blob: 7dd167f20a44ae2400af6df492f2d7d245a98a1d [file] [log] [blame]
/*
[auto_generated]
boost/numeric/odeint/iterator/detail/n_step_iterator_impl.hpp
[begin_description]
tba.
[end_description]
Copyright 2009-2013 Karsten Ahnert
Copyright 2009-2013 Mario Mulansky
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_N_STEP_ITERATOR_IMPL_HPP_DEFINED
#define BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_N_STEP_ITERATOR_IMPL_HPP_DEFINED
#include <boost/numeric/odeint/iterator/detail/ode_iterator_base.hpp>
#include <boost/numeric/odeint/util/unit_helper.hpp>
namespace boost {
namespace numeric {
namespace odeint {
template< class Iterator , class Stepper , class System , class State , typename Tag , class StepperTag >
class n_step_iterator_impl;
/*
* Specilization for steppers and error steppers
*/
/**
* \brief ODE Iterator performing exactly n steps with constant step size. The value type of this iterator is the state type of the stepper.
*
* Implements an ODE iterator solving the ODE with constant step size. Uses steppers fulfilling the Stepper concept.
* n_step_iterator is a model of single-pass iterator.
*
* The value type of this iterator is the state type of the stepper. Hence one can only access the state and not the current time.
*
* \tparam Stepper The stepper type which should be used during the iteration.
* \tparam System The type of the system function (ODE) which should be solved.
*/
template< class Iterator , class Stepper , class System , class State , typename Tag >
class n_step_iterator_impl< Iterator , Stepper , System , State , Tag , stepper_tag >
: public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag >
{
private:
typedef Stepper stepper_type;
typedef System system_type;
typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type;
typedef State state_type;
typedef typename traits::time_type< stepper_type >::type time_type;
typedef typename traits::value_type< stepper_type >::type ode_value_type;
#ifndef DOXYGEN_SKIP
typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type;
#endif
public:
/**
* \brief Constructs a n_step_iterator. This constructor should be used to construct the begin iterator.
*
* \param stepper The stepper to use during the iteration.
* \param sys The system function (ODE) to solve.
* \param s The initial state. const_step_iterator stores a reference of s and changes its value during the iteration.
* \param t The initial time.
* \param dt The initial time step.
* \param num_of_steps the number of steps to be executed.
*/
n_step_iterator_impl( stepper_type stepper , system_type sys , state_type &s ,
time_type t , time_type dt , size_t num_of_steps )
: base_type( stepper , sys , t , dt ) , m_t_start( t ) , m_state( &s ) ,
m_steps(num_of_steps) , m_step( 0 )
{ }
/**
* \brief Constructs a const_step_iterator. This constructor should be used to construct the end iterator.
*
* \param stepper The stepper to use during the iteration.
* \param sys The system function (ODE) to solve.
* \param s The initial state. const_step_iterator stores a reference of s and changes its value during the iteration.
*/
n_step_iterator_impl( stepper_type stepper , system_type sys , state_type &s )
: base_type( stepper , sys ) , m_state( &s ) { }
protected:
friend class boost::iterator_core_access;
void increment()
{
if( this->m_step < this->m_steps )
{
unwrapped_stepper_type &stepper = this->m_stepper;
stepper.do_step( this->m_system , *this->m_state , this->m_t , this->m_dt );
// use integer to compute current time to reduce roundoff errors
this->m_step++;
this->m_t = this->m_t_start + static_cast< typename unit_value_type<time_type>::type >(this->m_step)*this->m_dt;
} else {
this->m_at_end = true;
}
}
public:
const state_type& get_state() const
{
return *m_state;
}
private:
time_type m_t_start;
time_type m_t_end;
state_type* m_state;
size_t m_steps;
size_t m_step;
};
/*
* Specilization for dense output stepper
*/
/**
* \brief ODE Iterator with step-size control and dense output.
*
* Implements an ODE iterator solving the ODE with constant steps. Uses dense-output steppers.
* n_step_iterator is a model of single-pass iterator.
*
* The value type of this iterator is the state type of the stepper. Hence one can only access the state and not the current time.
*
* \tparam Stepper The stepper type which should be used during the iteration.
* \tparam System The type of the system function (ODE) which should be solved.
*/
template< class Iterator , class Stepper , class System , class State , typename Tag >
class n_step_iterator_impl< Iterator , Stepper , System , State , Tag , dense_output_stepper_tag >
: public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag >
{
private:
typedef Stepper stepper_type;
typedef System system_type;
typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type;
typedef State state_type;
typedef typename traits::time_type< stepper_type >::type time_type;
typedef typename traits::value_type< stepper_type >::type ode_value_type;
#ifndef DOXYGEN_SKIP
typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type;
#endif
public:
/**
* \brief Constructs a const_step_iterator. This constructor should be used to construct the begin iterator.
*
* \param stepper The stepper to use during the iteration.
* \param sys The system function (ODE) to solve.
* \param s The initial state. const_step_iterator stores a reference of s and changes its value during the iteration.
* \param t The initial time.
* \param dt The initial time step.
* \param num_of_steps the number of steps to be executed.
*/
n_step_iterator_impl( stepper_type stepper , system_type sys , state_type &s ,
time_type t , time_type dt , size_t num_of_steps )
: base_type( stepper , sys , t , dt ) , m_t_start( t ) , m_state( &s ) ,
m_steps( num_of_steps ) , m_step( 0 )
{
unwrapped_stepper_type &st = this->m_stepper;
st.initialize( * ( this->m_state ) , this->m_t , this->m_dt );
}
/**
* \brief Constructs a const_step_iterator. This constructor should be used to construct the end iterator.
*
* \param stepper The stepper to use during the iteration.
* \param sys The system function (ODE) to solve.
* \param s The initial state. const_step_iterator stores a reference of s and changes its value during the iteration.
*/
n_step_iterator_impl( stepper_type stepper , system_type sys , state_type &s )
: base_type( stepper , sys ) , m_state( &s )
{
}
protected:
friend class boost::iterator_core_access;
void increment( void )
{
if( this->m_step < this->m_steps )
{
unwrapped_stepper_type &stepper = this->m_stepper;
// use integer to compute current time to reduce roundoff errors
this->m_step++;
this->m_t = this->m_t_start + static_cast< typename unit_value_type<time_type>::type >(this->m_step)*this->m_dt;
while( detail::less_with_sign( stepper.current_time() , this->m_t ,
stepper.current_time_step() ) )
{
stepper.do_step( this->m_system );
}
stepper.calc_state( this->m_t , *( this->m_state ) );
} else {
this->m_at_end = true;
}
}
public:
const state_type& get_state() const
{
return *m_state;
}
private:
time_type m_t_start;
time_type m_t_end;
state_type* m_state;
size_t m_steps;
size_t m_step;
};
} // namespace odeint
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_N_STEP_ITERATOR_IMPL_HPP_DEFINED