blob: fd8d5a3c46b355171ea234eb70cceda4c8afd61d [file] [log] [blame]
// Copyright (C) 2014 Ian Forbed
// Copyright (C) 2014-2017 Vicente J. Botet Escriba
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_THREAD_SYNC_TIMED_QUEUE_HPP
#define BOOST_THREAD_SYNC_TIMED_QUEUE_HPP
#include <boost/thread/detail/config.hpp>
#include <boost/thread/concurrent_queues/sync_priority_queue.hpp>
#include <boost/chrono/duration.hpp>
#include <boost/chrono/time_point.hpp>
#include <boost/chrono/system_clocks.hpp>
#include <boost/chrono/chrono_io.hpp>
#include <algorithm> // std::min
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace concurrent
{
namespace detail
{
// fixme: shouldn't the timepoint be configurable
template <class T, class Clock = chrono::steady_clock, class TimePoint=typename Clock::time_point>
struct scheduled_type
{
typedef T value_type;
typedef Clock clock;
typedef TimePoint time_point;
T data;
time_point time;
BOOST_THREAD_COPYABLE_AND_MOVABLE(scheduled_type)
scheduled_type(T const& pdata, time_point tp) : data(pdata), time(tp) {}
scheduled_type(BOOST_THREAD_RV_REF(T) pdata, time_point tp) : data(boost::move(pdata)), time(tp) {}
scheduled_type(scheduled_type const& other) : data(other.data), time(other.time) {}
scheduled_type& operator=(BOOST_THREAD_COPY_ASSIGN_REF(scheduled_type) other) {
data = other.data;
time = other.time;
return *this;
}
scheduled_type(BOOST_THREAD_RV_REF(scheduled_type) other) : data(boost::move(other.data)), time(other.time) {}
scheduled_type& operator=(BOOST_THREAD_RV_REF(scheduled_type) other) {
data = boost::move(other.data);
time = other.time;
return *this;
}
bool operator <(const scheduled_type & other) const
{
return this->time > other.time;
}
}; //end struct
template <class Duration>
chrono::time_point<chrono::steady_clock,Duration>
limit_timepoint(chrono::time_point<chrono::steady_clock,Duration> const& tp)
{
// Clock == chrono::steady_clock
return tp;
}
template <class Clock, class Duration>
chrono::time_point<Clock,Duration>
limit_timepoint(chrono::time_point<Clock,Duration> const& tp)
{
// Clock != chrono::steady_clock
// The system time may jump while wait_until() is waiting. To compensate for this and time out near
// the correct time, we limit how long wait_until() can wait before going around the loop again.
const chrono::time_point<Clock,Duration> tpmax(chrono::time_point_cast<Duration>(Clock::now() + chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)));
return (std::min)(tp, tpmax);
}
template <class Duration>
chrono::steady_clock::time_point
convert_to_steady_clock_timepoint(chrono::time_point<chrono::steady_clock,Duration> const& tp)
{
// Clock == chrono::steady_clock
return chrono::time_point_cast<chrono::steady_clock::duration>(tp);
}
template <class Clock, class Duration>
chrono::steady_clock::time_point
convert_to_steady_clock_timepoint(chrono::time_point<Clock,Duration> const& tp)
{
// Clock != chrono::steady_clock
// The system time may jump while wait_until() is waiting. To compensate for this and time out near
// the correct time, we limit how long wait_until() can wait before going around the loop again.
const chrono::steady_clock::duration dura(chrono::duration_cast<chrono::steady_clock::duration>(tp - Clock::now()));
const chrono::steady_clock::duration duramax(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
return chrono::steady_clock::now() + (std::min)(dura, duramax);
}
} //end detail namespace
template <class T, class Clock = chrono::steady_clock, class TimePoint=typename Clock::time_point>
class sync_timed_queue
: private sync_priority_queue<detail::scheduled_type<T, Clock, TimePoint> >
{
typedef detail::scheduled_type<T, Clock, TimePoint> stype;
typedef sync_priority_queue<stype> super;
public:
typedef T value_type;
typedef Clock clock;
typedef typename clock::duration duration;
typedef typename clock::time_point time_point;
typedef typename super::underlying_queue_type underlying_queue_type;
typedef typename super::size_type size_type;
typedef typename super::op_status op_status;
sync_timed_queue() : super() {};
~sync_timed_queue() {}
using super::size;
using super::empty;
using super::full;
using super::close;
using super::closed;
T pull();
void pull(T& elem);
template <class Duration>
queue_op_status pull_until(chrono::time_point<clock,Duration> const& tp, T& elem);
template <class Rep, class Period>
queue_op_status pull_for(chrono::duration<Rep,Period> const& dura, T& elem);
queue_op_status try_pull(T& elem);
queue_op_status wait_pull(T& elem);
queue_op_status nonblocking_pull(T& elem);
template <class Duration>
void push(const T& elem, chrono::time_point<clock,Duration> const& tp);
template <class Rep, class Period>
void push(const T& elem, chrono::duration<Rep,Period> const& dura);
template <class Duration>
void push(BOOST_THREAD_RV_REF(T) elem, chrono::time_point<clock,Duration> const& tp);
template <class Rep, class Period>
void push(BOOST_THREAD_RV_REF(T) elem, chrono::duration<Rep,Period> const& dura);
template <class Duration>
queue_op_status try_push(const T& elem, chrono::time_point<clock,Duration> const& tp);
template <class Rep, class Period>
queue_op_status try_push(const T& elem, chrono::duration<Rep,Period> const& dura);
template <class Duration>
queue_op_status try_push(BOOST_THREAD_RV_REF(T) elem, chrono::time_point<clock,Duration> const& tp);
template <class Rep, class Period>
queue_op_status try_push(BOOST_THREAD_RV_REF(T) elem, chrono::duration<Rep,Period> const& dura);
private:
inline bool not_empty_and_time_reached(unique_lock<mutex>& lk) const;
inline bool not_empty_and_time_reached(lock_guard<mutex>& lk) const;
bool wait_to_pull(unique_lock<mutex>&);
queue_op_status wait_to_pull_until(unique_lock<mutex>&, TimePoint const& tp);
template <class Rep, class Period>
queue_op_status wait_to_pull_for(unique_lock<mutex>& lk, chrono::duration<Rep,Period> const& dura);
T pull(unique_lock<mutex>&);
T pull(lock_guard<mutex>&);
void pull(unique_lock<mutex>&, T& elem);
void pull(lock_guard<mutex>&, T& elem);
queue_op_status try_pull(unique_lock<mutex>&, T& elem);
queue_op_status try_pull(lock_guard<mutex>&, T& elem);
queue_op_status wait_pull(unique_lock<mutex>& lk, T& elem);
sync_timed_queue(const sync_timed_queue&);
sync_timed_queue& operator=(const sync_timed_queue&);
sync_timed_queue(BOOST_THREAD_RV_REF(sync_timed_queue));
sync_timed_queue& operator=(BOOST_THREAD_RV_REF(sync_timed_queue));
}; //end class
template <class T, class Clock, class TimePoint>
template <class Duration>
void sync_timed_queue<T, Clock, TimePoint>::push(const T& elem, chrono::time_point<clock,Duration> const& tp)
{
super::push(stype(elem,tp));
}
template <class T, class Clock, class TimePoint>
template <class Rep, class Period>
void sync_timed_queue<T, Clock, TimePoint>::push(const T& elem, chrono::duration<Rep,Period> const& dura)
{
push(elem, clock::now() + dura);
}
template <class T, class Clock, class TimePoint>
template <class Duration>
void sync_timed_queue<T, Clock, TimePoint>::push(BOOST_THREAD_RV_REF(T) elem, chrono::time_point<clock,Duration> const& tp)
{
super::push(stype(boost::move(elem),tp));
}
template <class T, class Clock, class TimePoint>
template <class Rep, class Period>
void sync_timed_queue<T, Clock, TimePoint>::push(BOOST_THREAD_RV_REF(T) elem, chrono::duration<Rep,Period> const& dura)
{
push(boost::move(elem), clock::now() + dura);
}
template <class T, class Clock, class TimePoint>
template <class Duration>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_push(const T& elem, chrono::time_point<clock,Duration> const& tp)
{
return super::try_push(stype(elem,tp));
}
template <class T, class Clock, class TimePoint>
template <class Rep, class Period>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_push(const T& elem, chrono::duration<Rep,Period> const& dura)
{
return try_push(elem,clock::now() + dura);
}
template <class T, class Clock, class TimePoint>
template <class Duration>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_push(BOOST_THREAD_RV_REF(T) elem, chrono::time_point<clock,Duration> const& tp)
{
return super::try_push(stype(boost::move(elem), tp));
}
template <class T, class Clock, class TimePoint>
template <class Rep, class Period>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_push(BOOST_THREAD_RV_REF(T) elem, chrono::duration<Rep,Period> const& dura)
{
return try_push(boost::move(elem), clock::now() + dura);
}
///////////////////////////
template <class T, class Clock, class TimePoint>
bool sync_timed_queue<T, Clock, TimePoint>::not_empty_and_time_reached(unique_lock<mutex>& lk) const
{
return ! super::empty(lk) && clock::now() >= super::data_.top().time;
}
template <class T, class Clock, class TimePoint>
bool sync_timed_queue<T, Clock, TimePoint>::not_empty_and_time_reached(lock_guard<mutex>& lk) const
{
return ! super::empty(lk) && clock::now() >= super::data_.top().time;
}
///////////////////////////
template <class T, class Clock, class TimePoint>
bool sync_timed_queue<T, Clock, TimePoint>::wait_to_pull(unique_lock<mutex>& lk)
{
for (;;)
{
if (not_empty_and_time_reached(lk)) return false; // success
if (super::closed(lk)) return true; // closed
super::wait_until_not_empty_or_closed(lk);
if (not_empty_and_time_reached(lk)) return false; // success
if (super::closed(lk)) return true; // closed
const time_point tpmin(detail::limit_timepoint(super::data_.top().time));
super::cond_.wait_until(lk, tpmin);
}
}
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::wait_to_pull_until(unique_lock<mutex>& lk, TimePoint const& tp)
{
for (;;)
{
if (not_empty_and_time_reached(lk)) return queue_op_status::success;
if (super::closed(lk)) return queue_op_status::closed;
if (clock::now() >= tp) return super::empty(lk) ? queue_op_status::timeout : queue_op_status::not_ready;
super::wait_until_not_empty_or_closed_until(lk, tp);
if (not_empty_and_time_reached(lk)) return queue_op_status::success;
if (super::closed(lk)) return queue_op_status::closed;
if (clock::now() >= tp) return super::empty(lk) ? queue_op_status::timeout : queue_op_status::not_ready;
const time_point tpmin((std::min)(tp, detail::limit_timepoint(super::data_.top().time)));
super::cond_.wait_until(lk, tpmin);
}
}
template <class T, class Clock, class TimePoint>
template <class Rep, class Period>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::wait_to_pull_for(unique_lock<mutex>& lk, chrono::duration<Rep,Period> const& dura)
{
const chrono::steady_clock::time_point tp(chrono::steady_clock::now() + chrono::duration_cast<chrono::steady_clock::duration>(dura));
for (;;)
{
if (not_empty_and_time_reached(lk)) return queue_op_status::success;
if (super::closed(lk)) return queue_op_status::closed;
if (chrono::steady_clock::now() >= tp) return super::empty(lk) ? queue_op_status::timeout : queue_op_status::not_ready;
super::wait_until_not_empty_or_closed_until(lk, tp);
if (not_empty_and_time_reached(lk)) return queue_op_status::success;
if (super::closed(lk)) return queue_op_status::closed;
if (chrono::steady_clock::now() >= tp) return super::empty(lk) ? queue_op_status::timeout : queue_op_status::not_ready;
const chrono::steady_clock::time_point tpmin((std::min)(tp, detail::convert_to_steady_clock_timepoint(super::data_.top().time)));
super::cond_.wait_until(lk, tpmin);
}
}
///////////////////////////
template <class T, class Clock, class TimePoint>
T sync_timed_queue<T, Clock, TimePoint>::pull(unique_lock<mutex>&)
{
#if ! defined BOOST_NO_CXX11_RVALUE_REFERENCES
return boost::move(super::data_.pull().data);
#else
return super::data_.pull().data;
#endif
}
template <class T, class Clock, class TimePoint>
T sync_timed_queue<T, Clock, TimePoint>::pull(lock_guard<mutex>&)
{
#if ! defined BOOST_NO_CXX11_RVALUE_REFERENCES
return boost::move(super::data_.pull().data);
#else
return super::data_.pull().data;
#endif
}
template <class T, class Clock, class TimePoint>
T sync_timed_queue<T, Clock, TimePoint>::pull()
{
unique_lock<mutex> lk(super::mtx_);
const bool has_been_closed = wait_to_pull(lk);
if (has_been_closed) super::throw_if_closed(lk);
return pull(lk);
}
///////////////////////////
template <class T, class Clock, class TimePoint>
void sync_timed_queue<T, Clock, TimePoint>::pull(unique_lock<mutex>&, T& elem)
{
#if ! defined BOOST_NO_CXX11_RVALUE_REFERENCES
elem = boost::move(super::data_.pull().data);
#else
elem = super::data_.pull().data;
#endif
}
template <class T, class Clock, class TimePoint>
void sync_timed_queue<T, Clock, TimePoint>::pull(lock_guard<mutex>&, T& elem)
{
#if ! defined BOOST_NO_CXX11_RVALUE_REFERENCES
elem = boost::move(super::data_.pull().data);
#else
elem = super::data_.pull().data;
#endif
}
template <class T, class Clock, class TimePoint>
void sync_timed_queue<T, Clock, TimePoint>::pull(T& elem)
{
unique_lock<mutex> lk(super::mtx_);
const bool has_been_closed = wait_to_pull(lk);
if (has_been_closed) super::throw_if_closed(lk);
pull(lk, elem);
}
//////////////////////
template <class T, class Clock, class TimePoint>
template <class Duration>
queue_op_status
sync_timed_queue<T, Clock, TimePoint>::pull_until(chrono::time_point<clock,Duration> const& tp, T& elem)
{
unique_lock<mutex> lk(super::mtx_);
const queue_op_status rc = wait_to_pull_until(lk, chrono::time_point_cast<typename time_point::duration>(tp));
if (rc == queue_op_status::success) pull(lk, elem);
return rc;
}
//////////////////////
template <class T, class Clock, class TimePoint>
template <class Rep, class Period>
queue_op_status
sync_timed_queue<T, Clock, TimePoint>::pull_for(chrono::duration<Rep,Period> const& dura, T& elem)
{
unique_lock<mutex> lk(super::mtx_);
const queue_op_status rc = wait_to_pull_for(lk, dura);
if (rc == queue_op_status::success) pull(lk, elem);
return rc;
}
///////////////////////////
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_pull(unique_lock<mutex>& lk, T& elem)
{
if (not_empty_and_time_reached(lk))
{
pull(lk, elem);
return queue_op_status::success;
}
if (super::closed(lk)) return queue_op_status::closed;
if (super::empty(lk)) return queue_op_status::empty;
return queue_op_status::not_ready;
}
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_pull(lock_guard<mutex>& lk, T& elem)
{
if (not_empty_and_time_reached(lk))
{
pull(lk, elem);
return queue_op_status::success;
}
if (super::closed(lk)) return queue_op_status::closed;
if (super::empty(lk)) return queue_op_status::empty;
return queue_op_status::not_ready;
}
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::try_pull(T& elem)
{
lock_guard<mutex> lk(super::mtx_);
return try_pull(lk, elem);
}
///////////////////////////
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::wait_pull(unique_lock<mutex>& lk, T& elem)
{
const bool has_been_closed = wait_to_pull(lk);
if (has_been_closed) return queue_op_status::closed;
pull(lk, elem);
return queue_op_status::success;
}
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::wait_pull(T& elem)
{
unique_lock<mutex> lk(super::mtx_);
return wait_pull(lk, elem);
}
///////////////////////////
template <class T, class Clock, class TimePoint>
queue_op_status sync_timed_queue<T, Clock, TimePoint>::nonblocking_pull(T& elem)
{
unique_lock<mutex> lk(super::mtx_, try_to_lock);
if (! lk.owns_lock()) return queue_op_status::busy;
return try_pull(lk, elem);
}
} //end concurrent namespace
using concurrent::sync_timed_queue;
} //end boost namespace
#include <boost/config/abi_suffix.hpp>
#endif