blob: f59cb6bc767a6fd88ee6c822bb11188f6fe8106e [file] [log] [blame]
//
//! Copyright (c) 2011
//! Brandon Kohn
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/operators.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/mpl/for_each.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/cstdint.hpp>
#include <boost/test/minimal.hpp>
//! Define a simple custom number
struct Double
{
Double()
: v(0)
{}
template <typename T>
explicit Double( T v )
: v(static_cast<double>(v))
{}
template <typename T>
Double& operator= ( T t )
{
v = static_cast<double>(t);
return *this;
}
bool operator < ( const Double& rhs ) const
{
return v < rhs.v;
}
template <typename T>
bool operator < ( T rhs ) const
{
return v < static_cast<double>(rhs);
}
template <typename LHS>
friend bool operator < ( const LHS& lhs, const Double& rhs )
{
return lhs < rhs.v;
}
bool operator > ( const Double& rhs ) const
{
return v > rhs.v;
}
template <typename LHS>
friend bool operator > ( const LHS& lhs, const Double& rhs )
{
return lhs > rhs.v;
}
template <typename T>
bool operator > ( T rhs ) const
{
return v > static_cast<double>(rhs);
}
bool operator == ( const Double& rhs ) const
{
return v == rhs.v;
}
template <typename T>
bool operator == ( T rhs ) const
{
return v == static_cast<double>(rhs);
}
template <typename LHS>
friend bool operator == ( const LHS& lhs, const Double& rhs )
{
return lhs == rhs.v;
}
bool operator !() const
{
return v == 0;
}
Double operator -() const
{
return Double(-v);
}
Double& operator +=( const Double& t )
{
v += t.v;
return *this;
}
template <typename T>
Double& operator +=( T t )
{
v += static_cast<double>(t);
return *this;
}
Double& operator -=( const Double& t )
{
v -= t.v;
return *this;
}
template <typename T>
Double& operator -=( T t )
{
v -= static_cast<double>(t);
return *this;
}
Double& operator *= ( const Double& factor )
{
v *= factor.v;
return *this;
}
template <typename T>
Double& operator *=( T t )
{
v *= static_cast<double>(t);
return *this;
}
Double& operator /= (const Double& divisor)
{
v /= divisor.v;
return *this;
}
template <typename T>
Double& operator /=( T t )
{
v /= static_cast<double>(t);
return (*this);
}
double v;
};
//! Define numeric_limits for the custom type.
namespace std
{
template<>
class numeric_limits< Double > : public numeric_limits<double>
{
public:
//! Limit our Double to a range of +/- 100.0
static Double (min)()
{
return Double(1.e-2);
}
static Double (max)()
{
return Double(1.e2);
}
static Double epsilon()
{
return Double( std::numeric_limits<double>::epsilon() );
}
};
}
//! Define range checking and overflow policies.
namespace custom
{
//! Define a custom range checker
template<typename Traits, typename OverFlowHandler>
struct range_checker
{
typedef typename Traits::argument_type argument_type ;
typedef typename Traits::source_type S;
typedef typename Traits::target_type T;
//! Check range of integral types.
static boost::numeric::range_check_result out_of_range( argument_type s )
{
using namespace boost::numeric;
if( s > bounds<T>::highest() )
return cPosOverflow;
else if( s < bounds<T>::lowest() )
return cNegOverflow;
else
return cInRange;
}
static void validate_range ( argument_type s )
{
BOOST_STATIC_ASSERT( std::numeric_limits<T>::is_bounded );
OverFlowHandler()( out_of_range(s) );
}
};
//! Overflow handler
struct positive_overflow{};
struct negative_overflow{};
struct overflow_handler
{
void operator() ( boost::numeric::range_check_result r )
{
using namespace boost::numeric;
if( r == cNegOverflow )
throw negative_overflow() ;
else if( r == cPosOverflow )
throw positive_overflow() ;
}
};
//! Define a rounding policy and specialize on the custom type.
template<class S>
struct Ceil : boost::numeric::Ceil<S>{};
template<>
struct Ceil<Double>
{
typedef Double source_type;
typedef Double const& argument_type;
static source_type nearbyint ( argument_type s )
{
#if !defined(BOOST_NO_STDC_NAMESPACE)
using std::ceil ;
#endif
return Double( ceil(s.v) );
}
typedef boost::mpl::integral_c< std::float_round_style, std::round_toward_infinity> round_style;
};
//! Define a rounding policy and specialize on the custom type.
template<class S>
struct Trunc: boost::numeric::Trunc<S>{};
template<>
struct Trunc<Double>
{
typedef Double source_type;
typedef Double const& argument_type;
static source_type nearbyint ( argument_type s )
{
#if !defined(BOOST_NO_STDC_NAMESPACE)
using std::floor;
#endif
return Double( floor(s.v) );
}
typedef boost::mpl::integral_c< std::float_round_style, std::round_toward_zero> round_style;
};
}//namespace custom;
namespace boost { namespace numeric {
//! Define the numeric_cast_traits specializations on the custom type.
template <typename S>
struct numeric_cast_traits<Double, S>
{
typedef custom::overflow_handler overflow_policy;
typedef custom::range_checker
<
boost::numeric::conversion_traits<Double, S>
, overflow_policy
> range_checking_policy;
typedef boost::numeric::Trunc<S> rounding_policy;
};
template <typename T>
struct numeric_cast_traits<T, Double>
{
typedef custom::overflow_handler overflow_policy;
typedef custom::range_checker
<
boost::numeric::conversion_traits<T, Double>
, overflow_policy
> range_checking_policy;
typedef custom::Trunc<Double> rounding_policy;
};
//! Define the conversion from the custom type to built-in types and vice-versa.
template<typename T>
struct raw_converter< conversion_traits< T, Double > >
{
static T low_level_convert ( const Double& n )
{
return static_cast<T>( n.v );
}
};
template<typename S>
struct raw_converter< conversion_traits< Double, S > >
{
static Double low_level_convert ( const S& n )
{
return Double(n);
}
};
}}//namespace boost::numeric;
#define BOOST_TEST_CATCH_CUSTOM_POSITIVE_OVERFLOW( CastCode ) \
try { CastCode; BOOST_CHECK( false ); } \
catch( custom::positive_overflow& ){} \
catch(...){ BOOST_CHECK( false ); } \
/***/
#define BOOST_TEST_CATCH_CUSTOM_NEGATIVE_OVERFLOW( CastCode ) \
try { CastCode; BOOST_CHECK( false ); } \
catch( custom::negative_overflow& ){} \
catch(...){ BOOST_CHECK( false ); } \
/***/
struct test_cast_traits
{
template <typename T>
void operator()(T) const
{
Double d = boost::numeric_cast<Double>( static_cast<T>(50) );
BOOST_CHECK( d.v == 50. );
T v = boost::numeric_cast<T>( d );
BOOST_CHECK( v == 50 );
}
};
void test_numeric_cast_traits()
{
typedef boost::mpl::vector
<
boost::int8_t
, boost::uint8_t
, boost::int16_t
, boost::uint16_t
, boost::int32_t
, boost::uint32_t
#if !defined( BOOST_NO_INT64_T )
, boost::int64_t
, boost::uint64_t
#endif
, float
, double
, long double
> types;
boost::mpl::for_each<types>( test_cast_traits() );
//! Check overflow handler.
Double d( 56.0 );
BOOST_TEST_CATCH_CUSTOM_POSITIVE_OVERFLOW( d = boost::numeric_cast<Double>( 101 ) );
BOOST_CHECK( d.v == 56. );
BOOST_TEST_CATCH_CUSTOM_NEGATIVE_OVERFLOW( d = boost::numeric_cast<Double>( -101 ) );
BOOST_CHECK( d.v == 56.);
//! Check custom round policy.
d = 5.9;
int five = boost::numeric_cast<int>( d );
BOOST_CHECK( five == 5 );
}
int test_main( int argc, char * argv[] )
{
test_numeric_cast_traits();
return 0;
}
#undef BOOST_TEST_CATCH_CUSTOM_POSITIVE_OVERFLOW
#undef BOOST_TEST_CATCH_CUSTOM_NEGATIVE_OVERFLOW