blob: e8a64486a2816cd440b755f5d4a91db13e5e5693 [file] [log] [blame]
use crate::syntax::atom::Atom::{self, *};
use crate::syntax::report::Errors;
use crate::syntax::types::TrivialReason;
use crate::syntax::{
error, ident, Api, Enum, ExternFn, ExternType, Impl, Lang, Receiver, Ref, Slice, Struct, Ty1,
Type, Types,
};
use proc_macro2::{Delimiter, Group, Ident, TokenStream};
use quote::{quote, ToTokens};
use std::fmt::Display;
pub(crate) struct Check<'a> {
apis: &'a [Api],
types: &'a Types<'a>,
errors: &'a mut Errors,
}
pub(crate) fn typecheck(cx: &mut Errors, apis: &[Api], types: &Types) {
do_typecheck(&mut Check {
apis,
types,
errors: cx,
});
}
fn do_typecheck(cx: &mut Check) {
ident::check_all(cx, cx.apis);
for ty in cx.types {
match ty {
Type::Ident(ident) => check_type_ident(cx, &ident.rust),
Type::RustBox(ptr) => check_type_box(cx, ptr),
Type::RustVec(ty) => check_type_rust_vec(cx, ty),
Type::UniquePtr(ptr) => check_type_unique_ptr(cx, ptr),
Type::CxxVector(ptr) => check_type_cxx_vector(cx, ptr),
Type::Ref(ty) => check_type_ref(cx, ty),
Type::Slice(ty) => check_type_slice(cx, ty),
_ => {}
}
}
for api in cx.apis {
match api {
Api::Struct(strct) => check_api_struct(cx, strct),
Api::Enum(enm) => check_api_enum(cx, enm),
Api::CxxType(ety) | Api::RustType(ety) => check_api_type(cx, ety),
Api::CxxFunction(efn) | Api::RustFunction(efn) => check_api_fn(cx, efn),
Api::Impl(imp) => check_api_impl(cx, imp),
_ => {}
}
}
}
impl Check<'_> {
pub(crate) fn error(&mut self, sp: impl ToTokens, msg: impl Display) {
self.errors.error(sp, msg);
}
}
fn check_type_ident(cx: &mut Check, ident: &Ident) {
if Atom::from(ident).is_none()
&& !cx.types.structs.contains_key(ident)
&& !cx.types.enums.contains_key(ident)
&& !cx.types.cxx.contains(ident)
&& !cx.types.rust.contains(ident)
{
let msg = format!("unsupported type: {}", ident);
cx.error(ident, &msg);
}
}
fn check_type_box(cx: &mut Check, ptr: &Ty1) {
if let Type::Ident(ident) = &ptr.inner {
if cx.types.cxx.contains(&ident.rust)
&& !cx.types.structs.contains_key(&ident.rust)
&& !cx.types.enums.contains_key(&ident.rust)
{
cx.error(ptr, error::BOX_CXX_TYPE.msg);
}
if Atom::from(&ident.rust).is_none() {
return;
}
}
cx.error(ptr, "unsupported target type of Box");
}
fn check_type_rust_vec(cx: &mut Check, ty: &Ty1) {
if let Type::Ident(ident) = &ty.inner {
if cx.types.cxx.contains(&ident.rust)
&& !cx.types.structs.contains_key(&ident.rust)
&& !cx.types.enums.contains_key(&ident.rust)
{
cx.error(ty, "Rust Vec containing C++ type is not supported yet");
return;
}
match Atom::from(&ident.rust) {
None | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8)
| Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64)
| Some(RustString) => return,
Some(Bool) => { /* todo */ }
Some(CxxString) => {}
}
}
cx.error(ty, "unsupported element type of Vec");
}
fn check_type_unique_ptr(cx: &mut Check, ptr: &Ty1) {
if let Type::Ident(ident) = &ptr.inner {
if cx.types.rust.contains(&ident.rust) {
cx.error(ptr, "unique_ptr of a Rust type is not supported yet");
}
match Atom::from(&ident.rust) {
None | Some(CxxString) => return,
_ => {}
}
} else if let Type::CxxVector(_) = &ptr.inner {
return;
}
cx.error(ptr, "unsupported unique_ptr target type");
}
fn check_type_cxx_vector(cx: &mut Check, ptr: &Ty1) {
if let Type::Ident(ident) = &ptr.inner {
if cx.types.rust.contains(&ident.rust) {
cx.error(
ptr,
"C++ vector containing a Rust type is not supported yet",
);
}
match Atom::from(&ident.rust) {
None | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8)
| Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64)
| Some(CxxString) => return,
Some(Bool) | Some(RustString) => {}
}
}
cx.error(ptr, "unsupported vector target type");
}
fn check_type_ref(cx: &mut Check, ty: &Ref) {
if ty.lifetime.is_some() {
cx.error(ty, "references with explicit lifetimes are not supported");
}
match ty.inner {
Type::Fn(_) | Type::Void(_) => {}
Type::Ref(_) => {
cx.error(ty, "C++ does not allow references to references");
return;
}
_ => return,
}
cx.error(ty, "unsupported reference type");
}
fn check_type_slice(cx: &mut Check, ty: &Slice) {
cx.error(ty, "only &[u8] is supported so far, not other slice types");
}
fn check_api_struct(cx: &mut Check, strct: &Struct) {
let name = &strct.name;
check_reserved_name(cx, &name.rust);
if strct.fields.is_empty() {
let span = span_for_struct_error(strct);
cx.error(span, "structs without any fields are not supported");
}
if cx.types.cxx.contains(&name.rust) {
if let Some(ety) = cx.types.untrusted.get(&name.rust) {
let msg = "extern shared struct must be declared in an `unsafe extern` block";
cx.error(ety, msg);
}
}
for field in &strct.fields {
if is_unsized(cx, &field.ty) {
let desc = describe(cx, &field.ty);
let msg = format!("using {} by value is not supported", desc);
cx.error(field, msg);
}
if let Type::Fn(_) = field.ty {
cx.error(
field,
"function pointers in a struct field are not implemented yet",
);
}
}
}
fn check_api_enum(cx: &mut Check, enm: &Enum) {
check_reserved_name(cx, &enm.name.rust);
if enm.variants.is_empty() {
let span = span_for_enum_error(enm);
cx.error(span, "enums without any variants are not supported");
}
}
fn check_api_type(cx: &mut Check, ety: &ExternType) {
check_reserved_name(cx, &ety.name.rust);
if let Some(reason) = cx.types.required_trivial.get(&ety.name.rust) {
let what = match reason {
TrivialReason::StructField(strct) => format!("a field of `{}`", strct.name.rust),
TrivialReason::FunctionArgument(efn) => format!("an argument of `{}`", efn.name.rust),
TrivialReason::FunctionReturn(efn) => format!("a return value of `{}`", efn.name.rust),
};
let msg = format!(
"needs a cxx::ExternType impl in order to be used as {}",
what,
);
cx.error(ety, msg);
}
}
fn check_api_fn(cx: &mut Check, efn: &ExternFn) {
if let Some(receiver) = &efn.receiver {
let ref span = span_for_receiver_error(receiver);
if receiver.ty.is_self() {
let mutability = match receiver.mutability {
Some(_) => "mut ",
None => "",
};
let msg = format!(
"unnamed receiver type is only allowed if the surrounding \
extern block contains exactly one extern type; \
use `self: &{mutability}TheType`",
mutability = mutability,
);
cx.error(span, msg);
} else if !cx.types.structs.contains_key(&receiver.ty.rust)
&& !cx.types.cxx.contains(&receiver.ty.rust)
&& !cx.types.rust.contains(&receiver.ty.rust)
{
cx.error(span, "unrecognized receiver type");
}
if receiver.lifetime.is_some() {
cx.error(span, "references with explicit lifetimes are not supported");
}
}
for arg in &efn.args {
if is_unsized(cx, &arg.ty) {
let desc = describe(cx, &arg.ty);
let msg = format!("passing {} by value is not supported", desc);
cx.error(arg, msg);
}
if let Type::Fn(_) = arg.ty {
if efn.lang == Lang::Rust {
cx.error(
arg,
"passing a function pointer from C++ to Rust is not implemented yet",
);
}
}
}
if let Some(ty) = &efn.ret {
if is_unsized(cx, ty) {
let desc = describe(cx, ty);
let msg = format!("returning {} by value is not supported", desc);
cx.error(ty, msg);
}
if let Type::Fn(_) = ty {
cx.error(ty, "returning a function pointer is not implemented yet");
}
}
if efn.lang == Lang::Cxx {
check_mut_return_restriction(cx, efn);
}
check_multiple_arg_lifetimes(cx, efn);
}
fn check_api_impl(cx: &mut Check, imp: &Impl) {
if let Type::UniquePtr(ty) | Type::CxxVector(ty) = &imp.ty {
if let Type::Ident(inner) = &ty.inner {
if Atom::from(&inner.rust).is_none() {
return;
}
}
}
cx.error(imp, "unsupported Self type of explicit impl");
}
fn check_mut_return_restriction(cx: &mut Check, efn: &ExternFn) {
match &efn.ret {
Some(Type::Ref(ty)) if ty.mutability.is_some() => {}
_ => return,
}
for arg in &efn.args {
if let Type::Ref(ty) = &arg.ty {
if ty.mutability.is_some() {
return;
}
}
}
cx.error(
efn,
"&mut return type is not allowed unless there is a &mut argument",
);
}
fn check_multiple_arg_lifetimes(cx: &mut Check, efn: &ExternFn) {
match &efn.ret {
Some(Type::Ref(_)) => {}
_ => return,
}
let mut reference_args = 0;
for arg in &efn.args {
if let Type::Ref(_) = &arg.ty {
reference_args += 1;
}
}
if efn.receiver.is_some() {
reference_args += 1;
}
if reference_args != 1 {
cx.error(
efn,
"functions that return a reference must take exactly one input reference",
);
}
}
fn check_reserved_name(cx: &mut Check, ident: &Ident) {
if ident == "Box"
|| ident == "UniquePtr"
|| ident == "Vec"
|| ident == "CxxVector"
|| Atom::from(ident).is_some()
{
cx.error(ident, "reserved name");
}
}
fn is_unsized(cx: &mut Check, ty: &Type) -> bool {
let ident = match ty {
Type::Ident(ident) => &ident.rust,
Type::CxxVector(_) | Type::Slice(_) | Type::Void(_) => return true,
_ => return false,
};
ident == CxxString
|| cx.types.cxx.contains(ident)
&& !cx.types.structs.contains_key(ident)
&& !cx.types.enums.contains_key(ident)
&& !(cx.types.aliases.contains_key(ident)
&& cx.types.required_trivial.contains_key(ident))
|| cx.types.rust.contains(ident)
}
fn span_for_struct_error(strct: &Struct) -> TokenStream {
let struct_token = strct.struct_token;
let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
brace_token.set_span(strct.brace_token.span);
quote!(#struct_token #brace_token)
}
fn span_for_enum_error(enm: &Enum) -> TokenStream {
let enum_token = enm.enum_token;
let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
brace_token.set_span(enm.brace_token.span);
quote!(#enum_token #brace_token)
}
fn span_for_receiver_error(receiver: &Receiver) -> TokenStream {
let ampersand = receiver.ampersand;
let lifetime = &receiver.lifetime;
let mutability = receiver.mutability;
if receiver.shorthand {
let var = receiver.var;
quote!(#ampersand #lifetime #mutability #var)
} else {
let ty = &receiver.ty;
quote!(#ampersand #lifetime #mutability #ty)
}
}
fn describe(cx: &mut Check, ty: &Type) -> String {
match ty {
Type::Ident(ident) => {
if cx.types.structs.contains_key(&ident.rust) {
"struct".to_owned()
} else if cx.types.enums.contains_key(&ident.rust) {
"enum".to_owned()
} else if cx.types.aliases.contains_key(&ident.rust) {
"C++ type".to_owned()
} else if cx.types.cxx.contains(&ident.rust) {
"opaque C++ type".to_owned()
} else if cx.types.rust.contains(&ident.rust) {
"opaque Rust type".to_owned()
} else if Atom::from(&ident.rust) == Some(CxxString) {
"C++ string".to_owned()
} else {
ident.rust.to_string()
}
}
Type::RustBox(_) => "Box".to_owned(),
Type::RustVec(_) => "Vec".to_owned(),
Type::UniquePtr(_) => "unique_ptr".to_owned(),
Type::Ref(_) => "reference".to_owned(),
Type::Str(_) => "&str".to_owned(),
Type::CxxVector(_) => "C++ vector".to_owned(),
Type::Slice(_) => "slice".to_owned(),
Type::SliceRefU8(_) => "&[u8]".to_owned(),
Type::Fn(_) => "function pointer".to_owned(),
Type::Void(_) => "()".to_owned(),
}
}