blob: 0739b33ca06ffe0bed0c8259cac7b24e4c5b6c2e [file] [log] [blame]
/*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* Copyright (c) 2020 Andrey Semashev
*/
/*!
* \file find_address_sse2.cpp
*
* This file contains SSE2 implementation of the \c find_address algorithm
*/
#include <boost/predef/architecture/x86.h>
#include <boost/atomic/detail/int_sizes.hpp>
#if BOOST_ARCH_X86 && defined(BOOST_ATOMIC_DETAIL_SIZEOF_POINTER) && (BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 || BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 4)
#include <cstddef>
#include <emmintrin.h>
#include <boost/cstdint.hpp>
#include <boost/atomic/detail/config.hpp>
#include <boost/atomic/detail/intptr.hpp>
#include "find_address.hpp"
#include "x86_vector_tools.hpp"
#include "bit_operation_tools.hpp"
#include <boost/atomic/detail/header.hpp>
namespace boost {
namespace atomics {
namespace detail {
#if BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8
namespace {
BOOST_FORCEINLINE __m128i mm_pand_si128(__m128i mm1, __m128i mm2)
{
// As of 2020, gcc, clang and icc prefer to generate andps instead of pand if the surrounding
// instructions pertain to FP domain, even if we use the _mm_and_si128 intrinsic. In our
// algorithm implementation, the FP instruction happen to be shufps, which is not actually
// restricted to FP domain (it is actually implemented in a separate MMX EU in Pentium 4 or
// a shuffle EU in INT domain in Core 2; on AMD K8/K10 all SSE instructions are implemented in
// FADD, FMUL and FMISC EUs regardless of INT/FP data types, and shufps is implemented in FADD/FMUL).
// In other words, there should be no domain bypass penalty between shufps and pand.
//
// This would usually not pose a problem since andps and pand have the same latency and throughput
// on most architectures of that age (before SSE4.1). However, it is possible that a newer architecture
// runs the SSE2 code path (e.g. because some weird compiler doesn't support SSE4.1 or because
// a hypervisor blocks SSE4.1 detection), and there pand may have a better throughput. For example,
// Sandy Bridge can execute 3 pand instructions per cycle, but only one andps. For this reason
// we prefer to generate pand and not andps.
#if defined(__GNUC__)
__asm__("pand %1, %0\n\t" : "+x" (mm1) : "x" (mm2));
#else
mm1 = _mm_and_si128(mm1, mm2);
#endif
return mm1;
}
} // namespace
#endif // BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8
//! SSE2 implementation of the \c find_address algorithm
std::size_t find_address_sse2(const volatile void* addr, const volatile void* const* addrs, std::size_t size)
{
#if BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8
if (size < 12u)
return find_address_generic(addr, addrs, size);
const __m128i mm_addr = mm_set1_epiptr((uintptr_t)addr);
std::size_t pos = 0u;
const std::size_t n = (size + 1u) & ~static_cast< std::size_t >(1u);
for (std::size_t m = n & ~static_cast< std::size_t >(15u); pos < m; pos += 16u)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
__m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 2u));
__m128i mm3 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u));
__m128i mm4 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 6u));
__m128i mm5 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 8u));
__m128i mm6 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 10u));
__m128i mm7 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 12u));
__m128i mm8 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 14u));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
mm2 = _mm_cmpeq_epi32(mm2, mm_addr);
mm3 = _mm_cmpeq_epi32(mm3, mm_addr);
mm4 = _mm_cmpeq_epi32(mm4, mm_addr);
mm5 = _mm_cmpeq_epi32(mm5, mm_addr);
mm6 = _mm_cmpeq_epi32(mm6, mm_addr);
mm7 = _mm_cmpeq_epi32(mm7, mm_addr);
mm8 = _mm_cmpeq_epi32(mm8, mm_addr);
__m128i mm_mask1_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask1_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(3, 1, 3, 1)));
__m128i mm_mask2_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask2_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(3, 1, 3, 1)));
__m128i mm_mask3_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm5), _mm_castsi128_ps(mm6), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask3_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm5), _mm_castsi128_ps(mm6), _MM_SHUFFLE(3, 1, 3, 1)));
__m128i mm_mask4_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm7), _mm_castsi128_ps(mm8), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask4_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm7), _mm_castsi128_ps(mm8), _MM_SHUFFLE(3, 1, 3, 1)));
mm_mask1_lo = mm_pand_si128(mm_mask1_lo, mm_mask1_hi);
mm_mask2_lo = mm_pand_si128(mm_mask2_lo, mm_mask2_hi);
mm_mask3_lo = mm_pand_si128(mm_mask3_lo, mm_mask3_hi);
mm_mask4_lo = mm_pand_si128(mm_mask4_lo, mm_mask4_hi);
mm_mask1_lo = _mm_packs_epi32(mm_mask1_lo, mm_mask2_lo);
mm_mask3_lo = _mm_packs_epi32(mm_mask3_lo, mm_mask4_lo);
mm_mask1_lo = _mm_packs_epi16(mm_mask1_lo, mm_mask3_lo);
uint32_t mask = _mm_movemask_epi8(mm_mask1_lo);
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask);
goto done;
}
}
if ((n - pos) >= 8u)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
__m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 2u));
__m128i mm3 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u));
__m128i mm4 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 6u));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
mm2 = _mm_cmpeq_epi32(mm2, mm_addr);
mm3 = _mm_cmpeq_epi32(mm3, mm_addr);
mm4 = _mm_cmpeq_epi32(mm4, mm_addr);
__m128i mm_mask1_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask1_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(3, 1, 3, 1)));
__m128i mm_mask2_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask2_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(3, 1, 3, 1)));
mm_mask1_lo = mm_pand_si128(mm_mask1_lo, mm_mask1_hi);
mm_mask2_lo = mm_pand_si128(mm_mask2_lo, mm_mask2_hi);
mm_mask1_lo = _mm_packs_epi32(mm_mask1_lo, mm_mask2_lo);
uint32_t mask = _mm_movemask_epi8(mm_mask1_lo);
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask) / 2u;
goto done;
}
pos += 8u;
}
if ((n - pos) >= 4u)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
__m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 2u));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
mm2 = _mm_cmpeq_epi32(mm2, mm_addr);
__m128i mm_mask1_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(2, 0, 2, 0)));
__m128i mm_mask1_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(3, 1, 3, 1)));
mm_mask1_lo = mm_pand_si128(mm_mask1_lo, mm_mask1_hi);
uint32_t mask = _mm_movemask_ps(_mm_castsi128_ps(mm_mask1_lo));
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask);
goto done;
}
pos += 4u;
}
if (pos < n)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
__m128i mm_mask = _mm_shuffle_epi32(mm1, _MM_SHUFFLE(2, 3, 0, 1));
mm_mask = mm_pand_si128(mm_mask, mm1);
uint32_t mask = _mm_movemask_pd(_mm_castsi128_pd(mm_mask));
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask);
goto done;
}
pos += 2u;
}
done:
return pos;
#else // BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8
if (size < 10u)
return find_address_generic(addr, addrs, size);
const __m128i mm_addr = _mm_set1_epi32((uintptr_t)addr);
std::size_t pos = 0u;
const std::size_t n = (size + 3u) & ~static_cast< std::size_t >(3u);
for (std::size_t m = n & ~static_cast< std::size_t >(15u); pos < m; pos += 16u)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
__m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u));
__m128i mm3 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 8u));
__m128i mm4 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 12u));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
mm2 = _mm_cmpeq_epi32(mm2, mm_addr);
mm3 = _mm_cmpeq_epi32(mm3, mm_addr);
mm4 = _mm_cmpeq_epi32(mm4, mm_addr);
mm1 = _mm_packs_epi32(mm1, mm2);
mm3 = _mm_packs_epi32(mm3, mm4);
mm1 = _mm_packs_epi16(mm1, mm3);
uint32_t mask = _mm_movemask_epi8(mm1);
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask);
goto done;
}
}
if ((n - pos) >= 8u)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
__m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
mm2 = _mm_cmpeq_epi32(mm2, mm_addr);
mm1 = _mm_packs_epi32(mm1, mm2);
uint32_t mask = _mm_movemask_epi8(mm1);
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask) / 2u;
goto done;
}
pos += 8u;
}
if (pos < n)
{
__m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos));
mm1 = _mm_cmpeq_epi32(mm1, mm_addr);
uint32_t mask = _mm_movemask_ps(_mm_castsi128_ps(mm1));
if (mask)
{
pos += atomics::detail::count_trailing_zeros(mask);
goto done;
}
pos += 4u;
}
done:
return pos;
#endif // BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8
}
} // namespace detail
} // namespace atomics
} // namespace boost
#include <boost/atomic/detail/footer.hpp>
#endif // BOOST_ARCH_X86 && defined(BOOST_ATOMIC_DETAIL_SIZEOF_POINTER) && (BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 || BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 4)