blob: 6084055c8d881b1a2079607b011549697ceb40bf [file] [log] [blame]
//
// composed_7.cpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio/compose.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/steady_timer.hpp>
#include <boost/asio/use_future.hpp>
#include <boost/asio/write.hpp>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
using boost::asio::ip::tcp;
// NOTE: This example requires the new boost::asio::async_compose function. For
// an example that works with the Networking TS style of completion tokens,
// please see an older version of asio.
//------------------------------------------------------------------------------
// This composed operation shows composition of multiple underlying operations.
// It automatically serialises a message, using its I/O streams insertion
// operator, before sending it N times on the socket. To do this, it must
// allocate a buffer for the encoded message and ensure this buffer's validity
// until all underlying async_write operation complete. A one second delay is
// inserted prior to each write operation, using a steady_timer.
// In this example, the composed operation's logic is implemented as a state
// machine within a hand-crafted function object.
struct async_write_messages_implementation
{
// The implementation holds a reference to the socket as it is used for
// multiple async_write operations.
tcp::socket& socket_;
// The allocated buffer for the encoded message. The std::unique_ptr smart
// pointer is move-only, and as a consequence our implementation is also
// move-only.
std::unique_ptr<std::string> encoded_message_;
// The repeat count remaining.
std::size_t repeat_count_;
// A steady timer used for introducing a delay.
std::unique_ptr<boost::asio::steady_timer> delay_timer_;
// To manage the cycle between the multiple underlying asychronous
// operations, our implementation is a state machine.
enum { starting, waiting, writing } state_;
// The first argument to our function object's call operator is a reference
// to the enclosing intermediate completion handler. This intermediate
// completion handler is provided for us by the boost::asio::async_compose
// function, and takes care of all the details required to implement a
// conforming asynchronous operation. When calling an underlying asynchronous
// operation, we pass it this enclosing intermediate completion handler
// as the completion token.
//
// All arguments after the first must be defaulted to allow the state machine
// to be started, as well as to allow the completion handler to match the
// completion signature of both the async_write and steady_timer::async_wait
// operations.
template <typename Self>
void operator()(Self& self,
const boost::system::error_code& error = boost::system::error_code(),
std::size_t = 0)
{
if (!error)
{
switch (state_)
{
case starting:
case writing:
if (repeat_count_ > 0)
{
--repeat_count_;
state_ = waiting;
delay_timer_->expires_after(std::chrono::seconds(1));
delay_timer_->async_wait(std::move(self));
return; // Composed operation not yet complete.
}
break; // Composed operation complete, continue below.
case waiting:
state_ = writing;
boost::asio::async_write(socket_,
boost::asio::buffer(*encoded_message_), std::move(self));
return; // Composed operation not yet complete.
}
}
// This point is reached only on completion of the entire composed
// operation.
// Deallocate the encoded message and delay timer before calling the
// user-supplied completion handler.
encoded_message_.reset();
delay_timer_.reset();
// Call the user-supplied handler with the result of the operation.
self.complete(error);
}
};
template <typename T, typename CompletionToken>
auto async_write_messages(tcp::socket& socket,
const T& message, std::size_t repeat_count,
CompletionToken&& token)
// The return type of the initiating function is deduced from the combination
// of CompletionToken type and the completion handler's signature. When the
// completion token is a simple callback, the return type is always void.
// In this example, when the completion token is boost::asio::yield_context
// (used for stackful coroutines) the return type would be also be void, as
// there is no non-error argument to the completion handler. When the
// completion token is boost::asio::use_future it would be std::future<void>.
-> typename boost::asio::async_result<
typename std::decay<CompletionToken>::type,
void(boost::system::error_code)>::return_type
{
// Encode the message and copy it into an allocated buffer. The buffer will
// be maintained for the lifetime of the composed asynchronous operation.
std::ostringstream os;
os << message;
std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
// Create a steady_timer to be used for the delay between messages.
std::unique_ptr<boost::asio::steady_timer> delay_timer(
new boost::asio::steady_timer(socket.get_executor()));
// The boost::asio::async_compose function takes:
//
// - our asynchronous operation implementation,
// - the completion token,
// - the completion handler signature, and
// - any I/O objects (or executors) used by the operation
//
// It then wraps our implementation in an intermediate completion handler
// that meets the requirements of a conforming asynchronous operation. This
// includes tracking outstanding work against the I/O executors associated
// with the operation (in this example, this is the socket's executor).
return boost::asio::async_compose<
CompletionToken, void(boost::system::error_code)>(
async_write_messages_implementation{
socket, std::move(encoded_message),
repeat_count, std::move(delay_timer),
async_write_messages_implementation::starting},
token, socket);
}
//------------------------------------------------------------------------------
void test_callback()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using a lambda as a callback.
async_write_messages(socket, "Testing callback\r\n", 5,
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Messages sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_future()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the use_future completion token.
// This token causes the operation's initiating function to return a future,
// which may be used to synchronously wait for the result of the operation.
std::future<void> f = async_write_messages(
socket, "Testing future\r\n", 5, boost::asio::use_future);
io_context.run();
try
{
// Get the result of the operation.
f.get();
std::cout << "Messages sent\n";
}
catch (const std::exception& e)
{
std::cout << "Error: " << e.what() << "\n";
}
}
//------------------------------------------------------------------------------
int main()
{
test_callback();
test_future();
}