.release();
}
template <typename Alloc, typename U>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node(Alloc& alloc, BOOST_FWD_REF(U) x)
{
node_constructor<Alloc> a(alloc);
a.create_node();
BOOST_UNORDERED_CALL_CONSTRUCT1(
boost::unordered::detail::allocator_traits<Alloc>, alloc,
a.node_->value_ptr(), boost::forward<U>(x));
return a.release();
}
#if BOOST_UNORDERED_CXX11_CONSTRUCTION
template <typename Alloc, typename Key>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_pair(Alloc& alloc, BOOST_FWD_REF(Key) k)
{
node_constructor<Alloc> a(alloc);
a.create_node();
boost::unordered::detail::allocator_traits<Alloc>::construct(alloc,
a.node_->value_ptr(), std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple());
return a.release();
}
template <typename Alloc, typename Key, typename Mapped>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_pair(
Alloc& alloc, BOOST_FWD_REF(Key) k, BOOST_FWD_REF(Mapped) m)
{
node_constructor<Alloc> a(alloc);
a.create_node();
boost::unordered::detail::allocator_traits<Alloc>::construct(alloc,
a.node_->value_ptr(), std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Mapped>(m)));
return a.release();
}
template <typename Alloc, typename Key, typename... Args>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_pair_from_args(
Alloc& alloc, BOOST_FWD_REF(Key) k, BOOST_FWD_REF(Args)... args)
{
node_constructor<Alloc> a(alloc);
a.create_node();
#if !(BOOST_COMP_CLANG && BOOST_COMP_CLANG < BOOST_VERSION_NUMBER(3, 8, 0) && \
defined(BOOST_LIBSTDCXX11))
boost::unordered::detail::allocator_traits<Alloc>::construct(alloc,
a.node_->value_ptr(), std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...));
#else
// It doesn't seem to be possible to construct a tuple with 3 variadic
// rvalue reference members when using older versions of clang with
// libstdc++, so just use std::make_tuple instead of
// std::forward_as_tuple.
boost::unordered::detail::allocator_traits<Alloc>::construct(alloc,
a.node_->value_ptr(), std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::make_tuple(boost::forward<Args>(args)...));
#endif
return a.release();
}
#else
template <typename Alloc, typename Key>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_pair(Alloc& alloc, BOOST_FWD_REF(Key) k)
{
node_constructor<Alloc> a(alloc);
a.create_node();
boost::unordered::detail::func::construct_value(
boost::addressof(a.node_->value_ptr()->first),
boost::forward<Key>(k));
BOOST_TRY
{
boost::unordered::detail::func::construct_value(
boost::addressof(a.node_->value_ptr()->second));
}
BOOST_CATCH(...)
{
boost::unordered::detail::func::destroy(
boost::addressof(a.node_->value_ptr()->first));
BOOST_RETHROW
}
BOOST_CATCH_END
return a.release();
}
template <typename Alloc, typename Key, typename Mapped>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_pair(
Alloc& alloc, BOOST_FWD_REF(Key) k, BOOST_FWD_REF(Mapped) m)
{
node_constructor<Alloc> a(alloc);
a.create_node();
boost::unordered::detail::func::construct_value(
boost::addressof(a.node_->value_ptr()->first),
boost::forward<Key>(k));
BOOST_TRY
{
boost::unordered::detail::func::construct_value(
boost::addressof(a.node_->value_ptr()->second),
boost::forward<Mapped>(m));
}
BOOST_CATCH(...)
{
boost::unordered::detail::func::destroy(
boost::addressof(a.node_->value_ptr()->first));
BOOST_RETHROW
}
BOOST_CATCH_END
return a.release();
}
template <typename Alloc, typename Key,
BOOST_UNORDERED_EMPLACE_TEMPLATE>
inline
typename boost::unordered::detail::allocator_traits<Alloc>::pointer
construct_node_pair_from_args(
Alloc& alloc, BOOST_FWD_REF(Key) k, BOOST_UNORDERED_EMPLACE_ARGS)
{
node_constructor<Alloc> a(alloc);
a.create_node();
boost::unordered::detail::func::construct_value(
boost::addressof(a.node_->value_ptr()->first),
boost::forward<Key>(k));
BOOST_TRY
{
boost::unordered::detail::func::construct_from_args(alloc,
boost::addressof(a.node_->value_ptr()->second),
BOOST_UNORDERED_EMPLACE_FORWARD);
}
BOOST_CATCH(...)
{
boost::unordered::detail::func::destroy(
boost::addressof(a.node_->value_ptr()->first));
BOOST_RETHROW
}
BOOST_CATCH_END
return a.release();
}
#endif
}
}
}
}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
// The 'iterator_detail' namespace was a misguided attempt at avoiding ADL
// in the detail namespace. It didn't work because the template parameters
// were in detail. I'm not changing it at the moment to be safe. I might
// do in the future if I change the iterator types.
namespace boost {
namespace unordered {
namespace iterator_detail {
//////////////////////////////////////////////////////////////////////////
// Iterators
//
// all no throw
template <typename Node> struct l_iterator
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename Node2>
friend struct boost::unordered::iterator_detail::cl_iterator;
private:
#endif
typedef typename Node::node_pointer node_pointer;
node_pointer ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
typedef typename Node::value_type element_type;
typedef typename Node::value_type value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
l_iterator() BOOST_NOEXCEPT : ptr_() {}
l_iterator(node_pointer n, std::size_t b, std::size_t c) BOOST_NOEXCEPT
: ptr_(n),
bucket_(b),
bucket_count_(c)
{
}
value_type& operator*() const { return ptr_->value(); }
value_type* operator->() const { return ptr_->value_ptr(); }
l_iterator& operator++()
{
ptr_ = static_cast<node_pointer>(ptr_->next_);
if (ptr_ && ptr_->get_bucket() != bucket_)
ptr_ = node_pointer();
return *this;
}
l_iterator operator++(int)
{
l_iterator tmp(*this);
++(*this);
return tmp;
}
bool operator==(l_iterator x) const BOOST_NOEXCEPT
{
return ptr_ == x.ptr_;
}
bool operator!=(l_iterator x) const BOOST_NOEXCEPT
{
return ptr_ != x.ptr_;
}
};
template <typename Node> struct cl_iterator
{
friend struct boost::unordered::iterator_detail::l_iterator<Node>;
private:
typedef typename Node::node_pointer node_pointer;
node_pointer ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
typedef typename Node::value_type const element_type;
typedef typename Node::value_type value_type;
typedef value_type const* pointer;
typedef value_type const& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
cl_iterator() BOOST_NOEXCEPT : ptr_() {}
cl_iterator(node_pointer n, std::size_t b, std::size_t c) BOOST_NOEXCEPT
: ptr_(n),
bucket_(b),
bucket_count_(c)
{
}
cl_iterator(
boost::unordered::iterator_detail::l_iterator<Node> const& x)
BOOST_NOEXCEPT : ptr_(x.ptr_),
bucket_(x.bucket_),
bucket_count_(x.bucket_count_)
{
}
value_type const& operator*() const { return ptr_->value(); }
value_type const* operator->() const { return ptr_->value_ptr(); }
cl_iterator& operator++()
{
ptr_ = static_cast<node_pointer>(ptr_->next_);
if (ptr_ && ptr_->get_bucket() != bucket_)
ptr_ = node_pointer();
return *this;
}
cl_iterator operator++(int)
{
cl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(
cl_iterator const& x, cl_iterator const& y) BOOST_NOEXCEPT
{
return x.ptr_ == y.ptr_;
}
friend bool operator!=(
cl_iterator const& x, cl_iterator const& y) BOOST_NOEXCEPT
{
return x.ptr_ != y.ptr_;
}
};
template <typename Node> struct iterator
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename>
friend struct boost::unordered::iterator_detail::c_iterator;
template <typename> friend struct boost::unordered::detail::table;
private:
#endif
typedef typename Node::node_pointer node_pointer;
node_pointer node_;
public:
typedef typename Node::value_type element_type;
typedef typename Node::value_type value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
iterator() BOOST_NOEXCEPT : node_() {}
explicit iterator(typename Node::link_pointer x) BOOST_NOEXCEPT
: node_(static_cast<node_pointer>(x))
{
}
value_type& operator*() const { return node_->value(); }
value_type* operator->() const { return node_->value_ptr(); }
iterator& operator++()
{
node_ = static_cast<node_pointer>(node_->next_);
return *this;
}
iterator operator++(int)
{
iterator tmp(node_);
node_ = static_cast<node_pointer>(node_->next_);
return tmp;
}
bool operator==(iterator const& x) const BOOST_NOEXCEPT
{
return node_ == x.node_;
}
bool operator!=(iterator const& x) const BOOST_NOEXCEPT
{
return node_ != x.node_;
}
};
template <typename Node> struct c_iterator
{
friend struct boost::unordered::iterator_detail::iterator<Node>;
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename> friend struct boost::unordered::detail::table;
private:
#endif
typedef typename Node::node_pointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<Node> n_iterator;
node_pointer node_;
public:
typedef typename Node::value_type const element_type;
typedef typename Node::value_type value_type;
typedef value_type const* pointer;
typedef value_type const& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
c_iterator() BOOST_NOEXCEPT : node_() {}
explicit c_iterator(typename Node::link_pointer x) BOOST_NOEXCEPT
: node_(static_cast<node_pointer>(x))
{
}
c_iterator(n_iterator const& x) BOOST_NOEXCEPT : node_(x.node_) {}
value_type const& operator*() const { return node_->value(); }
value_type const* operator->() const { return node_->value_ptr(); }
c_iterator& operator++()
{
node_ = static_cast<node_pointer>(node_->next_);
return *this;
}
c_iterator operator++(int)
{
c_iterator tmp(node_);
node_ = static_cast<node_pointer>(node_->next_);
return tmp;
}
friend bool operator==(
c_iterator const& x, c_iterator const& y) BOOST_NOEXCEPT
{
return x.node_ == y.node_;
}
friend bool operator!=(
c_iterator const& x, c_iterator const& y) BOOST_NOEXCEPT
{
return x.node_ != y.node_;
}
};
}
}
}
namespace boost {
namespace unordered {
namespace detail {
///////////////////////////////////////////////////////////////////
//
// Node Holder
//
// Temporary store for nodes. Deletes any that aren't used.
template <typename NodeAlloc> struct node_holder
{
private:
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
typedef typename node::link_pointer link_pointer;
typedef boost::unordered::iterator_detail::iterator<node> iterator;
node_constructor<NodeAlloc> constructor_;
node_pointer nodes_;
public:
template <typename Table>
explicit node_holder(Table& b) : constructor_(b.node_alloc()), nodes_()
{
if (b.size_) {
typename Table::link_pointer prev = b.get_previous_start();
nodes_ = static_cast<node_pointer>(prev->next_);
prev->next_ = link_pointer();
b.size_ = 0;
}
}
~node_holder();
node_pointer pop_node()
{
node_pointer n = nodes_;
nodes_ = static_cast<node_pointer>(nodes_->next_);
n->next_ = link_pointer();
return n;
}
template <typename T> inline node_pointer copy_of(T const& v)
{
if (nodes_) {
constructor_.reclaim(pop_node());
} else {
constructor_.create_node();
}
BOOST_UNORDERED_CALL_CONSTRUCT1(node_allocator_traits,
constructor_.alloc_, constructor_.node_->value_ptr(), v);
return constructor_.release();
}
template <typename T> inline node_pointer move_copy_of(T& v)
{
if (nodes_) {
constructor_.reclaim(pop_node());
} else {
constructor_.create_node();
}
BOOST_UNORDERED_CALL_CONSTRUCT1(node_allocator_traits,
constructor_.alloc_, constructor_.node_->value_ptr(),
boost::move(v));
return constructor_.release();
}
iterator begin() const { return iterator(nodes_); }
};
template <typename Alloc> node_holder<Alloc>::~node_holder()
{
while (nodes_) {
node_pointer p = nodes_;
nodes_ = static_cast<node_pointer>(p->next_);
BOOST_UNORDERED_CALL_DESTROY(
node_allocator_traits, constructor_.alloc_, p->value_ptr());
boost::unordered::detail::func::destroy(boost::to_address(p));
node_allocator_traits::deallocate(constructor_.alloc_, p, 1);
}
}
///////////////////////////////////////////////////////////////////
//
// Bucket
template <typename NodePointer> struct bucket
{
typedef NodePointer link_pointer;
link_pointer next_;
bucket() : next_() {}
bucket(link_pointer n) : next_(n) {}
link_pointer first_from_start() { return next_; }
enum
{
extra_node = true
};
};
struct ptr_bucket
{
typedef ptr_bucket* link_pointer;
link_pointer next_;
ptr_bucket() : next_(0) {}
ptr_bucket(link_pointer n) : next_(n) {}
link_pointer first_from_start() { return this; }
enum
{
extra_node = false
};
};
///////////////////////////////////////////////////////////////////
//
// Hash Policy
template <typename SizeT> struct prime_policy
{
template <typename Hash, typename T>
static inline SizeT apply_hash(Hash const& hf, T const& x)
{
return hf(x);
}
static inline SizeT to_bucket(SizeT bucket_count, SizeT hash)
{
return hash % bucket_count;
}
static inline SizeT new_bucket_count(SizeT min)
{
return boost::unordered::detail::next_prime(min);
}
static inline SizeT prev_bucket_count(SizeT max)
{
return boost::unordered::detail::prev_prime(max);
}
};
template <typename SizeT> struct mix64_policy
{
template <typename Hash, typename T>
static inline SizeT apply_hash(Hash const& hf, T const& x)
{
SizeT key = hf(x);
key = (~key) + (key << 21); // key = (key << 21) - key - 1;
key = key ^ (key >> 24);
key = (key + (key << 3)) + (key << 8); // key * 265
key = key ^ (key >> 14);
key = (key + (key << 2)) + (key << 4); // key * 21
key = key ^ (key >> 28);
key = key + (key << 31);
return key;
}
static inline SizeT to_bucket(SizeT bucket_count, SizeT hash)
{
return hash & (bucket_count - 1);
}
static inline SizeT new_bucket_count(SizeT min)
{
if (min <= 4)
return 4;
--min;
min |= min >> 1;
min |= min >> 2;
min |= min >> 4;
min |= min >> 8;
min |= min >> 16;
min |= min >> 32;
return min + 1;
}
static inline SizeT prev_bucket_count(SizeT max)
{
max |= max >> 1;
max |= max >> 2;
max |= max >> 4;
max |= max >> 8;
max |= max >> 16;
max |= max >> 32;
return (max >> 1) + 1;
}
};
template <int digits, int radix> struct pick_policy_impl
{
typedef prime_policy<std::size_t> type;
};
template <> struct pick_policy_impl<64, 2>
{
typedef mix64_policy<std::size_t> type;
};
template <typename T>
struct pick_policy2
: pick_policy_impl<std::numeric_limits<std::size_t>::digits,
std::numeric_limits<std::size_t>::radix>
{
};
// While the mix policy is generally faster, the prime policy is a lot
// faster when a large number consecutive integers are used, because
// there are no collisions. Since that is probably quite common, use
// prime policy for integeral types. But not the smaller ones, as they
// don't have enough unique values for this to be an issue.
template <> struct pick_policy2<int>
{
typedef prime_policy<std::size_t> type;
};
template <> struct pick_policy2<unsigned int>
{
typedef prime_policy<std::size_t> type;
};
template <> struct pick_policy2<long>
{
typedef prime_policy<std::size_t> type;
};
template <> struct pick_policy2<unsigned long>
{
typedef prime_policy<std::size_t> type;
};
#if !defined(BOOST_NO_LONG_LONG)
template <> struct pick_policy2<boost::long_long_type>
{
typedef prime_policy<std::size_t> type;
};
template <> struct pick_policy2<boost::ulong_long_type>
{
typedef prime_policy<std::size_t> type;
};
#endif
template <typename T>
struct pick_policy : pick_policy2<typename boost::remove_cv<T>::type>
{
};
//////////////////////////////////////////////////////////////////////////
// Functions
//
// This double buffers the storage for the hash function and key equality
// predicate in order to have exception safe copy/swap. To do so,
// use 'construct_spare' to construct in the spare space, and then when
// ready to use 'switch_functions' to switch to the new functions.
// If an exception is thrown between these two calls, use
// 'cleanup_spare_functions' to destroy the unused constructed functions.
template <class H, class P> class functions
{
public:
static const bool nothrow_move_assignable =
boost::is_nothrow_move_assignable<H>::value &&
boost::is_nothrow_move_assignable<P>::value;
static const bool nothrow_move_constructible =
boost::is_nothrow_move_constructible<H>::value &&
boost::is_nothrow_move_constructible<P>::value;
static const bool nothrow_swappable =
boost::is_nothrow_swappable<H>::value &&
boost::is_nothrow_swappable<P>::value;
private:
functions& operator=(functions const&);
typedef compressed<H, P> function_pair;
typedef typename boost::aligned_storage<sizeof(function_pair),
boost::alignment_of<function_pair>::value>::type aligned_function;
unsigned char current_; // 0/1 - Currently active functions
// +2 - Both constructed
aligned_function funcs_[2];
public:
functions(H const& hf, P const& eq) : current_(0)
{
construct_functions(current_, hf, eq);
}
functions(functions const& bf) : current_(0)
{
construct_functions(current_, bf.current_functions());
}
functions(functions& bf, boost::unordered::detail::move_tag)
: current_(0)
{
construct_functions(current_, bf.current_functions(),
boost::unordered::detail::integral_constant<bool,
nothrow_move_constructible>());
}
~functions()
{
BOOST_ASSERT(!(current_ & 2));
destroy_functions(current_);
}
H const& hash_function() const { return current_functions().first(); }
P const& key_eq() const { return current_functions().second(); }
function_pair const& current_functions() const
{
return *static_cast<function_pair const*>(
static_cast<void const*>(funcs_[current_ & 1].address()));
}
function_pair& current_functions()
{
return *static_cast<function_pair*>(
static_cast<void*>(funcs_[current_ & 1].address()));
}
void construct_spare_functions(function_pair const& f)
{
BOOST_ASSERT(!(current_ & 2));
construct_functions(current_ ^ 1, f);
current_ |= 2;
}
void cleanup_spare_functions()
{
if (current_ & 2) {
current_ = static_cast<unsigned char>(current_ & 1);
destroy_functions(current_ ^ 1);
}
}
void switch_functions()
{
BOOST_ASSERT(current_ & 2);
destroy_functions(static_cast<unsigned char>(current_ & 1));
current_ ^= 3;
}
private:
void construct_functions(unsigned char which, H const& hf, P const& eq)
{
BOOST_ASSERT(!(which & 2));
new ((void*)&funcs_[which]) function_pair(hf, eq);
}
void construct_functions(unsigned char which, function_pair const& f,
boost::unordered::detail::false_type =
boost::unordered::detail::false_type())
{
BOOST_ASSERT(!(which & 2));
new ((void*)&funcs_[which]) function_pair(f);
}
void construct_functions(unsigned char which, function_pair& f,
boost::unordered::detail::true_type)
{
BOOST_ASSERT(!(which & 2));
new ((void*)&funcs_[which])
function_pair(f, boost::unordered::detail::move_tag());
}
void destroy_functions(unsigned char which)
{
BOOST_ASSERT(!(which & 2));
boost::unordered::detail::func::destroy(
(function_pair*)(&funcs_[which]));
}
};
////////////////////////////////////////////////////////////////////////////
// rvalue parameters when type can't be a BOOST_RV_REF(T) parameter
// e.g. for int
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
#define BOOST_UNORDERED_RV_REF(T) BOOST_RV_REF(T)
#else
struct please_ignore_this_overload
{
typedef please_ignore_this_overload type;
};
template <typename T> struct rv_ref_impl
{
typedef BOOST_RV_REF(T) type;
};
template <typename T>
struct rv_ref
: boost::detail::if_true<boost::is_class<T>::value>::
BOOST_NESTED_TEMPLATE then<boost::unordered::detail::rv_ref_impl<T>,
please_ignore_this_overload>::type
{
};
#define BOOST_UNORDERED_RV_REF(T) \
typename boost::unordered::detail::rv_ref<T>::type
#endif
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
//////////////////////////////////////////////////////////////////////////
// convert double to std::size_t
inline std::size_t double_to_size(double f)
{
return f >= static_cast<double>(
(std::numeric_limits<std::size_t>::max)())
? (std::numeric_limits<std::size_t>::max)()
: static_cast<std::size_t>(f);
}
template <typename Types>
struct table : boost::unordered::detail::functions<typename Types::hasher,
typename Types::key_equal>
{
private:
table(table const&);
table& operator=(table const&);
public:
typedef typename Types::node node;
typedef typename Types::bucket bucket;
typedef typename Types::hasher hasher;
typedef typename Types::key_equal key_equal;
typedef typename Types::const_key_type const_key_type;
typedef typename Types::extractor extractor;
typedef typename Types::value_type value_type;
typedef typename Types::table table_impl;
typedef typename Types::link_pointer link_pointer;
typedef typename Types::policy policy;
typedef typename Types::iterator iterator;
typedef typename Types::c_iterator c_iterator;
typedef typename Types::l_iterator l_iterator;
typedef typename Types::cl_iterator cl_iterator;
typedef boost::unordered::detail::functions<typename Types::hasher,
typename Types::key_equal>
functions;
typedef typename Types::value_allocator value_allocator;
typedef typename boost::unordered::detail::rebind_wrap<value_allocator,
node>::type node_allocator;
typedef typename boost::unordered::detail::rebind_wrap<value_allocator,
bucket>::type bucket_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef boost::unordered::detail::allocator_traits<bucket_allocator>
bucket_allocator_traits;
typedef typename node_allocator_traits::pointer node_pointer;
typedef
typename node_allocator_traits::const_pointer const_node_pointer;
typedef typename bucket_allocator_traits::pointer bucket_pointer;
typedef boost::unordered::detail::node_constructor<node_allocator>
node_constructor;
typedef boost::unordered::detail::node_tmp<node_allocator> node_tmp;
typedef std::pair<iterator, bool> emplace_return;
////////////////////////////////////////////////////////////////////////
// Members
boost::unordered::detail::compressed<bucket_allocator, node_allocator>
allocators_;
std::size_t bucket_count_;
std::size_t size_;
float mlf_;
std::size_t max_load_;
bucket_pointer buckets_;
////////////////////////////////////////////////////////////////////////
// Data access
static node_pointer get_node(c_iterator it) { return it.node_; }
static node_pointer next_node(link_pointer n)
{
return static_cast<node_pointer>(n->next_);
}
static node_pointer next_for_find(link_pointer n)
{
node_pointer n2 = static_cast<node_pointer>(n);
do {
n2 = next_node(n2);
} while (n2 && !n2->is_first_in_group());
return n2;
}
node_pointer next_group(node_pointer n) const
{
node_pointer n1 = n;
do {
n1 = next_node(n1);
} while (n1 && !n1->is_first_in_group());
return n1;
}
std::size_t group_count(node_pointer n) const
{
std::size_t x = 0;
node_pointer it = n;
do {
++x;
it = next_node(it);
} while (it && !it->is_first_in_group());
return x;
}
std::size_t node_bucket(node_pointer n) const
{
return n->get_bucket();
}
bucket_allocator const& bucket_alloc() const
{
return allocators_.first();
}
node_allocator const& node_alloc() const
{
return allocators_.second();
}
bucket_allocator& bucket_alloc() { return allocators_.first(); }
node_allocator& node_alloc() { return allocators_.second(); }
std::size_t max_bucket_count() const
{
// -1 to account for the start bucket.
return policy::prev_bucket_count(
bucket_allocator_traits::max_size(bucket_alloc()) - 1);
}
bucket_pointer get_bucket_pointer(std::size_t bucket_index) const
{
BOOST_ASSERT(buckets_);
return buckets_ + static_cast<std::ptrdiff_t>(bucket_index);
}
link_pointer get_previous_start() const
{
return get_bucket_pointer(bucket_count_)->first_from_start();
}
link_pointer get_previous_start(std::size_t bucket_index) const
{
return get_bucket_pointer(bucket_index)->next_;
}
node_pointer begin() const
{
return size_ ? next_node(get_previous_start()) : node_pointer();
}
node_pointer begin(std::size_t bucket_index) const
{
if (!size_)
return node_pointer();
link_pointer prev = get_previous_start(bucket_index);
return prev ? next_node(prev) : node_pointer();
}
std::size_t hash_to_bucket(std::size_t hash_value) const
{
return policy::to_bucket(bucket_count_, hash_value);
}
std::size_t bucket_size(std::size_t index) const
{
node_pointer n = begin(index);
if (!n)
return 0;
std::size_t count = 0;
while (n && node_bucket(n) == index) {
++count;
n = next_node(n);
}
return count;
}
////////////////////////////////////////////////////////////////////////
// Load methods
void recalculate_max_load()
{
using namespace std;
// From 6.3.1/13:
// Only resize when size >= mlf_ * count
max_load_ = buckets_ ? boost::unordered::detail::double_to_size(
ceil(static_cast<double>(mlf_) *
static_cast<double>(bucket_count_)))
: 0;
}
void max_load_factor(float z)
{
BOOST_ASSERT(z > 0);
mlf_ = (std::max)(z, minimum_max_load_factor);
recalculate_max_load();
}
std::size_t min_buckets_for_size(std::size_t size) const
{
BOOST_ASSERT(mlf_ >= minimum_max_load_factor);
using namespace std;
// From insert/emplace requirements:
//
// size <= mlf_ * count
// => count >= size / mlf_
//
// Or from rehash post-condition:
//
// count >= size / mlf_
return policy::new_bucket_count(
boost::unordered::detail::double_to_size(
floor(static_cast<double>(size) / static_cast<double>(mlf_)) +
1));
}
////////////////////////////////////////////////////////////////////////
// Constructors
table(std::size_t num_buckets, hasher const& hf, key_equal const& eq,
node_allocator const& a)
: functions(hf, eq), allocators_(a, a),
bucket_count_(policy::new_bucket_count(num_buckets)), size_(0),
mlf_(1.0f), max_load_(0), buckets_()
{
}
table(table const& x, node_allocator const& a)
: functions(x), allocators_(a, a),
bucket_count_(x.min_buckets_for_size(x.size_)), size_(0),
mlf_(x.mlf_), max_load_(0), buckets_()
{
}
table(table& x, boost::unordered::detail::move_tag m)
: functions(x, m), allocators_(x.allocators_, m),
bucket_count_(x.bucket_count_), size_(x.size_), mlf_(x.mlf_),
max_load_(x.max_load_), buckets_(x.buckets_)
{
x.buckets_ = bucket_pointer();
x.size_ = 0;
x.max_load_ = 0;
}
table(table& x, node_allocator const& a,
boost::unordered::detail::move_tag m)
: functions(x, m), allocators_(a, a),
bucket_count_(x.bucket_count_), size_(0), mlf_(x.mlf_),
max_load_(0), buckets_()
{
}
////////////////////////////////////////////////////////////////////////
// Clear buckets and Create buckets
//
// IMPORTANT: If the container already contains any elements, the
// buckets will not contain any links to them. This will
// need to be dealt with, for example by:
// - deleting them
// - putting them in a 'node_holder' for future use
// (as in assignment)
// - placing them in buckets (see rehash_impl)
// Clear the bucket pointers.
void clear_buckets()
{
bucket_pointer end = get_bucket_pointer(bucket_count_);
for (bucket_pointer it = buckets_; it != end; ++it) {
it->next_ = node_pointer();
}
}
// Create container buckets. If the container already contains any
// buckets
// the linked list will be transferred to the new buckets, but none
// of the bucket pointers will be set. See above note.
//
// Strong exception safety.
void create_buckets(std::size_t new_count)
{
link_pointer dummy_node;
// Construct the new buckets and dummy node, and destroy the old
// buckets
if (buckets_) {
dummy_node =
(buckets_ + static_cast<std::ptrdiff_t>(bucket_count_))->next_;
bucket_pointer new_buckets =
bucket_allocator_traits::allocate(bucket_alloc(), new_count + 1);
destroy_buckets();
buckets_ = new_buckets;
} else if (bucket::extra_node) {
node_constructor a(node_alloc());
a.create_node();
buckets_ =
bucket_allocator_traits::allocate(bucket_alloc(), new_count + 1);
dummy_node = a.release();
} else {
dummy_node = link_pointer();
buckets_ =
bucket_allocator_traits::allocate(bucket_alloc(), new_count + 1);
}
// nothrow from here...
bucket_count_ = new_count;
recalculate_max_load();
bucket_pointer end =
buckets_ + static_cast<std::ptrdiff_t>(new_count);
for (bucket_pointer i = buckets_; i != end; ++i) {
new ((void*)boost::to_address(i)) bucket();
}
new ((void*)boost::to_address(end)) bucket(dummy_node);
}
////////////////////////////////////////////////////////////////////////
// Swap and Move
void swap_allocators(table& other, false_type)
{
boost::unordered::detail::func::ignore_unused_variable_warning(other);
// According to 23.2.1.8, if propagate_on_container_swap is
// false the behaviour is undefined unless the allocators
// are equal.
BOOST_ASSERT(node_alloc() == other.node_alloc());
}
void swap_allocators(table& other, true_type)
{
allocators_.swap(other.allocators_);
}
// Not nothrow swappable
void swap(table& x, false_type)
{
if (this == &x) {
return;
}
this->construct_spare_functions(x.current_functions());
BOOST_TRY { x.construct_spare_functions(this->current_functions()); }
BOOST_CATCH(...)
{
this->cleanup_spare_functions();
BOOST_RETHROW
}
BOOST_CATCH_END
this->switch_functions();
x.switch_functions();
swap_allocators(
x, boost::unordered::detail::integral_constant<bool,
allocator_traits<
node_allocator>::propagate_on_container_swap::value>());
boost::swap(buckets_, x.buckets_);
boost::swap(bucket_count_, x.bucket_count_);
boost::swap(size_, x.size_);
std::swap(mlf_, x.mlf_);
std::swap(max_load_, x.max_load_);
}
// Nothrow swappable
void swap(table& x, true_type)
{
swap_allocators(
x, boost::unordered::detail::integral_constant<bool,
allocator_traits<
node_allocator>::propagate_on_container_swap::value>());
boost::swap(buckets_, x.buckets_);
boost::swap(bucket_count_, x.bucket_count_);
boost::swap(size_, x.size_);
std::swap(mlf_, x.mlf_);
std::swap(max_load_, x.max_load_);
this->current_functions().swap(x.current_functions());
}
// Only swaps the allocators if propagate_on_container_swap.
// If not propagate_on_container_swap and allocators aren't
// equal, behaviour is undefined.
void swap(table& x)
{
BOOST_ASSERT(allocator_traits<
node_allocator>::propagate_on_container_swap::value ||
node_alloc() == x.node_alloc());
swap(x, boost::unordered::detail::integral_constant<bool,
functions::nothrow_swappable>());
}
// Only call with nodes allocated with the currect allocator, or
// one that is equal to it. (Can't assert because other's
// allocators might have already been moved).
void move_buckets_from(table& other)
{
BOOST_ASSERT(!buckets_);
buckets_ = other.buckets_;
bucket_count_ = other.bucket_count_;
size_ = other.size_;
max_load_ = other.max_load_;
other.buckets_ = bucket_pointer();
other.size_ = 0;
other.max_load_ = 0;
}
// For use in the constructor when allocators might be different.
void move_construct_buckets(table& src)
{
if (this->node_alloc() == src.node_alloc()) {
move_buckets_from(src);
} else {
this->create_buckets(this->bucket_count_);
link_pointer prev = this->get_previous_start();
std::size_t last_bucket = this->bucket_count_;
for (node_pointer n = src.begin(); n; n = next_node(n)) {
std::size_t n_bucket = n->get_bucket();
if (n_bucket != last_bucket) {
this->get_bucket_pointer(n_bucket)->next_ = prev;
}
node_pointer n2 = boost::unordered::detail::func::construct_node(
this->node_alloc(), boost::move(n->value()));
n2->bucket_info_ = n->bucket_info_;
prev->next_ = n2;
++size_;
prev = n2;
last_bucket = n_bucket;
}
}
}
////////////////////////////////////////////////////////////////////////
// Delete/destruct
~table() { delete_buckets(); }
void destroy_node(node_pointer n)
{
BOOST_UNORDERED_CALL_DESTROY(
node_allocator_traits, node_alloc(), n->value_ptr());
boost::unordered::detail::func::destroy(boost::to_address(n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
}
void delete_buckets()
{
if (buckets_) {
node_pointer n = static_cast<node_pointer>(
get_bucket_pointer(bucket_count_)->next_);
if (bucket::extra_node) {
node_pointer next = next_node(n);
boost::unordered::detail::func::destroy(boost::to_address(n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
n = next;
}
while (n) {
node_pointer next = next_node(n);
destroy_node(n);
n = next;
}
destroy_buckets();
buckets_ = bucket_pointer();
max_load_ = 0;
size_ = 0;
}
}
void destroy_buckets()
{
bucket_pointer end = get_bucket_pointer(bucket_count_ + 1);
for (bucket_pointer it = buckets_; it != end; ++it) {
boost::unordered::detail::func::destroy(boost::to_address(it));
}
bucket_allocator_traits::deallocate(
bucket_alloc(), buckets_, bucket_count_ + 1);
}
////////////////////////////////////////////////////////////////////////
// Fix buckets after delete/extract
//
// (prev,next) should mark an open range of nodes in a single bucket
// which
// have either been unlinked, or are about to be.
std::size_t fix_bucket(
std::size_t bucket_index, link_pointer prev, node_pointer next)
{
std::size_t bucket_index2 = bucket_index;
if (next) {
bucket_index2 = node_bucket(next);
// If next is in the same bucket, then there's nothing to do.
if (bucket_index == bucket_index2) {
return bucket_index2;
}
// Update the bucket containing next.
get_bucket_pointer(bucket_index2)->next_ = prev;
}
// Check if this bucket is now empty.
bucket_pointer this_bucket = get_bucket_pointer(bucket_index);
if (this_bucket->next_ == prev) {
this_bucket->next_ = link_pointer();
}
return bucket_index2;
}
////////////////////////////////////////////////////////////////////////
// Clear
void clear_impl();
////////////////////////////////////////////////////////////////////////
// Assignment
template <typename UniqueType>
void assign(table const& x, UniqueType is_unique)
{
if (this != &x) {
assign(x, is_unique,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_copy_assignment::value>());
}
}
template <typename UniqueType>
void assign(table const& x, UniqueType is_unique, false_type)
{
// Strong exception safety.
this->construct_spare_functions(x.current_functions());
BOOST_TRY
{
mlf_ = x.mlf_;
recalculate_max_load();
if (x.size_ > max_load_) {
create_buckets(min_buckets_for_size(x.size_));
} else if (size_) {
clear_buckets();
}
}
BOOST_CATCH(...)
{
this->cleanup_spare_functions();
BOOST_RETHROW
}
BOOST_CATCH_END
this->switch_functions();
assign_buckets(x, is_unique);
}
template <typename UniqueType>
void assign(table const& x, UniqueType is_unique, true_type)
{
if (node_alloc() == x.node_alloc()) {
allocators_.assign(x.allocators_);
assign(x, is_unique, false_type());
} else {
this->construct_spare_functions(x.current_functions());
this->switch_functions();
// Delete everything with current allocators before assigning
// the new ones.
delete_buckets();
allocators_.assign(x.allocators_);
// Copy over other data, all no throw.
mlf_ = x.mlf_;
bucket_count_ = min_buckets_for_size(x.size_);
// Finally copy the elements.
if (x.size_) {
copy_buckets(x, is_unique);
}
}
}
template <typename UniqueType>
void move_assign(table& x, UniqueType is_unique)
{
if (this != &x) {
move_assign(x, is_unique,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_move_assignment::value>());
}
}
// Propagate allocator
template <typename UniqueType>
void move_assign(table& x, UniqueType, true_type)
{
if (!functions::nothrow_move_assignable) {
this->construct_spare_functions(x.current_functions());
this->switch_functions();
} else {
this->current_functions().move_assign(x.current_functions());
}
delete_buckets();
allocators_.move_assign(x.allocators_);
mlf_ = x.mlf_;
move_buckets_from(x);
}
// Don't propagate allocator
template <typename UniqueType>
void move_assign(table& x, UniqueType is_unique, false_type)
{
if (node_alloc() == x.node_alloc()) {
move_assign_equal_alloc(x);
} else {
move_assign_realloc(x, is_unique);
}
}
void move_assign_equal_alloc(table& x)
{
if (!functions::nothrow_move_assignable) {
this->construct_spare_functions(x.current_functions());
this->switch_functions();
} else {
this->current_functions().move_assign(x.current_functions());
}
delete_buckets();
mlf_ = x.mlf_;
move_buckets_from(x);
}
template <typename UniqueType>
void move_assign_realloc(table& x, UniqueType is_unique)
{
this->construct_spare_functions(x.current_functions());
BOOST_TRY
{
mlf_ = x.mlf_;
recalculate_max_load();
if (x.size_ > max_load_) {
create_buckets(min_buckets_for_size(x.size_));
} else if (size_) {
clear_buckets();
}
}
BOOST_CATCH(...)
{
this->cleanup_spare_functions();
BOOST_RETHROW
}
BOOST_CATCH_END
this->switch_functions();
move_assign_buckets(x, is_unique);
}
// Accessors
const_key_type& get_key(node_pointer n) const
{
return extractor::extract(n->value());
}
std::size_t hash(const_key_type& k) const
{
return policy::apply_hash(this->hash_function(), k);
}
// Find Node
node_pointer find_node(std::size_t key_hash, const_key_type& k) const
{
return this->find_node_impl(key_hash, k, this->key_eq());
}
node_pointer find_node(const_key_type& k) const
{
return this->find_node_impl(hash(k), k, this->key_eq());
}
template <class Key, class Pred>
node_pointer find_node_impl(
std::size_t key_hash, Key const& k, Pred const& eq) const
{
std::size_t bucket_index = this->hash_to_bucket(key_hash);
node_pointer n = this->begin(bucket_index);
for (;;) {
if (!n)
return n;
if (eq(k, this->get_key(n))) {
return n;
} else if (this->node_bucket(n) != bucket_index) {
return node_pointer();
}
n = next_for_find(n);
}
}
// Find the node before the key, so that it can be erased.
link_pointer find_previous_node(
const_key_type& k, std::size_t bucket_index)
{
link_pointer prev = this->get_previous_start(bucket_index);
if (!prev) {
return prev;
}
for (;;) {
node_pointer n = next_node(prev);
if (!n) {
return link_pointer();
} else if (n->is_first_in_group()) {
if (node_bucket(n) != bucket_index) {
return link_pointer();
} else if (this->key_eq()(k, this->get_key(n))) {
return prev;
}
}
prev = n;
}
}
// Extract and erase
inline node_pointer extract_by_key(const_key_type& k)
{
if (!this->size_) {
return node_pointer();
}
std::size_t key_hash = this->hash(k);
std::size_t bucket_index = this->hash_to_bucket(key_hash);
link_pointer prev = this->find_previous_node(k, bucket_index);
if (!prev) {
return node_pointer();
}
node_pointer n = next_node(prev);
node_pointer n2 = next_node(n);
if (n2) {
n2->set_first_in_group();
}
prev->next_ = n2;
--this->size_;
this->fix_bucket(bucket_index, prev, n2);
n->next_ = link_pointer();
return n;
}
// Reserve and rehash
void reserve_for_insert(std::size_t);
void rehash(std::size_t);
void reserve(std::size_t);
void rehash_impl(std::size_t);
////////////////////////////////////////////////////////////////////////
// Unique keys
// equals
bool equals_unique(table const& other) const
{
if (this->size_ != other.size_)
return false;
for (node_pointer n1 = this->begin(); n1; n1 = next_node(n1)) {
node_pointer n2 = other.find_node(other.get_key(n1));
if (!n2 || n1->value() != n2->value())
return false;
}
return true;
}
// Emplace/Insert
inline node_pointer add_node_unique(
node_pointer n, std::size_t key_hash)
{
std::size_t bucket_index = this->hash_to_bucket(key_hash);
bucket_pointer b = this->get_bucket_pointer(bucket_index);
n->bucket_info_ = bucket_index;
n->set_first_in_group();
if (!b->next_) {
link_pointer start_node = this->get_previous_start();
if (start_node->next_) {
this->get_bucket_pointer(node_bucket(next_node(start_node)))
->next_ = n;
}
b->next_ = start_node;
n->next_ = start_node->next_;
start_node->next_ = n;
} else {
n->next_ = b->next_->next_;
b->next_->next_ = n;
}
++this->size_;
return n;
}
inline node_pointer resize_and_add_node_unique(
node_pointer n, std::size_t key_hash)
{
node_tmp b(n, this->node_alloc());
this->reserve_for_insert(this->size_ + 1);
return this->add_node_unique(b.release(), key_hash);
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace_hint_unique(
c_iterator hint, const_key_type& k, BOOST_UNORDERED_EMPLACE_ARGS)
{
if (hint.node_ && this->key_eq()(k, this->get_key(hint.node_))) {
return iterator(hint.node_);
} else {
return emplace_unique(k, BOOST_UNORDERED_EMPLACE_FORWARD).first;
}
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
emplace_return emplace_unique(
const_key_type& k, BOOST_UNORDERED_EMPLACE_ARGS)
{
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return emplace_return(iterator(pos), false);
} else {
return emplace_return(
iterator(this->resize_and_add_node_unique(
boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD),
key_hash)),
true);
}
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace_hint_unique(
c_iterator hint, no_key, BOOST_UNORDERED_EMPLACE_ARGS)
{
node_tmp b(boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD),
this->node_alloc());
const_key_type& k = this->get_key(b.node_);
if (hint.node_ && this->key_eq()(k, this->get_key(hint.node_))) {
return iterator(hint.node_);
}
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return iterator(pos);
} else {
return iterator(
this->resize_and_add_node_unique(b.release(), key_hash));
}
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
emplace_return emplace_unique(no_key, BOOST_UNORDERED_EMPLACE_ARGS)
{
node_tmp b(boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD),
this->node_alloc());
const_key_type& k = this->get_key(b.node_);
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return emplace_return(iterator(pos), false);
} else {
return emplace_return(
iterator(this->resize_and_add_node_unique(b.release(), key_hash)),
true);
}
}
template <typename Key>
emplace_return try_emplace_unique(BOOST_FWD_REF(Key) k)
{
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return emplace_return(iterator(pos), false);
} else {
return emplace_return(
iterator(this->resize_and_add_node_unique(
boost::unordered::detail::func::construct_node_pair(
this->node_alloc(), boost::forward<Key>(k)),
key_hash)),
true);
}
}
template <typename Key>
iterator try_emplace_hint_unique(c_iterator hint, BOOST_FWD_REF(Key) k)
{
if (hint.node_ && this->key_eq()(hint->first, k)) {
return iterator(hint.node_);
} else {
return try_emplace_unique(k).first;
}
}
template <typename Key, BOOST_UNORDERED_EMPLACE_TEMPLATE>
emplace_return try_emplace_unique(
BOOST_FWD_REF(Key) k, BOOST_UNORDERED_EMPLACE_ARGS)
{
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
return emplace_return(iterator(pos), false);
} else {
return emplace_return(
iterator(this->resize_and_add_node_unique(
boost::unordered::detail::func::construct_node_pair_from_args(
this->node_alloc(), boost::forward<Key>(k),
BOOST_UNORDERED_EMPLACE_FORWARD),
key_hash)),
true);
}
}
template <typename Key, BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator try_emplace_hint_unique(
c_iterator hint, BOOST_FWD_REF(Key) k, BOOST_UNORDERED_EMPLACE_ARGS)
{
if (hint.node_ && this->key_eq()(hint->first, k)) {
return iterator(hint.node_);
} else {
return try_emplace_unique(k, BOOST_UNORDERED_EMPLACE_FORWARD).first;
}
}
template <typename Key, typename M>
emplace_return insert_or_assign_unique(
BOOST_FWD_REF(Key) k, BOOST_FWD_REF(M) obj)
{
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
pos->value().second = boost::forward<M>(obj);
return emplace_return(iterator(pos), false);
} else {
return emplace_return(
iterator(this->resize_and_add_node_unique(
boost::unordered::detail::func::construct_node_pair(
this->node_alloc(), boost::forward<Key>(k),
boost::forward<M>(obj)),
key_hash)),
true);
}
}
template <typename NodeType, typename InsertReturnType>
void move_insert_node_type_unique(
NodeType& np, InsertReturnType& result)
{
if (np) {
const_key_type& k = this->get_key(np.ptr_);
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
result.node = boost::move(np);
result.position = iterator(pos);
} else {
this->reserve_for_insert(this->size_ + 1);
result.position =
iterator(this->add_node_unique(np.ptr_, key_hash));
result.inserted = true;
np.ptr_ = node_pointer();
}
}
}
template <typename NodeType>
iterator move_insert_node_type_with_hint_unique(
c_iterator hint, NodeType& np)
{
if (!np) {
return iterator();
}
const_key_type& k = this->get_key(np.ptr_);
if (hint.node_ && this->key_eq()(k, this->get_key(hint.node_))) {
return iterator(hint.node_);
}
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (!pos) {
this->reserve_for_insert(this->size_ + 1);
pos = this->add_node_unique(np.ptr_, key_hash);
np.ptr_ = node_pointer();
}
return iterator(pos);
}
template <typename Types2>
void merge_unique(boost::unordered::detail::table<Types2>& other)
{
typedef boost::unordered::detail::table<Types2> other_table;
BOOST_STATIC_ASSERT(
(boost::is_same<node, typename other_table::node>::value));
BOOST_ASSERT(this->node_alloc() == other.node_alloc());
if (other.size_) {
link_pointer prev = other.get_previous_start();
while (prev->next_) {
node_pointer n = other_table::next_node(prev);
const_key_type& k = this->get_key(n);
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
prev = n;
} else {
this->reserve_for_insert(this->size_ + 1);
node_pointer n2 = next_node(n);
prev->next_ = n2;
if (n2 && n->is_first_in_group()) {
n2->set_first_in_group();
}
--other.size_;
other.fix_bucket(other.node_bucket(n), prev, n2);
this->add_node_unique(n, key_hash);
}
}
}
}
////////////////////////////////////////////////////////////////////////
// Insert range methods
//
// if hash function throws, or inserting > 1 element, basic exception
// safety strong otherwise
template <class InputIt>
void insert_range_unique(const_key_type& k, InputIt i, InputIt j)
{
insert_range_unique2(k, i, j);
while (++i != j) {
// Note: can't use get_key as '*i' might not be value_type - it
// could be a pair with first_types as key_type without const or
// a different second_type.
insert_range_unique2(extractor::extract(*i), i, j);
}
}
template <class InputIt>
void insert_range_unique2(const_key_type& k, InputIt i, InputIt j)
{
// No side effects in this initial code
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (!pos) {
node_tmp b(boost::unordered::detail::func::construct_node(
this->node_alloc(), *i),
this->node_alloc());
if (this->size_ + 1 > this->max_load_)
this->reserve_for_insert(
this->size_ + boost::unordered::detail::insert_size(i, j));
this->add_node_unique(b.release(), key_hash);
}
}
template <class InputIt>
void insert_range_unique(no_key, InputIt i, InputIt j)
{
node_constructor a(this->node_alloc());
do {
if (!a.node_) {
a.create_node();
}
BOOST_UNORDERED_CALL_CONSTRUCT1(
node_allocator_traits, a.alloc_, a.node_->value_ptr(), *i);
node_tmp b(a.release(), a.alloc_);
const_key_type& k = this->get_key(b.node_);
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
if (pos) {
a.reclaim(b.release());
} else {
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
this->reserve_for_insert(this->size_ + 1);
this->add_node_unique(b.release(), key_hash);
}
} while (++i != j);
}
////////////////////////////////////////////////////////////////////////
// Extract
inline node_pointer extract_by_iterator_unique(c_iterator i)
{
node_pointer n = i.node_;
BOOST_ASSERT(n);
std::size_t bucket_index = this->node_bucket(n);
link_pointer prev = this->get_previous_start(bucket_index);
while (prev->next_ != n) {
prev = prev->next_;
}
node_pointer n2 = next_node(n);
prev->next_ = n2;
--this->size_;
this->fix_bucket(bucket_index, prev, n2);
n->next_ = link_pointer();
return n;
}
////////////////////////////////////////////////////////////////////////
// Erase
//
// no throw
std::size_t erase_key_unique(const_key_type& k)
{
if (!this->size_)
return 0;
std::size_t key_hash = this->hash(k);
std::size_t bucket_index = this->hash_to_bucket(key_hash);
link_pointer prev = this->find_previous_node(k, bucket_index);
if (!prev)
return 0;
node_pointer n = next_node(prev);
node_pointer n2 = next_node(n);
prev->next_ = n2;
--size_;
this->fix_bucket(bucket_index, prev, n2);
this->destroy_node(n);
return 1;
}
void erase_nodes_unique(node_pointer i, node_pointer j)
{
std::size_t bucket_index = this->node_bucket(i);
// Find the node before i.
link_pointer prev = this->get_previous_start(bucket_index);
while (prev->next_ != i)
prev = prev->next_;
// Delete the nodes.
prev->next_ = j;
do {
node_pointer next = next_node(i);
destroy_node(i);
--size_;
bucket_index = this->fix_bucket(bucket_index, prev, next);
i = next;
} while (i != j);
}
////////////////////////////////////////////////////////////////////////
// fill_buckets_unique
void copy_buckets(table const& src, true_type)
{
this->create_buckets(this->bucket_count_);
for (node_pointer n = src.begin(); n; n = next_node(n)) {
std::size_t key_hash = this->hash(this->get_key(n));
this->add_node_unique(
boost::unordered::detail::func::construct_node(
this->node_alloc(), n->value()),
key_hash);
}
}
void assign_buckets(table const& src, true_type)
{
node_holder<node_allocator> holder(*this);
for (node_pointer n = src.begin(); n; n = next_node(n)) {
std::size_t key_hash = this->hash(this->get_key(n));
this->add_node_unique(holder.copy_of(n->value()), key_hash);
}
}
void move_assign_buckets(table& src, true_type)
{
node_holder<node_allocator> holder(*this);
for (node_pointer n = src.begin(); n; n = next_node(n)) {
std::size_t key_hash = this->hash(this->get_key(n));
this->add_node_unique(holder.move_copy_of(n->value()), key_hash);
}
}
////////////////////////////////////////////////////////////////////////
// Equivalent keys
// Equality
bool equals_equiv(table const& other) const
{
if (this->size_ != other.size_)
return false;
for (node_pointer n1 = this->begin(); n1;) {
node_pointer n2 = other.find_node(other.get_key(n1));
if (!n2)
return false;
node_pointer end1 = next_group(n1);
node_pointer end2 = next_group(n2);
if (!group_equals_equiv(n1, end1, n2, end2))
return false;
n1 = end1;
}
return true;
}
static bool group_equals_equiv(node_pointer n1, node_pointer end1,
node_pointer n2, node_pointer end2)
{
for (;;) {
if (n1->value() != n2->value())
break;
n1 = next_node(n1);
n2 = next_node(n2);
if (n1 == end1)
return n2 == end2;
if (n2 == end2)
return false;
}
for (node_pointer n1a = n1, n2a = n2;;) {
n1a = next_node(n1a);
n2a = next_node(n2a);
if (n1a == end1) {
if (n2a == end2)
break;
else
return false;
}
if (n2a == end2)
return false;
}
node_pointer start = n1;
for (; n1 != end1; n1 = next_node(n1)) {
value_type const& v = n1->value();
if (!find_equiv(start, n1, v)) {
std::size_t matches = count_equal_equiv(n2, end2, v);
if (!matches)
return false;
if (matches != 1 + count_equal_equiv(next_node(n1), end1, v))
return false;
}
}
return true;
}
static bool find_equiv(
node_pointer n, node_pointer end, value_type const& v)
{
for (; n != end; n = next_node(n))
if (n->value() == v)
return true;
return false;
}
static std::size_t count_equal_equiv(
node_pointer n, node_pointer end, value_type const& v)
{
std::size_t count = 0;
for (; n != end; n = next_node(n))
if (n->value() == v)
++count;
return count;
}
// Emplace/Insert
inline node_pointer add_node_equiv(
node_pointer n, std::size_t key_hash, node_pointer pos)
{
std::size_t bucket_index = this->hash_to_bucket(key_hash);
n->bucket_info_ = bucket_index;
if (pos) {
n->reset_first_in_group();
n->next_ = pos->next_;
pos->next_ = n;
if (n->next_) {
std::size_t next_bucket = this->node_bucket(next_node(n));
if (next_bucket != bucket_index) {
this->get_bucket_pointer(next_bucket)->next_ = n;
}
}
} else {
n->set_first_in_group();
bucket_pointer b = this->get_bucket_pointer(bucket_index);
if (!b->next_) {
link_pointer start_node = this->get_previous_start();
if (start_node->next_) {
this
->get_bucket_pointer(this->node_bucket(next_node(start_node)))
->next_ = n;
}
b->next_ = start_node;
n->next_ = start_node->next_;
start_node->next_ = n;
} else {
n->next_ = b->next_->next_;
b->next_->next_ = n;
}
}
++this->size_;
return n;
}
inline node_pointer add_using_hint_equiv(
node_pointer n, node_pointer hint)
{
n->bucket_info_ = hint->bucket_info_;
n->reset_first_in_group();
n->next_ = hint->next_;
hint->next_ = n;
if (n->next_) {
std::size_t next_bucket = this->node_bucket(next_node(n));
if (next_bucket != this->node_bucket(n)) {
this->get_bucket_pointer(next_bucket)->next_ = n;
}
}
++this->size_;
return n;
}
iterator emplace_equiv(node_pointer n)
{
node_tmp a(n, this->node_alloc());
const_key_type& k = this->get_key(a.node_);
std::size_t key_hash = this->hash(k);
node_pointer position = this->find_node(key_hash, k);
this->reserve_for_insert(this->size_ + 1);
return iterator(
this->add_node_equiv(a.release(), key_hash, position));
}
iterator emplace_hint_equiv(c_iterator hint, node_pointer n)
{
node_tmp a(n, this->node_alloc());
const_key_type& k = this->get_key(a.node_);
if (hint.node_ && this->key_eq()(k, this->get_key(hint.node_))) {
this->reserve_for_insert(this->size_ + 1);
return iterator(
this->add_using_hint_equiv(a.release(), hint.node_));
} else {
std::size_t key_hash = this->hash(k);
node_pointer position = this->find_node(key_hash, k);
this->reserve_for_insert(this->size_ + 1);
return iterator(
this->add_node_equiv(a.release(), key_hash, position));
}
}
void emplace_no_rehash_equiv(node_pointer n)
{
node_tmp a(n, this->node_alloc());
const_key_type& k = this->get_key(a.node_);
std::size_t key_hash = this->hash(k);
node_pointer position = this->find_node(key_hash, k);
this->add_node_equiv(a.release(), key_hash, position);
}
template <typename NodeType>
iterator move_insert_node_type_equiv(NodeType& np)
{
iterator result;
if (np) {
const_key_type& k = this->get_key(np.ptr_);
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
this->reserve_for_insert(this->size_ + 1);
result = iterator(this->add_node_equiv(np.ptr_, key_hash, pos));
np.ptr_ = node_pointer();
}
return result;
}
template <typename NodeType>
iterator move_insert_node_type_with_hint_equiv(
c_iterator hint, NodeType& np)
{
iterator result;
if (np) {
const_key_type& k = this->get_key(np.ptr_);
if (hint.node_ && this->key_eq()(k, this->get_key(hint.node_))) {
this->reserve_for_insert(this->size_ + 1);
result =
iterator(this->add_using_hint_equiv(np.ptr_, hint.node_));
} else {
std::size_t key_hash = this->hash(k);
node_pointer pos = this->find_node(key_hash, k);
this->reserve_for_insert(this->size_ + 1);
result = iterator(this->add_node_equiv(np.ptr_, key_hash, pos));
}
np.ptr_ = node_pointer();
}
return result;
}
////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception
// safety. Strong otherwise
template <class I>
void insert_range_equiv(I i, I j,
typename boost::unordered::detail::enable_if_forward<I, void*>::type =
0)
{
if (i == j)
return;
std::size_t distance = static_cast<std::size_t>(std::distance(i, j));
if (distance == 1) {
emplace_equiv(boost::unordered::detail::func::construct_node(
this->node_alloc(), *i));
} else {
// Only require basic exception safety here
this->reserve_for_insert(this->size_ + distance);
for (; i != j; ++i) {
emplace_no_rehash_equiv(
boost::unordered::detail::func::construct_node(
this->node_alloc(), *i));
}
}
}
template <class I>
void insert_range_equiv(I i, I j,
typename boost::unordered::detail::disable_if_forward<I,
void*>::type = 0)
{
for (; i != j; ++i) {
emplace_equiv(boost::unordered::detail::func::construct_node(
this->node_alloc(), *i));
}
}
////////////////////////////////////////////////////////////////////////
// Extract
inline node_pointer extract_by_iterator_equiv(c_iterator n)
{
node_pointer i = n.node_;
BOOST_ASSERT(i);
node_pointer j(next_node(i));
std::size_t bucket_index = this->node_bucket(i);
link_pointer prev = this->get_previous_start(bucket_index);
while (prev->next_ != i) {
prev = next_node(prev);
}
prev->next_ = j;
if (j && i->is_first_in_group()) {
j->set_first_in_group();
}
--this->size_;
this->fix_bucket(bucket_index, prev, j);
i->next_ = link_pointer();
return i;
}
////////////////////////////////////////////////////////////////////////
// Erase
//
// no throw
std::size_t erase_key_equiv(const_key_type& k)
{
if (!this->size_)
return 0;
std::size_t key_hash = this->hash(k);
std::size_t bucket_index = this->hash_to_bucket(key_hash);
link_pointer prev = this->find_previous_node(k, bucket_index);
if (!prev)
return 0;
std::size_t deleted_count = 0;
node_pointer n = next_node(prev);
do {
node_pointer n2 = next_node(n);
destroy_node(n);
++deleted_count;
n = n2;
} while (n && !n->is_first_in_group());
size_ -= deleted_count;
prev->next_ = n;
this->fix_bucket(bucket_index, prev, n);
return deleted_count;
}
link_pointer erase_nodes_equiv(node_pointer i, node_pointer j)
{
std::size_t bucket_index = this->node_bucket(i);
link_pointer prev = this->get_previous_start(bucket_index);
while (prev->next_ != i) {
prev = next_node(prev);
}
// Delete the nodes.
// Is it inefficient to call fix_bucket for every node?
bool includes_first = false;
prev->next_ = j;
do {
includes_first = includes_first || i->is_first_in_group();
node_pointer next = next_node(i);
destroy_node(i);
--size_;
bucket_index = this->fix_bucket(bucket_index, prev, next);
i = next;
} while (i != j);
if (j && includes_first) {
j->set_first_in_group();
}
return prev;
}
////////////////////////////////////////////////////////////////////////
// fill_buckets
void copy_buckets(table const& src, false_type)
{
this->create_buckets(this->bucket_count_);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = this->hash(this->get_key(n));
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node_equiv(
boost::unordered::detail::func::construct_node(
this->node_alloc(), n->value()),
key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n)) {
this->add_node_equiv(
boost::unordered::detail::func::construct_node(
this->node_alloc(), n->value()),
key_hash, pos);
}
}
}
void assign_buckets(table const& src, false_type)
{
node_holder<node_allocator> holder(*this);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = this->hash(this->get_key(n));
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node_equiv(
holder.copy_of(n->value()), key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n)) {
this->add_node_equiv(holder.copy_of(n->value()), key_hash, pos);
}
}
}
void move_assign_buckets(table& src, false_type)
{
node_holder<node_allocator> holder(*this);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = this->hash(this->get_key(n));
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node_equiv(
holder.move_copy_of(n->value()), key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n)) {
this->add_node_equiv(
holder.move_copy_of(n->value()), key_hash, pos);
}
}
}
};
//////////////////////////////////////////////////////////////////////////
// Clear
template <typename Types> inline void table<Types>::clear_impl()
{
if (size_) {
bucket_pointer end = get_bucket_pointer(bucket_count_);
for (bucket_pointer it = buckets_; it != end; ++it) {
it->next_ = node_pointer();
}
link_pointer prev = end->first_from_start();
node_pointer n = next_node(prev);
prev->next_ = node_pointer();
size_ = 0;
while (n) {
node_pointer next = next_node(n);
destroy_node(n);
n = next;
}
}
}
//////////////////////////////////////////////////////////////////////////
// Reserve & Rehash
// basic exception safety
template <typename Types>
inline void table<Types>::reserve_for_insert(std::size_t size)
{
if (!buckets_) {
create_buckets((std::max)(bucket_count_, min_buckets_for_size(size)));
} else if (size > max_load_) {
std::size_t num_buckets =
min_buckets_for_size((std::max)(size, size_ + (size_ >> 1)));
if (num_buckets != bucket_count_)
this->rehash_impl(num_buckets);
}
}
// if hash function throws, basic exception safety
// strong otherwise.
template <typename Types>
inline void table<Types>::rehash(std::size_t min_buckets)
{
using namespace std;
if (!size_) {
delete_buckets();
bucket_count_ = policy::new_bucket_count(min_buckets);
} else {
min_buckets = policy::new_bucket_count((std::max)(min_buckets,
boost::unordered::detail::double_to_size(
floor(static_cast<double>(size_) / static_cast<double>(mlf_))) +
1));
if (min_buckets != bucket_count_)
this->rehash_impl(min_buckets);
}
}
template <typename Types>
inline void table<Types>::rehash_impl(std::size_t num_buckets)
{
BOOST_ASSERT(this->buckets_);
this->create_buckets(num_buckets);
link_pointer prev = this->get_previous_start();
BOOST_TRY
{
while (prev->next_) {
node_pointer n = next_node(prev);
std::size_t key_hash = this->hash(this->get_key(n));
std::size_t bucket_index = this->hash_to_bucket(key_hash);
n->bucket_info_ = bucket_index;
n->set_first_in_group();
// Iterator through the rest of the group of equal nodes,
// setting the bucket.
for (;;) {
node_pointer next = next_node(n);
if (!next || next->is_first_in_group()) {
break;
}
n = next;
n->bucket_info_ = bucket_index;
n->reset_first_in_group();
}
// n is now the last node in the group
bucket_pointer b = this->get_bucket_pointer(bucket_index);
if (!b->next_) {
b->next_ = prev;
prev = n;
} else {
link_pointer next = n->next_;
n->next_ = b->next_->next_;
b->next_->next_ = prev->next_;
prev->next_ = next;
}
}
}
BOOST_CATCH(...)
{
node_pointer n = next_node(prev);
prev->next_ = node_pointer();
while (n) {
node_pointer next = next_node(n);
destroy_node(n);
--size_;
n = next;
}
BOOST_RETHROW
}
BOOST_CATCH_END
}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
////////////////////////////////////////////////////////////////////////
// key extractors
//
// no throw
//
// 'extract_key' is called with the emplace parameters to return a
// key if available or 'no_key' is one isn't and will need to be
// constructed. This could be done by overloading the emplace
// implementation
// for the different cases, but that's a bit tricky on compilers without
// variadic templates.
template <typename Key, typename T> struct is_key
{
template <typename T2> static choice1::type test(T2 const&);
static choice2::type test(Key const&);
enum
{
value = sizeof(test(boost::unordered::detail::make<T>())) ==
sizeof(choice2::type)
};
typedef typename boost::detail::if_true<value>::BOOST_NESTED_TEMPLATE
then<Key const&, no_key>::type type;
};
template <class ValueType> struct set_extractor
{
typedef ValueType value_type;
typedef ValueType key_type;
static key_type const& extract(value_type const& v) { return v; }
static key_type const& extract(BOOST_UNORDERED_RV_REF(value_type) v)
{
return v;
}
static no_key extract() { return no_key(); }
template <class Arg> static no_key extract(Arg const&)
{
return no_key();
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class Arg1, class Arg2, class... Args>
static no_key extract(Arg1 const&, Arg2 const&, Args const&...)
{
return no_key();
}
#else
template <class Arg1, class Arg2>
static no_key extract(Arg1 const&, Arg2 const&)
{
return no_key();
}
#endif
};
template <class ValueType> struct map_extractor
{
typedef ValueType value_type;
typedef typename boost::remove_const<typename boost::unordered::detail::
pair_traits<ValueType>::first_type>::type key_type;
static key_type const& extract(value_type const& v) { return v.first; }
template <class Second>
static key_type const& extract(std::pair<key_type, Second> const& v)
{
return v.first;
}
template <class Second>
static key_type const& extract(
std::pair<key_type const, Second> const& v)
{
return v.first;
}
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class Second>
static key_type const& extract(
boost::rv<std::pair<key_type, Second> > const& v)
{
return v.first;
}
template <class Second>
static key_type const& extract(
boost::rv<std::pair<key_type const, Second> > const& v)
{
return v.first;
}
#endif
template <class Arg1>
static key_type const& extract(key_type const& k, Arg1 const&)
{
return k;
}
static no_key extract() { return no_key(); }
template <class Arg> static no_key extract(Arg const&)
{
return no_key();
}
template <class Arg1, class Arg2>
static no_key extract(Arg1 const&, Arg2 const&)
{
return no_key();
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class Arg1, class Arg2, class Arg3, class... Args>
static no_key extract(
Arg1 const&, Arg2 const&, Arg3 const&, Args const&...)
{
return no_key();
}
#endif
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_UNORDERED_KEY_FROM_TUPLE(namespace_) \
template <typename T2> \
static no_key extract(boost::unordered::piecewise_construct_t, \
namespace_ tuple<> const&, T2 const&) \
{ \
return no_key(); \
} \
\
template <typename T, typename T2> \
static typename is_key<key_type, T>::type extract( \
boost::unordered::piecewise_construct_t, namespace_ tuple<T> const& k, \
T2 const&) \
{ \
return typename is_key<key_type, T>::type(namespace_ get<0>(k)); \
}
#else
#define BOOST_UNORDERED_KEY_FROM_TUPLE(namespace_) \
static no_key extract( \
boost::unordered::piecewise_construct_t, namespace_ tuple<> const&) \
{ \
return no_key(); \
} \
\
template <typename T> \
static typename is_key<key_type, T>::type extract( \
boost::unordered::piecewise_construct_t, namespace_ tuple<T> const& k) \
{ \
return typename is_key<key_type, T>::type(namespace_ get<0>(k)); \
}
#endif
BOOST_UNORDERED_KEY_FROM_TUPLE(boost::)
#if BOOST_UNORDERED_TUPLE_ARGS
BOOST_UNORDERED_KEY_FROM_TUPLE(std::)
#endif
#undef BOOST_UNORDERED_KEY_FROM_TUPLE
};
////////////////////////////////////////////////////////////////////////
// Unique nodes
template <typename A, typename T>
struct node : boost::unordered::detail::value_base<T>
{
typedef
typename ::boost::unordered::detail::rebind_wrap<A, node<A, T> >::type
allocator;
typedef typename ::boost::unordered::detail::allocator_traits<
allocator>::pointer node_pointer;
typedef node_pointer link_pointer;
typedef typename ::boost::unordered::detail::rebind_wrap<A,
bucket<node_pointer> >::type bucket_allocator;
typedef typename ::boost::unordered::detail::allocator_traits<
bucket_allocator>::pointer bucket_pointer;
link_pointer next_;
std::size_t bucket_info_;
node() : next_(), bucket_info_(0) {}
std::size_t get_bucket() const
{
return bucket_info_ & ((std::size_t)-1 >> 1);
}
std::size_t is_first_in_group() const
{
return !(bucket_info_ & ~((std::size_t)-1 >> 1));
}
void set_first_in_group()
{
bucket_info_ = bucket_info_ & ((std::size_t)-1 >> 1);
}
void reset_first_in_group()
{
bucket_info_ = bucket_info_ | ~((std::size_t)-1 >> 1);
}
private:
node& operator=(node const&);
};
template <typename T>
struct ptr_node : boost::unordered::detail::ptr_bucket
{
typedef T value_type;
typedef boost::unordered::detail::ptr_bucket bucket_base;
typedef ptr_node<T>* node_pointer;
typedef ptr_bucket* link_pointer;
typedef ptr_bucket* bucket_pointer;
std::size_t bucket_info_;
boost::unordered::detail::value_base<T> value_base_;
ptr_node() : bucket_base(), bucket_info_(0) {}
void* address() { return value_base_.address(); }
value_type& value() { return value_base_.value(); }
value_type* value_ptr() { return value_base_.value_ptr(); }
std::size_t get_bucket() const
{
return bucket_info_ & ((std::size_t)-1 >> 1);
}
std::size_t is_first_in_group() const
{
return !(bucket_info_ & ~((std::size_t)-1 >> 1));
}
void set_first_in_group()
{
bucket_info_ = bucket_info_ & ((std::size_t)-1 >> 1);
}
void reset_first_in_group()
{
bucket_info_ = bucket_info_ | ~((std::size_t)-1 >> 1);
}
private:
ptr_node& operator=(ptr_node const&);
};
// If the allocator uses raw pointers use ptr_node
// Otherwise use node.
template <typename A, typename T, typename NodePtr, typename BucketPtr>
struct pick_node2
{
typedef boost::unordered::detail::node<A, T> node;
typedef typename boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
node>::type>::pointer node_pointer;
typedef boost::unordered::detail::bucket<node_pointer> bucket;
typedef node_pointer link_pointer;
};
template <typename A, typename T>
struct pick_node2<A, T, boost::unordered::detail::ptr_node<T>*,
boost::unordered::detail::ptr_bucket*>
{
typedef boost::unordered::detail::ptr_node<T> node;
typedef boost::unordered::detail::ptr_bucket bucket;
typedef bucket* link_pointer;
};
template <typename A, typename T> struct pick_node
{
typedef typename boost::remove_const<T>::type nonconst;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::ptr_node<nonconst> >::type>
tentative_node_traits;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::ptr_bucket>::type>
tentative_bucket_traits;
typedef pick_node2<A, nonconst, typename tentative_node_traits::pointer,
typename tentative_bucket_traits::pointer>
pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
};
}
}
}
#undef BOOST_UNORDERED_EMPLACE_TEMPLATE
#undef BOOST_UNORDERED_EMPLACE_ARGS
#undef BOOST_UNORDERED_EMPLACE_FORWARD
#undef BOOST_UNORDERED_CALL_CONSTRUCT1
#undef BOOST_UNORDERED_CALL_DESTROY
#endif