blob: 2ef490d5929d52224e3f6825b46f9ab37d2c1f08 [file] [log] [blame]
/*
[auto_generated]
boost/numeric/odeint/integrate/detail/integrate_n_steps.hpp
[begin_description]
integrate steps implementation
[end_description]
Copyright 2012-2015 Mario Mulansky
Copyright 2012 Christoph Koke
Copyright 2012 Karsten Ahnert
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_N_STEPS_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_N_STEPS_HPP_INCLUDED
#include <boost/numeric/odeint/util/unwrap_reference.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/integrate/detail/integrate_adaptive.hpp>
#include <boost/numeric/odeint/util/unit_helper.hpp>
#include <boost/numeric/odeint/util/detail/less_with_sign.hpp>
namespace boost {
namespace numeric {
namespace odeint {
namespace detail {
// forward declaration
template< class Stepper , class System , class State , class Time , class Observer >
size_t integrate_adaptive_checked(
Stepper stepper , System system , State &start_state ,
Time &start_time , Time end_time , Time &dt ,
Observer observer, controlled_stepper_tag
);
/* basic version */
template< class Stepper , class System , class State , class Time , class Observer>
Time integrate_n_steps(
Stepper stepper , System system , State &start_state ,
Time start_time , Time dt , size_t num_of_steps ,
Observer observer , stepper_tag )
{
typename odeint::unwrap_reference< Observer >::type &obs = observer;
typename odeint::unwrap_reference< Stepper >::type &st = stepper;
Time time = start_time;
for( size_t step = 0; step < num_of_steps ; ++step )
{
obs( start_state , time );
st.do_step( system , start_state , time , dt );
// direct computation of the time avoids error propagation happening when using time += dt
// we need clumsy type analysis to get boost units working here
time = start_time + static_cast< typename unit_value_type<Time>::type >( step+1 ) * dt;
}
obs( start_state , time );
return time;
}
/* controlled version */
template< class Stepper , class System , class State , class Time , class Observer >
Time integrate_n_steps(
Stepper stepper , System system , State &start_state ,
Time start_time , Time dt , size_t num_of_steps ,
Observer observer , controlled_stepper_tag )
{
typename odeint::unwrap_reference< Observer >::type &obs = observer;
Time time = start_time;
Time time_step = dt;
for( size_t step = 0; step < num_of_steps ; ++step )
{
obs( start_state , time );
// integrate_adaptive_checked uses the given checker to throw if an overflow occurs
detail::integrate_adaptive(stepper, system, start_state, time, static_cast<Time>(time + time_step), dt,
null_observer(), controlled_stepper_tag());
// direct computation of the time avoids error propagation happening when using time += dt
// we need clumsy type analysis to get boost units working here
time = start_time + static_cast< typename unit_value_type<Time>::type >(step+1) * time_step;
}
obs( start_state , time );
return time;
}
/* dense output version */
template< class Stepper , class System , class State , class Time , class Observer >
Time integrate_n_steps(
Stepper stepper , System system , State &start_state ,
Time start_time , Time dt , size_t num_of_steps ,
Observer observer , dense_output_stepper_tag )
{
typename odeint::unwrap_reference< Observer >::type &obs = observer;
typename odeint::unwrap_reference< Stepper >::type &st = stepper;
Time time = start_time;
const Time end_time = start_time + static_cast< typename unit_value_type<Time>::type >(num_of_steps) * dt;
st.initialize( start_state , time , dt );
size_t step = 0;
while( step < num_of_steps )
{
while( less_with_sign( time , st.current_time() , st.current_time_step() ) )
{
st.calc_state( time , start_state );
obs( start_state , time );
++step;
// direct computation of the time avoids error propagation happening when using time += dt
// we need clumsy type analysis to get boost units working here
time = start_time + static_cast< typename unit_value_type<Time>::type >(step) * dt;
}
// we have not reached the end, do another real step
if( less_with_sign( static_cast<Time>(st.current_time()+st.current_time_step()) ,
end_time ,
st.current_time_step() ) )
{
st.do_step( system );
}
else if( less_with_sign( st.current_time() , end_time , st.current_time_step() ) )
{ // do the last step ending exactly on the end point
st.initialize( st.current_state() , st.current_time() , static_cast<Time>(end_time - st.current_time()) );
st.do_step( system );
}
}
// make sure we really end exactly where we should end
while( st.current_time() < end_time )
{
if( less_with_sign( end_time ,
static_cast<Time>(st.current_time()+st.current_time_step()) ,
st.current_time_step() ) )
st.initialize( st.current_state() , st.current_time() , static_cast<Time>(end_time - st.current_time()) );
st.do_step( system );
}
// observation at final point
obs( st.current_state() , end_time );
return time;
}
}
}
}
}
#endif /* BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_N_STEPS_HPP_INCLUDED */