blob: 5666de896355341769acf4ca9d2bb6d940d2d2aa [file] [log] [blame]
/*
* Copyright 2005 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.geometry;
import com.google.common.collect.Lists;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
/**
* An S2CellUnion is a region consisting of cells of various sizes. Typically a
* cell union is used to approximate some other shape. There is a tradeoff
* between the accuracy of the approximation and how many cells are used. Unlike
* polygons, cells have a fixed hierarchical structure. This makes them more
* suitable for optimizations based on preprocessing.
*
*/
public strictfp class S2CellUnion implements S2Region, Iterable<S2CellId> {
/** The CellIds that form the Union */
private ArrayList<S2CellId> cellIds = new ArrayList<S2CellId>();
public S2CellUnion() {
}
public void initFromCellIds(ArrayList<S2CellId> cellIds) {
initRawCellIds(cellIds);
normalize();
}
/**
* Populates a cell union with the given S2CellIds or 64-bit cells ids, and
* then calls Normalize(). The InitSwap() version takes ownership of the
* vector data without copying and clears the given vector. These methods may
* be called multiple times.
*/
public void initFromIds(ArrayList<Long> cellIds) {
initRawIds(cellIds);
normalize();
}
public void initSwap(ArrayList<S2CellId> cellIds) {
initRawSwap(cellIds);
normalize();
}
public void initRawCellIds(ArrayList<S2CellId> cellIds) {
this.cellIds = cellIds;
}
public void initRawIds(ArrayList<Long> cellIds) {
int size = cellIds.size();
this.cellIds = new ArrayList<S2CellId>(size);
for (Long id : cellIds) {
this.cellIds.add(new S2CellId(id));
}
}
/**
* Like Init(), but does not call Normalize(). The cell union *must* be
* normalized before doing any calculations with it, so it is the caller's
* responsibility to make sure that the input is normalized. This method is
* useful when converting cell unions to another representation and back.
* These methods may be called multiple times.
*/
public void initRawSwap(ArrayList<S2CellId> cellIds) {
this.cellIds = new ArrayList<S2CellId>(cellIds);
cellIds.clear();
}
public int size() {
return cellIds.size();
}
/** Convenience methods for accessing the individual cell ids. */
public S2CellId cellId(int i) {
return cellIds.get(i);
}
/** Enable iteration over the union's cells. */
@Override
public Iterator<S2CellId> iterator() {
return cellIds.iterator();
}
/** Direct access to the underlying vector for iteration . */
public ArrayList<S2CellId> cellIds() {
return cellIds;
}
/**
* Replaces "output" with an expanded version of the cell union where any
* cells whose level is less than "min_level" or where (level - min_level) is
* not a multiple of "level_mod" are replaced by their children, until either
* both of these conditions are satisfied or the maximum level is reached.
*
* This method allows a covering generated by S2RegionCoverer using
* min_level() or level_mod() constraints to be stored as a normalized cell
* union (which allows various geometric computations to be done) and then
* converted back to the original list of cell ids that satisfies the desired
* constraints.
*/
public void denormalize(int minLevel, int levelMod, ArrayList<S2CellId> output) {
// assert (minLevel >= 0 && minLevel <= S2CellId.MAX_LEVEL);
// assert (levelMod >= 1 && levelMod <= 3);
output.clear();
output.ensureCapacity(size());
for (S2CellId id : this) {
int level = id.level();
int newLevel = Math.max(minLevel, level);
if (levelMod > 1) {
// Round up so that (new_level - min_level) is a multiple of level_mod.
// (Note that S2CellId::kMaxLevel is a multiple of 1, 2, and 3.)
newLevel += (S2CellId.MAX_LEVEL - (newLevel - minLevel)) % levelMod;
newLevel = Math.min(S2CellId.MAX_LEVEL, newLevel);
}
if (newLevel == level) {
output.add(id);
} else {
S2CellId end = id.childEnd(newLevel);
for (id = id.childBegin(newLevel); !id.equals(end); id = id.next()) {
output.add(id);
}
}
}
}
/**
* If there are more than "excess" elements of the cell_ids() vector that are
* allocated but unused, reallocate the array to eliminate the excess space.
* This reduces memory usage when many cell unions need to be held in memory
* at once.
*/
public void pack() {
cellIds.trimToSize();
}
/**
* Return true if the cell union contains the given cell id. Containment is
* defined with respect to regions, e.g. a cell contains its 4 children. This
* is a fast operation (logarithmic in the size of the cell union).
*/
public boolean contains(S2CellId id) {
// This function requires that Normalize has been called first.
//
// This is an exact test. Each cell occupies a linear span of the S2
// space-filling curve, and the cell id is simply the position at the center
// of this span. The cell union ids are sorted in increasing order along
// the space-filling curve. So we simply find the pair of cell ids that
// surround the given cell id (using binary search). There is containment
// if and only if one of these two cell ids contains this cell.
int pos = Collections.binarySearch(cellIds, id);
if (pos < 0) {
pos = -pos - 1;
}
if (pos < cellIds.size() && cellIds.get(pos).rangeMin().lessOrEquals(id)) {
return true;
}
return pos != 0 && cellIds.get(pos - 1).rangeMax().greaterOrEquals(id);
}
/**
* Return true if the cell union intersects the given cell id. This is a fast
* operation (logarithmic in the size of the cell union).
*/
public boolean intersects(S2CellId id) {
// This function requires that Normalize has been called first.
// This is an exact test; see the comments for Contains() above.
int pos = Collections.binarySearch(cellIds, id);
if (pos < 0) {
pos = -pos - 1;
}
if (pos < cellIds.size() && cellIds.get(pos).rangeMin().lessOrEquals(id.rangeMax())) {
return true;
}
return pos != 0 && cellIds.get(pos - 1).rangeMax().greaterOrEquals(id.rangeMin());
}
public boolean contains(S2CellUnion that) {
// TODO(kirilll?): A divide-and-conquer or alternating-skip-search approach
// may be significantly faster in both the average and worst case.
for (S2CellId id : that) {
if (!this.contains(id)) {
return false;
}
}
return true;
}
/** This is a fast operation (logarithmic in the size of the cell union). */
@Override
public boolean contains(S2Cell cell) {
return contains(cell.id());
}
/**
* Return true if this cell union contain/intersects the given other cell
* union.
*/
public boolean intersects(S2CellUnion union) {
// TODO(kirilll?): A divide-and-conquer or alternating-skip-search approach
// may be significantly faster in both the average and worst case.
for (S2CellId id : union) {
if (intersects(id)) {
return true;
}
}
return false;
}
public void getUnion(S2CellUnion x, S2CellUnion y) {
// assert (x != this && y != this);
cellIds.clear();
cellIds.ensureCapacity(x.size() + y.size());
cellIds.addAll(x.cellIds);
cellIds.addAll(y.cellIds);
normalize();
}
/**
* Specialized version of GetIntersection() that gets the intersection of a
* cell union with the given cell id. This can be useful for "splitting" a
* cell union into chunks.
*/
public void getIntersection(S2CellUnion x, S2CellId id) {
// assert (x != this);
cellIds.clear();
if (x.contains(id)) {
cellIds.add(id);
} else {
int pos = Collections.binarySearch(x.cellIds, id.rangeMin());
if (pos < 0) {
pos = -pos - 1;
}
S2CellId idmax = id.rangeMax();
int size = x.cellIds.size();
while (pos < size && x.cellIds.get(pos).lessOrEquals(idmax)) {
cellIds.add(x.cellIds.get(pos++));
}
}
}
/**
* Initialize this cell union to the union or intersection of the two given
* cell unions. Requires: x != this and y != this.
*/
public void getIntersection(S2CellUnion x, S2CellUnion y) {
// assert (x != this && y != this);
// This is a fairly efficient calculation that uses binary search to skip
// over sections of both input vectors. It takes constant time if all the
// cells of "x" come before or after all the cells of "y" in S2CellId order.
cellIds.clear();
int i = 0;
int j = 0;
while (i < x.cellIds.size() && j < y.cellIds.size()) {
S2CellId imin = x.cellId(i).rangeMin();
S2CellId jmin = y.cellId(j).rangeMin();
if (imin.greaterThan(jmin)) {
// Either j->contains(*i) or the two cells are disjoint.
if (x.cellId(i).lessOrEquals(y.cellId(j).rangeMax())) {
cellIds.add(x.cellId(i++));
} else {
// Advance "j" to the first cell possibly contained by *i.
j = indexedBinarySearch(y.cellIds, imin, j + 1);
// The previous cell *(j-1) may now contain *i.
if (x.cellId(i).lessOrEquals(y.cellId(j - 1).rangeMax())) {
--j;
}
}
} else if (jmin.greaterThan(imin)) {
// Identical to the code above with "i" and "j" reversed.
if (y.cellId(j).lessOrEquals(x.cellId(i).rangeMax())) {
cellIds.add(y.cellId(j++));
} else {
i = indexedBinarySearch(x.cellIds, jmin, i + 1);
if (y.cellId(j).lessOrEquals(x.cellId(i - 1).rangeMax())) {
--i;
}
}
} else {
// "i" and "j" have the same range_min(), so one contains the other.
if (x.cellId(i).lessThan(y.cellId(j))) {
cellIds.add(x.cellId(i++));
} else {
cellIds.add(y.cellId(j++));
}
}
}
// The output is generated in sorted order, and there should not be any
// cells that can be merged (provided that both inputs were normalized).
// assert (!normalize());
}
/**
* Just as normal binary search, except that it allows specifying the starting
* value for the lower bound.
*
* @return The position of the searched element in the list (if found), or the
* position where the element could be inserted without violating the
* order.
*/
private int indexedBinarySearch(List<S2CellId> l, S2CellId key, int low) {
int high = l.size() - 1;
while (low <= high) {
int mid = (low + high) >> 1;
S2CellId midVal = l.get(mid);
int cmp = midVal.compareTo(key);
if (cmp < 0) {
low = mid + 1;
} else if (cmp > 0) {
high = mid - 1;
} else {
return mid; // key found
}
}
return low; // key not found
}
/**
* Expands the cell union such that it contains all cells of the given level
* that are adjacent to any cell of the original union. Two cells are defined
* as adjacent if their boundaries have any points in common, i.e. most cells
* have 8 adjacent cells (not counting the cell itself).
*
* Note that the size of the output is exponential in "level". For example,
* if level == 20 and the input has a cell at level 10, there will be on the
* order of 4000 adjacent cells in the output. For most applications the
* Expand(min_fraction, min_distance) method below is easier to use.
*/
public void expand(int level) {
ArrayList<S2CellId> output = new ArrayList<S2CellId>();
long levelLsb = S2CellId.lowestOnBitForLevel(level);
int i = size() - 1;
do {
S2CellId id = cellId(i);
if (id.lowestOnBit() < levelLsb) {
id = id.parent(level);
// Optimization: skip over any cells contained by this one. This is
// especially important when very small regions are being expanded.
while (i > 0 && id.contains(cellId(i - 1))) {
--i;
}
}
output.add(id);
id.getAllNeighbors(level, output);
} while (--i >= 0);
initSwap(output);
}
/**
* Expand the cell union such that it contains all points whose distance to
* the cell union is at most minRadius, but do not use cells that are more
* than maxLevelDiff levels higher than the largest cell in the input. The
* second parameter controls the tradeoff between accuracy and output size
* when a large region is being expanded by a small amount (e.g. expanding
* Canada by 1km).
*
* For example, if maxLevelDiff == 4, the region will always be expanded by
* approximately 1/16 the width of its largest cell. Note that in the worst
* case, the number of cells in the output can be up to 4 * (1 + 2 **
* maxLevelDiff) times larger than the number of cells in the input.
*/
public void expand(S1Angle minRadius, int maxLevelDiff) {
int minLevel = S2CellId.MAX_LEVEL;
for (S2CellId id : this) {
minLevel = Math.min(minLevel, id.level());
}
// Find the maximum level such that all cells are at least "min_radius"
// wide.
int radiusLevel = S2Projections.MIN_WIDTH.getMaxLevel(minRadius.radians());
if (radiusLevel == 0 && minRadius.radians() > S2Projections.MIN_WIDTH.getValue(0)) {
// The requested expansion is greater than the width of a face cell.
// The easiest way to handle this is to expand twice.
expand(0);
}
expand(Math.min(minLevel + maxLevelDiff, radiusLevel));
}
@Override
public S2Region clone() {
S2CellUnion copy = new S2CellUnion();
copy.initRawCellIds(Lists.newArrayList(cellIds));
return copy;
}
@Override
public S2Cap getCapBound() {
// Compute the approximate centroid of the region. This won't produce the
// bounding cap of minimal area, but it should be close enough.
if (cellIds.isEmpty()) {
return S2Cap.empty();
}
S2Point centroid = new S2Point(0, 0, 0);
for (S2CellId id : this) {
double area = S2Cell.averageArea(id.level());
centroid = S2Point.add(centroid, S2Point.mul(id.toPoint(), area));
}
if (centroid.equals(new S2Point(0, 0, 0))) {
centroid = new S2Point(1, 0, 0);
} else {
centroid = S2Point.normalize(centroid);
}
// Use the centroid as the cap axis, and expand the cap angle so that it
// contains the bounding caps of all the individual cells. Note that it is
// *not* sufficient to just bound all the cell vertices because the bounding
// cap may be concave (i.e. cover more than one hemisphere).
S2Cap cap = S2Cap.fromAxisHeight(centroid, 0);
for (S2CellId id : this) {
cap = cap.addCap(new S2Cell(id).getCapBound());
}
return cap;
}
@Override
public S2LatLngRect getRectBound() {
S2LatLngRect bound = S2LatLngRect.empty();
for (S2CellId id : this) {
bound = bound.union(new S2Cell(id).getRectBound());
}
return bound;
}
/** This is a fast operation (logarithmic in the size of the cell union). */
@Override
public boolean mayIntersect(S2Cell cell) {
return intersects(cell.id());
}
/**
* The point 'p' does not need to be normalized. This is a fast operation
* (logarithmic in the size of the cell union).
*/
public boolean contains(S2Point p) {
return contains(S2CellId.fromPoint(p));
}
/**
* The number of leaf cells covered by the union.
* This will be no more than 6*2^60 for the whole sphere.
*
* @return the number of leaf cells covered by the union
*/
public long leafCellsCovered() {
long numLeaves = 0;
for (S2CellId cellId : cellIds) {
int invertedLevel = S2CellId.MAX_LEVEL - cellId.level();
numLeaves += (1L << (invertedLevel << 1));
}
return numLeaves;
}
/**
* Approximate this cell union's area by summing the average area of
* each contained cell's average area, using {@link S2Cell#averageArea()}.
* This is equivalent to the number of leaves covered, multiplied by
* the average area of a leaf.
* Note that {@link S2Cell#averageArea()} does not take into account
* distortion of cell, and thus may be off by up to a factor of 1.7.
* NOTE: Since this is proportional to LeafCellsCovered(), it is
* always better to use the other function if all you care about is
* the relative average area between objects.
*
* @return the sum of the average area of each contained cell's average area
*/
public double averageBasedArea() {
return S2Cell.averageArea(S2CellId.MAX_LEVEL) * leafCellsCovered();
}
/**
* Calculates this cell union's area by summing the approximate area for each
* contained cell, using {@link S2Cell#approxArea()}.
*
* @return approximate area of the cell union
*/
public double approxArea() {
double area = 0;
for (S2CellId cellId : cellIds) {
area += new S2Cell(cellId).approxArea();
}
return area;
}
/**
* Calculates this cell union's area by summing the exact area for each
* contained cell, using the {@link S2Cell#exactArea()}.
*
* @return the exact area of the cell union
*/
public double exactArea() {
double area = 0;
for (S2CellId cellId : cellIds) {
area += new S2Cell(cellId).exactArea();
}
return area;
}
/** Return true if two cell unions are identical. */
@Override
public boolean equals(Object that) {
if (!(that instanceof S2CellUnion)) {
return false;
}
S2CellUnion union = (S2CellUnion) that;
return this.cellIds.equals(union.cellIds);
}
@Override
public int hashCode() {
int value = 17;
for (S2CellId id : this) {
value = 37 * value + id.hashCode();
}
return value;
}
/**
* Normalizes the cell union by discarding cells that are contained by other
* cells, replacing groups of 4 child cells by their parent cell whenever
* possible, and sorting all the cell ids in increasing order. Returns true if
* the number of cells was reduced.
*
* This method *must* be called before doing any calculations on the cell
* union, such as Intersects() or Contains().
*
* @return true if the normalize operation had any effect on the cell union,
* false if the union was already normalized
*/
public boolean normalize() {
// Optimize the representation by looking for cases where all subcells
// of a parent cell are present.
ArrayList<S2CellId> output = new ArrayList<S2CellId>(cellIds.size());
output.ensureCapacity(cellIds.size());
Collections.sort(cellIds);
for (S2CellId id : this) {
int size = output.size();
// Check whether this cell is contained by the previous cell.
if (!output.isEmpty() && output.get(size - 1).contains(id)) {
continue;
}
// Discard any previous cells contained by this cell.
while (!output.isEmpty() && id.contains(output.get(output.size() - 1))) {
output.remove(output.size() - 1);
}
// Check whether the last 3 elements of "output" plus "id" can be
// collapsed into a single parent cell.
while (output.size() >= 3) {
size = output.size();
// A necessary (but not sufficient) condition is that the XOR of the
// four cells must be zero. This is also very fast to test.
if ((output.get(size - 3).id() ^ output.get(size - 2).id() ^ output.get(size - 1).id())
!= id.id()) {
break;
}
// Now we do a slightly more expensive but exact test. First, compute a
// mask that blocks out the two bits that encode the child position of
// "id" with respect to its parent, then check that the other three
// children all agree with "mask.
long mask = id.lowestOnBit() << 1;
mask = ~(mask + (mask << 1));
long idMasked = (id.id() & mask);
if ((output.get(size - 3).id() & mask) != idMasked
|| (output.get(size - 2).id() & mask) != idMasked
|| (output.get(size - 1).id() & mask) != idMasked || id.isFace()) {
break;
}
// Replace four children by their parent cell.
output.remove(size - 1);
output.remove(size - 2);
output.remove(size - 3);
id = id.parent();
}
output.add(id);
}
if (output.size() < size()) {
initRawSwap(output);
return true;
}
return false;
}
}