blob: fa32d75cc1c9515f29e0cc1620c658e292a5b47b [file] [log] [blame]
// Copyright (c) 2001-2020 Hartmut Kaiser
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_SPIRIT_KARMA_REAL_UTILS_FEB_23_2007_0841PM)
#define BOOST_SPIRIT_KARMA_REAL_UTILS_FEB_23_2007_0841PM
#if defined(_MSC_VER)
#pragma once
#endif
#include <boost/config.hpp>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/limits.hpp>
#include <boost/spirit/home/support/char_class.hpp>
#include <boost/spirit/home/support/unused.hpp>
#include <boost/spirit/home/support/detail/pow10.hpp>
#include <boost/spirit/home/karma/detail/generate_to.hpp>
#include <boost/spirit/home/karma/detail/string_generate.hpp>
#include <boost/spirit/home/karma/numeric/detail/numeric_utils.hpp>
namespace boost { namespace spirit { namespace karma
{
///////////////////////////////////////////////////////////////////////////
//
// The real_inserter template takes care of the floating point number to
// string conversion. The Policies template parameter is used to allow
// customization of the formatting process
//
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct real_policies;
template <typename T
, typename Policies = real_policies<T>
, typename CharEncoding = unused_type
, typename Tag = unused_type>
struct real_inserter
{
template <typename OutputIterator, typename U>
static bool
call (OutputIterator& sink, U n, Policies const& p = Policies())
{
if (traits::test_nan(n)) {
return p.template nan<CharEncoding, Tag>(
sink, n, p.force_sign(n));
}
else if (traits::test_infinite(n)) {
return p.template inf<CharEncoding, Tag>(
sink, n, p.force_sign(n));
}
return p.template call<real_inserter>(sink, n, p);
}
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# pragma warning(push)
# pragma warning(disable: 4100) // 'p': unreferenced formal parameter
# pragma warning(disable: 4127) // conditional expression is constant
# pragma warning(disable: 4267) // conversion from 'size_t' to 'unsigned int', possible loss of data
#endif
///////////////////////////////////////////////////////////////////////
// This is the workhorse behind the real generator
///////////////////////////////////////////////////////////////////////
template <typename OutputIterator, typename U>
static bool
call_n (OutputIterator& sink, U n, Policies const& p)
{
// prepare sign and get output format
bool force_sign = p.force_sign(n);
bool sign_val = false;
int flags = p.floatfield(n);
if (traits::test_negative(n))
{
n = -n;
sign_val = true;
}
// The scientific representation requires the normalization of the
// value to convert.
// get correct precision for generated number
unsigned precision = p.precision(n);
// allow for ADL to find the correct overloads for log10 et.al.
using namespace std;
bool precexp_offset = false;
U dim = 0;
if (0 == (Policies::fmtflags::fixed & flags) && !traits::test_zero(n))
{
dim = log10(n);
if (dim > 0)
n /= spirit::traits::pow10<U>(traits::truncate_to_long::call(dim));
else if (n < 1.) {
long exp = traits::truncate_to_long::call(-dim);
dim = static_cast<U>(-exp);
// detect and handle denormalized numbers to prevent overflow in pow10
if (exp > std::numeric_limits<U>::max_exponent10)
{
n *= spirit::traits::pow10<U>(std::numeric_limits<U>::max_exponent10);
n *= spirit::traits::pow10<U>(exp - std::numeric_limits<U>::max_exponent10);
}
else
n *= spirit::traits::pow10<U>(exp);
if (n < 1.)
{
n *= 10.;
--dim;
precexp_offset = true;
}
}
}
// prepare numbers (sign, integer and fraction part)
U integer_part;
U precexp = spirit::traits::pow10<U>(precision);
U fractional_part = modf(n, &integer_part);
if (precexp_offset)
{
fractional_part =
floor((fractional_part * precexp + U(0.5)) * U(10.)) / U(10.);
}
else
{
fractional_part = floor(fractional_part * precexp + U(0.5));
}
if (fractional_part >= precexp)
{
fractional_part = floor(fractional_part - precexp);
integer_part += 1; // handle rounding overflow
if (integer_part >= 10.)
{
integer_part /= 10.;
++dim;
}
}
// if trailing zeros are to be omitted, normalize the precision and``
// fractional part
U long_int_part = floor(integer_part);
U long_frac_part = fractional_part;
unsigned prec = precision;
if (!p.trailing_zeros(n))
{
U frac_part_floor = long_frac_part;
if (0 != long_frac_part) {
// remove the trailing zeros
while (0 != prec &&
0 == traits::remainder<10>::call(long_frac_part))
{
long_frac_part = traits::divide<10>::call(long_frac_part);
--prec;
}
}
else {
// if the fractional part is zero, we don't need to output
// any additional digits
prec = 0;
}
if (precision != prec)
{
long_frac_part = frac_part_floor /
spirit::traits::pow10<U>(precision-prec);
}
}
// call the actual generating functions to output the different parts
if ((force_sign || sign_val) &&
traits::test_zero(long_int_part) &&
traits::test_zero(long_frac_part))
{
sign_val = false; // result is zero, no sign please
force_sign = false;
}
// generate integer part
bool r = p.integer_part(sink, long_int_part, sign_val, force_sign);
// generate decimal point
r = r && p.dot(sink, long_frac_part, precision);
// generate fractional part with the desired precision
r = r && p.fraction_part(sink, long_frac_part, prec, precision);
if (r && 0 == (Policies::fmtflags::fixed & flags)) {
return p.template exponent<CharEncoding, Tag>(sink,
traits::truncate_to_long::call(dim));
}
return r;
}
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# pragma warning(pop)
#endif
};
}}}
#endif