blob: 0124e1a260e2e7f1cfac27c5f2bd1fa2d08c3b27 [file] [log] [blame]
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2013.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#include <boost/intrusive/slist.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include "itestvalue.hpp"
#include "bptr_value.hpp"
#include "smart_ptr.hpp"
#include "common_functors.hpp"
#include <vector>
#include <boost/core/lightweight_test.hpp>
#include "test_macros.hpp"
#include "test_container.hpp"
#include <typeinfo>
using namespace boost::intrusive;
template<class VoidPointer>
struct hooks
{
typedef slist_base_hook<void_pointer<VoidPointer> > base_hook_type;
typedef slist_base_hook< link_mode<auto_unlink>
, void_pointer<VoidPointer>, tag<void> > auto_base_hook_type;
typedef slist_member_hook<void_pointer<VoidPointer>, tag<void> > member_hook_type;
typedef slist_member_hook< link_mode<auto_unlink>
, void_pointer<VoidPointer> > auto_member_hook_type;
typedef nonhook_node_member< slist_node_traits< VoidPointer >,
circular_slist_algorithms
> nonhook_node_member_type;
};
template < typename ListType, typename ValueContainer >
struct test_slist
{
typedef ListType list_type;
typedef typename list_type::value_traits value_traits;
typedef typename value_traits::value_type value_type;
typedef typename list_type::node_algorithms node_algorithms;
static void test_all(ValueContainer&);
static void test_front(ValueContainer&);
static void test_back(ValueContainer&, detail::true_type);
static void test_back(ValueContainer&, detail::false_type) {}
static void test_sort(ValueContainer&);
static void test_merge(ValueContainer&);
static void test_remove_unique(ValueContainer&);
static void test_insert(ValueContainer&);
static void test_shift(ValueContainer&);
static void test_swap(ValueContainer&);
static void test_slow_insert(ValueContainer&);
static void test_clone(ValueContainer&);
static void test_container_from_end(ValueContainer&, detail::true_type);
static void test_container_from_end(ValueContainer&, detail::false_type) {}
};
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_all (ValueContainer& values)
{
{
list_type list(values.begin(), values.end());
test::test_container(list);
list.clear();
list.insert(list.end(), values.begin(), values.end());
test::test_sequence_container(list, values);
}
{
list_type list(values.begin(), values.end());
test::test_iterator_forward(list);
}
test_front(values);
test_back(values, detail::bool_< list_type::cache_last >());
test_sort(values);
test_merge (values);
test_remove_unique(values);
test_insert(values);
test_shift(values);
test_slow_insert (values);
test_swap(values);
test_clone(values);
test_container_from_end(values, detail::bool_< !list_type::linear && list_type::has_container_from_iterator >());
}
//test: push_front, pop_front, front, size, empty:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_front(ValueContainer& values)
{
list_type testlist;
BOOST_TEST (testlist.empty());
testlist.push_front (values[0]);
BOOST_TEST (testlist.size() == 1);
BOOST_TEST (&testlist.front() == &values[0]);
testlist.push_front (values[1]);
BOOST_TEST (testlist.size() == 2);
BOOST_TEST (&testlist.front() == &values[1]);
testlist.pop_front();
BOOST_TEST (testlist.size() == 1);
BOOST_TEST (&testlist.front() == &values[0]);
testlist.pop_front();
BOOST_TEST (testlist.empty());
}
//test: push_front, pop_front, front, size, empty:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_back(ValueContainer& values, detail::true_type)
{
list_type testlist;
BOOST_TEST (testlist.empty());
testlist.push_back (values[0]);
BOOST_TEST (testlist.size() == 1);
BOOST_TEST (&testlist.front() == &values[0]);
BOOST_TEST (&testlist.back() == &values[0]);
testlist.push_back(values[1]);
BOOST_TEST(*testlist.previous(testlist.end()) == values[1]);
BOOST_TEST (&testlist.front() == &values[0]);
BOOST_TEST (&testlist.back() == &values[1]);
}
//test: merge due to error in merge implementation:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_merge (ValueContainer& values)
{
list_type testlist1, testlist2;
testlist1.push_front (values[0]);
testlist2.push_front (values[4]);
testlist2.push_front (values[3]);
testlist2.push_front (values[2]);
testlist1.merge (testlist2);
int init_values [] = { 1, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() );
}
//test: merge due to error in merge implementation:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_remove_unique (ValueContainer& values)
{
{
list_type list(values.begin(), values.end());
list.remove_if(is_even());
int init_values [] = { 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() );
}
{
list_type list(values.begin(), values.end());
list.remove_if(is_odd());
int init_values [] = { 2, 4 };
TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() );
}
{
list_type list(values.begin(), values.end());
list.remove_and_dispose_if(is_even(), test::empty_disposer());
int init_values [] = { 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() );
}
{
list_type list(values.begin(), values.end());
list.remove_and_dispose_if(is_odd(), test::empty_disposer());
int init_values [] = { 2, 4 };
TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() );
}
{
ValueContainer values2(values);
list_type list(values.begin(), values.end());
list.insert_after(list.before_begin(), values2.begin(), values2.end());
list.sort();
int init_values [] = { 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, list.begin() );
list.unique();
int init_values2 [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values2, list.begin() );
}
}
//test: constructor, iterator, sort, reverse:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_sort(ValueContainer& values)
{
list_type testlist (values.begin(), values.end());
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist.begin() ); }
testlist.sort (even_odd());
{ int init_values [] = { 2, 4, 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist.begin() ); }
testlist.reverse();
{ int init_values [] = { 5, 3, 1, 4, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist.begin() ); }
}
//test: assign, insert_after, const_iterator, erase_after, s_iterator_to, previous:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_insert(ValueContainer& values)
{
list_type testlist;
testlist.assign (values.begin() + 2, values.begin() + 5);
const list_type& const_testlist = testlist;
{ int init_values [] = { 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); }
typename list_type::iterator i = ++testlist.begin();
BOOST_TEST (i->value_ == 4);
testlist.insert_after (i, values[0]);
{ int init_values [] = { 3, 4, 1, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); }
i = testlist.iterator_to (values[4]);
BOOST_TEST (&*i == &values[4]);
i = list_type::s_iterator_to (values[4]);
BOOST_TEST (&*i == &values[4]);
typename list_type::const_iterator ic;
ic = testlist.iterator_to (static_cast< typename list_type::const_reference >(values[4]));
BOOST_TEST (&*ic == &values[4]);
ic = list_type::s_iterator_to (static_cast< typename list_type::const_reference >(values[4]));
BOOST_TEST (&*ic == &values[4]);
i = testlist.previous (i);
BOOST_TEST (&*i == &values[0]);
testlist.erase_after (i);
BOOST_TEST (&*i == &values[0]);
{ int init_values [] = { 3, 4, 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); }
}
//test: insert, const_iterator, erase, siterator_to:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_slow_insert (ValueContainer& values)
{
list_type testlist;
testlist.push_front (values[4]);
testlist.insert (testlist.begin(), values.begin() + 2, values.begin() + 4);
const list_type& const_testlist = testlist;
{ int init_values [] = { 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); }
typename list_type::iterator i = ++testlist.begin();
BOOST_TEST (i->value_ == 4);
testlist.insert (i, values[0]);
{ int init_values [] = { 3, 1, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); }
i = testlist.iterator_to (values[4]);
BOOST_TEST (&*i == &values[4]);
i = list_type::s_iterator_to (values[4]);
BOOST_TEST (&*i == &values[4]);
i = testlist.erase (i);
BOOST_TEST (i == testlist.end());
{ int init_values [] = { 3, 1, 4 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testlist.begin() ); }
testlist.erase (++testlist.begin(), testlist.end());
BOOST_TEST (testlist.size() == 1);
BOOST_TEST (testlist.begin()->value_ == 3);
}
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_shift(ValueContainer& values)
{
list_type testlist;
const int num_values = (int)values.size();
std::vector<int> expected_values(num_values);
//Shift forward all possible positions 3 times
for(int s = 1; s <= num_values; ++s){
expected_values.resize(s);
for(int i = 0; i < s*3; ++i){
testlist.insert_after(testlist.before_begin(), values.begin(), values.begin() + s);
testlist.shift_forward(i);
for(int j = 0; j < s; ++j){
expected_values[(j + s - i%s) % s] = (j + 1);
}
TEST_INTRUSIVE_SEQUENCE_EXPECTED(expected_values, testlist.begin())
testlist.clear();
}
//Shift backwards all possible positions
for(int i = 0; i < s*3; ++i){
testlist.insert_after(testlist.before_begin(), values.begin(), values.begin() + s);
testlist.shift_backwards(i);
for(int j = 0; j < s; ++j){
expected_values[(j + i) % s] = (j + 1);
}
TEST_INTRUSIVE_SEQUENCE_EXPECTED(expected_values, testlist.begin())
testlist.clear();
}
}
}
//test: insert_after (seq-version), swap, splice_after:
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_swap(ValueContainer& values)
{
{
list_type testlist1 (values.begin(), values.begin() + 2);
list_type testlist2;
testlist2.insert_after (testlist2.before_begin(), values.begin() + 2, values.begin() + 5);
testlist1.swap(testlist2);
{ int init_values [] = { 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
{ int init_values [] = { 1, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); }
testlist2.splice_after (testlist2.begin(), testlist1);
{ int init_values [] = { 1, 3, 4, 5, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); }
BOOST_TEST (testlist1.empty());
testlist1.splice_after (testlist1.before_begin(), testlist2, ++testlist2.begin());
{ int init_values [] = { 4 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
{ int init_values [] = { 1, 3, 5, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); }
testlist1.splice_after (testlist1.begin(), testlist2,
testlist2.before_begin(), ++++testlist2.begin());
{ int init_values [] = { 4, 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
{ int init_values [] = { 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); }
}
{ //Now test swap when testlist2 is empty
list_type testlist1 (values.begin(), values.begin() + 2);
list_type testlist2;
testlist1.swap(testlist2);
BOOST_TEST (testlist1.empty());
{ int init_values [] = { 1, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); }
}
{ //Now test swap when testlist1 is empty
list_type testlist2 (values.begin(), values.begin() + 2);
list_type testlist1;
testlist1.swap(testlist2);
BOOST_TEST (testlist2.empty());
{ int init_values [] = { 1, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
}
{ //Now test when both are empty
list_type testlist1, testlist2;
testlist2.swap(testlist1);
BOOST_TEST (testlist1.empty() && testlist2.empty());
}
if(!list_type::linear)
{
list_type testlist1 (values.begin(), values.begin() + 2);
list_type testlist2 (values.begin() + 3, values.begin() + 5);
swap_nodes< node_algorithms >(values[0], values[2]);
{ int init_values [] = { 3, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
swap_nodes< node_algorithms >(values[2], values[4]);
{ int init_values [] = { 5, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
{ int init_values [] = { 4, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist2.begin() ); }
}
if(!list_type::linear)
{
list_type testlist1 (values.begin(), values.begin()+1);
if(testlist1.size() != 1){
abort();
}
{ int init_values [] = { 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
swap_nodes< node_algorithms >(values[1], values[2]);
BOOST_TEST(testlist1.size() == 1);
BOOST_TEST(!(&values[1])->is_linked());
BOOST_TEST(!(&values[2])->is_linked());
{ int init_values [] = { 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
swap_nodes< node_algorithms >(values[0], values[2]);
BOOST_TEST(testlist1.size() == 1);
BOOST_TEST((&values[2])->is_linked());
BOOST_TEST(!(&values[0])->is_linked());
{ int init_values [] = { 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
swap_nodes< node_algorithms >(values[0], values[2]);
BOOST_TEST(testlist1.size() == 1);
BOOST_TEST(!(&values[2])->is_linked());
BOOST_TEST((&values[0])->is_linked());
{ int init_values [] = { 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, testlist1.begin() ); }
}
}
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_clone(ValueContainer& values)
{
list_type testlist1 (values.begin(), values.begin() + values.size());
list_type testlist2;
testlist2.clone_from(testlist1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST (testlist2 == testlist1);
testlist2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testlist2.empty());
}
template < typename ListType, typename ValueContainer >
void test_slist< ListType, ValueContainer >
::test_container_from_end(ValueContainer& values, detail::true_type)
{
list_type testlist1 (values.begin(), values.begin() + values.size());
BOOST_TEST (testlist1 == list_type::container_from_end_iterator(testlist1.end()));
BOOST_TEST (testlist1 == list_type::container_from_end_iterator(testlist1.cend()));
}
template < typename ValueTraits, bool ConstantTimeSize, bool Linear, bool CacheLast, bool Default_Holder, typename ValueContainer >
struct make_and_test_slist
: test_slist< slist< typename ValueTraits::value_type,
value_traits< ValueTraits >,
size_type< std::size_t >,
constant_time_size< ConstantTimeSize >,
linear<Linear>,
cache_last<CacheLast>
>,
ValueContainer
>
{};
template < typename ValueTraits, bool ConstantTimeSize, bool Linear, bool CacheLast, typename ValueContainer >
struct make_and_test_slist< ValueTraits, ConstantTimeSize, Linear, CacheLast, false, ValueContainer >
: test_slist< slist< typename ValueTraits::value_type,
value_traits< ValueTraits >,
size_type< std::size_t >,
constant_time_size< ConstantTimeSize >,
linear<Linear>,
cache_last<CacheLast>,
header_holder_type< heap_node_holder< typename ValueTraits::pointer > >
>,
ValueContainer
>
{};
template<class VoidPointer, bool constant_time_size, bool Default_Holder>
class test_main_template
{
public:
int operator()()
{
typedef testvalue< hooks<VoidPointer> > value_type;
std::vector< value_type > data (5);
for (int i = 0; i < 5; ++i)
data[i].value_ = i + 1;
make_and_test_slist < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::base_hook_type
>::type
, constant_time_size
, false
, false
, Default_Holder
, std::vector< value_type >
>::test_all(data);
make_and_test_slist < nonhook_node_member_value_traits< value_type,
typename hooks<VoidPointer>::nonhook_node_member_type,
&value_type::nhn_member_,
safe_link
>
, constant_time_size
, false
, false
, Default_Holder
, std::vector< value_type >
>::test_all(data);
//Now linear slists
make_and_test_slist < typename detail::get_member_value_traits
< member_hook< value_type
, typename hooks<VoidPointer>::member_hook_type
, &value_type::node_
>
>::type
, constant_time_size
, true
, false
, Default_Holder
, std::vector< value_type >
>::test_all(data);
//Now the same but caching the last node
make_and_test_slist < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::base_hook_type
>::type
, constant_time_size
, false
, true
, Default_Holder
, std::vector< value_type >
>::test_all(data);
//Now linear slists
make_and_test_slist < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::base_hook_type
>::type
, constant_time_size
, true
, true
, Default_Holder
, std::vector< value_type >
>::test_all(data);
return 0;
}
};
template<class VoidPointer, bool Default_Holder>
class test_main_template<VoidPointer, false, Default_Holder>
{
public:
int operator()()
{
typedef testvalue< hooks<VoidPointer> > value_type;
std::vector< value_type > data (5);
for (int i = 0; i < 5; ++i)
data[i].value_ = i + 1;
make_and_test_slist < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::auto_base_hook_type
>::type
, false
, false
, false
, Default_Holder
, std::vector< value_type >
>::test_all(data);
make_and_test_slist < nonhook_node_member_value_traits< value_type,
typename hooks<VoidPointer>::nonhook_node_member_type,
&value_type::nhn_member_,
safe_link
>
, false
, false
, true
, Default_Holder
, std::vector< value_type >
>::test_all(data);
make_and_test_slist < typename detail::get_member_value_traits
< member_hook< value_type
, typename hooks<VoidPointer>::member_hook_type
, &value_type::node_
>
>::type
, false
, true
, false
, Default_Holder
, std::vector< value_type >
>::test_all(data);
make_and_test_slist < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::base_hook_type
>::type
, false
, true
, true
, Default_Holder
, std::vector< value_type >
>::test_all(data);
return 0;
}
};
template < bool ConstantTimeSize >
struct test_main_template_bptr
{
int operator()()
{
typedef BPtr_Value value_type;
typedef BPtr_Value_Traits< List_BPtr_Node_Traits > list_value_traits;
typedef typename list_value_traits::node_ptr node_ptr;
typedef bounded_allocator< value_type > allocator_type;
bounded_allocator_scope<allocator_type> bounded_scope; (void)bounded_scope;
allocator_type allocator;
{
bounded_reference_cont< value_type > ref_cont;
for (int i = 0; i < 5; ++i)
{
node_ptr tmp = allocator.allocate(1);
new (tmp.raw()) value_type(i + 1);
ref_cont.push_back(*tmp);
}
test_slist < slist < value_type,
value_traits< list_value_traits >,
size_type< std::size_t >,
constant_time_size< ConstantTimeSize >,
header_holder_type< bounded_pointer_holder< value_type > >
>,
bounded_reference_cont< value_type >
>::test_all(ref_cont);
}
return 0;
}
};
int main(int, char* [])
{
// test (plain/smart pointers) x (nonconst/const size) x (void node allocator)
test_main_template<void*, false, true>()();
test_main_template<boost::intrusive::smart_ptr<void>, false, true>()();
test_main_template<void*, true, true>()();
test_main_template<boost::intrusive::smart_ptr<void>, true, true>()();
// test (bounded pointers) x ((nonconst/const size) x (special node allocator)
test_main_template_bptr< true >()();
test_main_template_bptr< false >()();
return boost::report_errors();
}