blob: b9c76981e0a4c9bed98578ba411295a1f6cc9002 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <array>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include "../sandboxed.h" // NOLINT(build/include)
#include "sandboxed_api/sandbox2/util/fileops.h"
#include "sandboxed_api/sandbox2/util/path.h"
#include "sandboxed_api/vars.h"
#include "tiffio.h" // NOLINT(build/include)
namespace {
struct ChannelLimits {
uint8_t min_red;
uint8_t max_red;
uint8_t min_green;
uint8_t max_green;
uint8_t min_blue;
uint8_t max_blue;
uint8_t min_alpha;
uint8_t max_alpha;
};
constexpr uint32_t kRawTileNumber = 9;
constexpr uint32_t kClusterSize = 6;
constexpr uint32_t kChannelsInPixel = 3;
constexpr uint32_t kTestCount = 3;
constexpr uint32_t kImageSize = 128 * 128;
constexpr uint32_t kClusterImageSize = 64 * 64;
using ClusterData = std::array<uint8_t, kClusterSize>;
constexpr std::array<std::pair<uint32_t, ClusterData>, kTestCount> kClusters = {
{{0, {0, 0, 2, 0, 138, 139}},
{64, {0, 0, 9, 6, 134, 119}},
{128, {44, 40, 63, 59, 230, 95}}}};
constexpr std::array<std::pair<uint32_t, ChannelLimits>, kTestCount> kLimits = {
{{0, {15, 18, 0, 0, 18, 41, 255, 255}},
{64, {0, 0, 0, 0, 0, 2, 255, 255}},
{512, {5, 6, 34, 36, 182, 196, 255, 255}}}};
absl::Status CheckCluster(uint32_t cluster,
const sapi::v::Array<uint8_t>& buffer,
const ClusterData& expected_cluster) {
if (buffer.GetSize() <= cluster * kClusterSize) {
return absl::InternalError("Buffer overrun\n");
}
auto* target = buffer.GetData() + cluster * kClusterSize;
if (!std::memcmp(target, expected_cluster.data(), kClusterSize)) {
return absl::OkStatus();
}
// the image is split on 6-bit clusters because it has YCbCr color format
return absl::InternalError(absl::StrCat(
"Cluster ", cluster, " did not match expected results.\n", "Expect: ",
expected_cluster[0], "\t", expected_cluster[1], "\t", expected_cluster[2],
"\t", expected_cluster[3], "\t", expected_cluster[4], "\t",
expected_cluster[5], "\n", "Got: ", target[0], "\t", target[1], "\t",
target[2], "\t", target[3], "\t", target[4], "\t", target[5], "\n"));
}
absl::Status CheckRgbPixel(uint32_t pixel, const ChannelLimits& limits,
const sapi::v::Array<uint8_t>& buffer) {
if (buffer.GetSize() <= pixel * kChannelsInPixel) {
return absl::InternalError("Buffer overrun\n");
}
auto* rgb = buffer.GetData() + kChannelsInPixel * pixel;
if (rgb[0] >= limits.min_red && rgb[0] <= limits.max_red &&
rgb[1] >= limits.min_green && rgb[1] <= limits.max_green &&
rgb[2] >= limits.min_blue && rgb[2] <= limits.max_blue) {
return absl::OkStatus();
}
return absl::InternalError(absl::StrCat(
"Pixel ", pixel, " did not match expected results.\n", "Got R=", rgb[0],
" (expected ", limits.min_red, "..=", limits.max_red, "), G=", rgb[1],
" (expected ", limits.min_green, "..=", limits.max_green, "), B=", rgb[2],
" (expected ", limits.min_blue, "..=", limits.max_blue, ")\n"));
}
absl::Status CheckRgbaPixel(uint32_t pixel, const ChannelLimits& limits,
const sapi::v::Array<uint32_t>& buffer) {
// RGBA images are upside down - adjust for normal ordering
uint32_t adjusted_pixel = pixel % 128 + (127 - (pixel / 128)) * 128;
if (buffer.GetSize() <= adjusted_pixel) {
return absl::InternalError("Buffer overrun\n");
}
auto* rgba = buffer[adjusted_pixel];
if (TIFFGetR(rgba) >= static_cast<unsigned>(limits.min_red) &&
TIFFGetR(rgba) <= static_cast<unsigned>(limits.max_red) &&
TIFFGetG(rgba) >= static_cast<unsigned>(limits.min_green) &&
TIFFGetG(rgba) <= static_cast<unsigned>(limits.max_green) &&
TIFFGetB(rgba) >= static_cast<unsigned>(limits.min_blue) &&
TIFFGetB(rgba) <= static_cast<unsigned>(limits.max_blue) &&
TIFFGetA(rgba) >= static_cast<unsigned>(limits.min_alpha) &&
TIFFGetA(rgba) <= static_cast<unsigned>(limits.max_alpha)) {
return absl::OkStatus();
}
return absl::InternalError(absl::StrCat(
"Pixel ", pixel, " did not match expected results.\n", "Got R=",
TIFFGetR(rgba), " (expected ", limits.min_red, "..=", limits.max_red,
"), G=", TIFFGetG(rgba), " (expected ", limits.min_green,
"..=", limits.max_green, "), B=", TIFFGetB(rgba), " (expected ",
limits.min_blue, "..=", limits.max_blue, "), A=", TIFFGetA(rgba),
" (expected ", limits.min_alpha, "..=", limits.max_alpha, ")\n"));
}
} // namespace
std::string GetFilePath(const std::string& dir, const std::string& filename) {
return sandbox2::file::JoinPath(dir, "test", "images", filename);
}
std::string GetFilePath(const std::string filename) {
std::string cwd = sandbox2::file_util::fileops::GetCWD();
auto find = cwd.rfind("build");
std::string project_path;
if (find == std::string::npos) {
LOG(ERROR)
<< "Something went wrong: CWD don't contain build dir. "
<< "Please run tests from build dir or send project dir as a "
<< "parameter: ./sandboxed /absolute/path/to/project/dir .\n"
<< "Falling back to using current working directory as root dir.\n";
project_path = cwd;
} else {
project_path = cwd.substr(0, find);
}
return sandbox2::file::JoinPath(project_path, "test", "images", filename);
}
absl::Status LibTIFFMain(const std::string& srcfile) {
// to use dir and file inside sapi-libtiff, use
// sandbox(file) – file only -- or
// sandbox(file, dir) -- file and dir -- or
// sandbox(nullopt, dir) -- dir only.
// file and directory must exist.
// all paths must be absolute.
TiffSapiSandbox sandbox(srcfile);
bool pixel_status = true;
bool cluster_status = true;
// initialize sapi vars after constructing TiffSapiSandbox
sapi::v::UShort h;
sapi::v::UShort v;
absl::StatusOr<TIFF*> status_or_tif;
absl::StatusOr<int> status_or_int;
absl::StatusOr<tmsize_t> status_or_long;
absl::Status status;
status = sandbox.Init();
SAPI_RETURN_IF_ERROR(sandbox.Init());
TiffApi api(&sandbox);
sapi::v::ConstCStr srcfile_var(srcfile.c_str());
sapi::v::ConstCStr r_var("r");
SAPI_ASSIGN_OR_RETURN(
status_or_tif, api.TIFFOpen(srcfile_var.PtrBefore(), r_var.PtrBefore()));
sapi::v::RemotePtr tif(status_or_tif.value());
if (!tif.GetValue()) {
return absl::InternalError(absl::StrCat("Could not open ", srcfile));
}
SAPI_ASSIGN_OR_RETURN(auto return_value,
api.TIFFGetField2(&tif, TIFFTAG_YCBCRSUBSAMPLING,
h.PtrBoth(), v.PtrBoth()));
if (return_value == 0 || h.GetValue() != 2 || v.GetValue() != 2) {
return absl::InternalError("Could not retrieve subsampling tag");
}
SAPI_ASSIGN_OR_RETURN(tsize_t sz, api.TIFFTileSize(&tif));
if (sz != kClusterSize * kClusterImageSize) {
return absl::InternalError(
absl::StrCat("Unexpected TileSize ", sz, ". Expected ",
kClusterSize * kClusterImageSize, " bytes\n"));
}
sapi::v::Array<uint8_t> buffer_(sz);
// Read a tile in decompressed form, but still YCbCr subsampled
SAPI_ASSIGN_OR_RETURN(
tsize_t new_sz,
api.TIFFReadEncodedTile(&tif, kRawTileNumber, buffer_.PtrBoth(), sz));
if (new_sz != sz) {
return absl::InternalError(absl::StrCat(
"Did not get expected result code from TIFFReadEncodedTile(): ",
status_or_long.value(), " instead of ", sz));
}
for (const auto& [id, data] : kClusters) {
if (status = CheckCluster(id, buffer_, data); !status.ok()) {
LOG(ERROR) << "CheckCluster failed:\n" << status.ToString();
}
cluster_status &= status.ok();
}
if (!cluster_status) {
return absl::InternalError("One or more clusters failed the check");
}
SAPI_ASSIGN_OR_RETURN(
return_value,
api.TIFFSetFieldU1(&tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB));
if (return_value == 0) {
return absl::InternalError("The JPEGCOLORMODE tag cannot be changed");
}
SAPI_ASSIGN_OR_RETURN(sz, api.TIFFTileSize(&tif));
if (sz != kChannelsInPixel * kImageSize) {
return absl::InternalError(
absl::StrCat("Unexpected TileSize ", sz, ". Expected ",
kChannelsInPixel * kImageSize, " bytes\n"));
}
sapi::v::Array<uint8_t> buffer2_(sz);
SAPI_ASSIGN_OR_RETURN(
new_sz,
api.TIFFReadEncodedTile(&tif, kRawTileNumber, buffer2_.PtrBoth(), sz));
if (new_sz != sz) {
return absl::InternalError(absl::StrCat(
"Did not get expected result code from TIFFReadEncodedTile(): ", new_sz,
" instead of ", sz));
}
for (const auto& [id, data] : kLimits) {
if (status = CheckRgbPixel(id, data, buffer2_); !status.ok()) {
LOG(ERROR) << "CheckRgbPixel failed:\n" << status.ToString();
}
pixel_status &= status.ok();
}
SAPI_RETURN_IF_ERROR(api.TIFFClose(&tif));
SAPI_ASSIGN_OR_RETURN(
status_or_tif, api.TIFFOpen(srcfile_var.PtrBefore(), r_var.PtrBefore()));
sapi::v::RemotePtr tif2(status_or_tif.value());
if (!tif2.GetValue()) {
return absl::InternalError(absl::StrCat("Could not reopen ", srcfile));
}
sapi::v::Array<uint32_t> rgba_buffer_(kImageSize);
// read as rgba
SAPI_ASSIGN_OR_RETURN(
return_value,
api.TIFFReadRGBATile(&tif2, 1 * 128, 2 * 128, rgba_buffer_.PtrBoth()));
if (return_value == 0) {
return absl::InternalError("TIFFReadRGBATile() returned failure code");
}
// Checking specific pixels from the test data, 0th, 64th and 512th
for (const auto& [id, data] : kLimits) {
if (status = CheckRgbaPixel(id, data, rgba_buffer_); !status.ok()) {
LOG(ERROR) << "CheckRgbaPixel failed:\n" << status.ToString();
}
pixel_status &= status.ok();
}
SAPI_RETURN_IF_ERROR(api.TIFFClose(&tif2));
if (!pixel_status) {
return absl::InternalError("wrong encoding");
}
return absl::OkStatus();
}
int main(int argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
std::string srcfile;
std::string srcfilerel = "quad-tile.jpg.tiff";
if (argc < 2) {
srcfile = GetFilePath(srcfilerel);
} else {
srcfile = GetFilePath(argv[1], srcfilerel);
}
auto status = LibTIFFMain(srcfile);
if (!status.ok()) {
LOG(ERROR) << "LibTIFFMain failed with error:\n"
<< status.ToString() << '\n';
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}