blob: f5963486f875761c4ebf285f7084820b3b632b2f [file] [log] [blame]
#ifndef BOOST_THREAD_PTHREAD_CONDITION_VARIABLE_FWD_HPP
#define BOOST_THREAD_PTHREAD_CONDITION_VARIABLE_FWD_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2011-2012 Vicente J. Botet Escriba
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/thread/cv_status.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/lock_types.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/detail/platform_time.hpp>
#include <boost/thread/pthread/pthread_helpers.hpp>
#if defined BOOST_THREAD_USES_DATETIME
#include <boost/thread/xtime.hpp>
#endif
#ifdef BOOST_THREAD_USES_CHRONO
#include <boost/chrono/system_clocks.hpp>
#include <boost/chrono/ceil.hpp>
#endif
#include <boost/thread/detail/delete.hpp>
#include <boost/date_time/posix_time/posix_time_duration.hpp>
#include <algorithm>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
class condition_variable
{
private:
//#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
pthread_mutex_t internal_mutex;
//#endif
pthread_cond_t cond;
public:
//private: // used by boost::thread::try_join_until
bool do_wait_until(
unique_lock<mutex>& lock,
detail::internal_platform_timepoint const &timeout);
public:
BOOST_THREAD_NO_COPYABLE(condition_variable)
condition_variable()
{
int res;
//#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
// Even if it is not used, the internal_mutex exists (see
// above) and must be initialized (etc) in case some
// compilation units provide interruptions and others
// don't.
res=posix::pthread_mutex_init(&internal_mutex);
if(res)
{
boost::throw_exception(thread_resource_error(res, "boost::condition_variable::condition_variable() constructor failed in pthread_mutex_init"));
}
//#endif
res = posix::pthread_cond_init(&cond);
if (res)
{
//#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
// ditto
BOOST_VERIFY(!posix::pthread_mutex_destroy(&internal_mutex));
//#endif
boost::throw_exception(thread_resource_error(res, "boost::condition_variable::condition_variable() constructor failed in pthread_cond_init"));
}
}
~condition_variable()
{
//#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
// ditto
BOOST_VERIFY(!posix::pthread_mutex_destroy(&internal_mutex));
//#endif
BOOST_VERIFY(!posix::pthread_cond_destroy(&cond));
}
void wait(unique_lock<mutex>& m);
template<typename predicate_type>
void wait(unique_lock<mutex>& m,predicate_type pred)
{
while (!pred())
{
wait(m);
}
}
#if defined BOOST_THREAD_USES_DATETIME
bool timed_wait(
unique_lock<mutex>& m,
boost::system_time const& abs_time)
{
#if defined BOOST_THREAD_WAIT_BUG
const detail::real_platform_timepoint ts(abs_time + BOOST_THREAD_WAIT_BUG);
#else
const detail::real_platform_timepoint ts(abs_time);
#endif
#if defined BOOST_THREAD_INTERNAL_CLOCK_IS_MONO
// The system time may jump while this function is waiting. To compensate for this and time
// out near the correct time, we could call do_wait_until() in a loop with a short timeout
// and recheck the time remaining each time through the loop. However, because we can't
// check the predicate each time do_wait_until() completes, this introduces the possibility
// of not exiting the function when a notification occurs, since do_wait_until() may report
// that it timed out even though a notification was received. The best this function can do
// is report correctly whether or not it reached the timeout time.
const detail::platform_duration d(ts - detail::real_platform_clock::now());
do_wait_until(m, detail::internal_platform_clock::now() + d);
return ts > detail::real_platform_clock::now();
#else
return do_wait_until(m, ts);
#endif
}
bool timed_wait(
unique_lock<mutex>& m,
::boost::xtime const& abs_time)
{
return timed_wait(m,system_time(abs_time));
}
template<typename duration_type>
bool timed_wait(
unique_lock<mutex>& m,
duration_type const& wait_duration)
{
if (wait_duration.is_pos_infinity())
{
wait(m);
return true;
}
if (wait_duration.is_special())
{
return true;
}
detail::platform_duration d(wait_duration);
#if defined(BOOST_THREAD_HAS_MONO_CLOCK) && !defined(BOOST_THREAD_INTERNAL_CLOCK_IS_MONO)
// The system time may jump while this function is waiting. To compensate for this and time
// out near the correct time, we could call do_wait_until() in a loop with a short timeout
// and recheck the time remaining each time through the loop. However, because we can't
// check the predicate each time do_wait_until() completes, this introduces the possibility
// of not exiting the function when a notification occurs, since do_wait_until() may report
// that it timed out even though a notification was received. The best this function can do
// is report correctly whether or not it reached the timeout time.
const detail::mono_platform_timepoint ts(detail::mono_platform_clock::now() + d);
do_wait_until(m, detail::internal_platform_clock::now() + d);
return ts > detail::mono_platform_clock::now();
#else
return do_wait_until(m, detail::internal_platform_clock::now() + d);
#endif
}
template<typename predicate_type>
bool timed_wait(
unique_lock<mutex>& m,
boost::system_time const& abs_time,predicate_type pred)
{
#if defined BOOST_THREAD_WAIT_BUG
const detail::real_platform_timepoint ts(abs_time + BOOST_THREAD_WAIT_BUG);
#else
const detail::real_platform_timepoint ts(abs_time);
#endif
while (!pred())
{
#if defined BOOST_THREAD_INTERNAL_CLOCK_IS_MONO
// The system time may jump while this function is waiting. To compensate for this
// and time out near the correct time, we call do_wait_until() in a loop with a
// short timeout and recheck the time remaining each time through the loop.
detail::platform_duration d(ts - detail::real_platform_clock::now());
if (d <= detail::platform_duration::zero()) break; // timeout occurred
d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
do_wait_until(m, detail::internal_platform_clock::now() + d);
#else
if (!do_wait_until(m, ts)) break; // timeout occurred
#endif
}
return pred();
}
template<typename predicate_type>
bool timed_wait(
unique_lock<mutex>& m,
::boost::xtime const& abs_time,predicate_type pred)
{
return timed_wait(m,system_time(abs_time),pred);
}
template<typename duration_type,typename predicate_type>
bool timed_wait(
unique_lock<mutex>& m,
duration_type const& wait_duration,predicate_type pred)
{
if (wait_duration.is_pos_infinity())
{
while (!pred())
{
wait(m);
}
return true;
}
if (wait_duration.is_special())
{
return pred();
}
detail::platform_duration d(wait_duration);
#if defined(BOOST_THREAD_HAS_MONO_CLOCK) && !defined(BOOST_THREAD_INTERNAL_CLOCK_IS_MONO)
// The system time may jump while this function is waiting. To compensate for this
// and time out near the correct time, we call do_wait_until() in a loop with a
// short timeout and recheck the time remaining each time through the loop.
const detail::mono_platform_timepoint ts(detail::mono_platform_clock::now() + d);
while (!pred())
{
if (d <= detail::platform_duration::zero()) break; // timeout occurred
d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
do_wait_until(m, detail::internal_platform_clock::now() + d);
d = ts - detail::mono_platform_clock::now();
}
#else
const detail::internal_platform_timepoint ts(detail::internal_platform_clock::now() + d);
while (!pred())
{
if (!do_wait_until(m, ts)) break; // timeout occurred
}
#endif
return pred();
}
#endif
#ifdef BOOST_THREAD_USES_CHRONO
template <class Duration>
cv_status
wait_until(
unique_lock<mutex>& lock,
const chrono::time_point<detail::internal_chrono_clock, Duration>& t)
{
const detail::internal_platform_timepoint ts(t);
if (do_wait_until(lock, ts)) return cv_status::no_timeout;
else return cv_status::timeout;
}
template <class Clock, class Duration>
cv_status
wait_until(
unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& t)
{
// The system time may jump while this function is waiting. To compensate for this and time
// out near the correct time, we could call do_wait_until() in a loop with a short timeout
// and recheck the time remaining each time through the loop. However, because we can't
// check the predicate each time do_wait_until() completes, this introduces the possibility
// of not exiting the function when a notification occurs, since do_wait_until() may report
// that it timed out even though a notification was received. The best this function can do
// is report correctly whether or not it reached the timeout time.
typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
common_duration d(t - Clock::now());
do_wait_until(lock, detail::internal_chrono_clock::now() + d);
if (t > Clock::now()) return cv_status::no_timeout;
else return cv_status::timeout;
}
template <class Rep, class Period>
cv_status
wait_for(
unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& d)
{
return wait_until(lock, chrono::steady_clock::now() + d);
}
template <class Duration, class Predicate>
bool
wait_until(
unique_lock<mutex>& lock,
const chrono::time_point<detail::internal_chrono_clock, Duration>& t,
Predicate pred)
{
const detail::internal_platform_timepoint ts(t);
while (!pred())
{
if (!do_wait_until(lock, ts)) break; // timeout occurred
}
return pred();
}
template <class Clock, class Duration, class Predicate>
bool
wait_until(
unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& t,
Predicate pred)
{
// The system time may jump while this function is waiting. To compensate for this
// and time out near the correct time, we call do_wait_until() in a loop with a
// short timeout and recheck the time remaining each time through the loop.
typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
while (!pred())
{
common_duration d(t - Clock::now());
if (d <= common_duration::zero()) break; // timeout occurred
d = (std::min)(d, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)));
do_wait_until(lock, detail::internal_platform_clock::now() + detail::platform_duration(d));
}
return pred();
}
template <class Rep, class Period, class Predicate>
bool
wait_for(
unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& d,
Predicate pred)
{
return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));
}
#endif
#define BOOST_THREAD_DEFINES_CONDITION_VARIABLE_NATIVE_HANDLE
typedef pthread_cond_t* native_handle_type;
native_handle_type native_handle()
{
return &cond;
}
void notify_one() BOOST_NOEXCEPT;
void notify_all() BOOST_NOEXCEPT;
};
BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);
}
#include <boost/config/abi_suffix.hpp>
#endif