blob: 834f90765ee2fe3c96fe3a21f48ac8df6a6c93e0 [file] [log] [blame]
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use crate::{der, Error};
use ring::signature;
/// X.509 certificates and related items that are signed are almost always
/// encoded in the format "tbs||signatureAlgorithm||signature". This structure
/// captures this pattern.
pub struct SignedData<'a> {
/// The signed data. This would be `tbsCertificate` in the case of an X.509
/// certificate, `tbsResponseData` in the case of an OCSP response, and the
/// data nested in the `digitally-signed` construct for TLS 1.2 signed
/// data.
data: untrusted::Input<'a>,
/// The value of the `AlgorithmIdentifier`. This would be
/// `signatureAlgorithm` in the case of an X.509 certificate or OCSP
/// response. This would have to be synthesized in the case of TLS 1.2
/// signed data, since TLS does not identify algorithms by ASN.1 OIDs.
pub(crate) algorithm: untrusted::Input<'a>,
/// The value of the signature. This would be `signature` in an X.509
/// certificate or OCSP response. This would be the value of
/// `DigitallySigned.signature` for TLS 1.2 signed data.
signature: untrusted::Input<'a>,
}
/// Parses the concatenation of "tbs||signatureAlgorithm||signature" that
/// is common in the X.509 certificate and OCSP response syntaxes.
///
/// X.509 Certificates (RFC 5280) look like this:
///
/// ```ASN.1
/// Certificate (SEQUENCE) {
/// tbsCertificate TBSCertificate,
/// signatureAlgorithm AlgorithmIdentifier,
/// signatureValue BIT STRING
/// }
///
/// OCSP responses (RFC 6960) look like this:
/// ```ASN.1
/// BasicOCSPResponse {
/// tbsResponseData ResponseData,
/// signatureAlgorithm AlgorithmIdentifier,
/// signature BIT STRING,
/// certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL
/// }
/// ```
///
/// Note that this function does NOT parse the outermost `SEQUENCE` or the
/// `certs` value.
///
/// The return value's first component is the contents of
/// `tbsCertificate`/`tbsResponseData`; the second component is a `SignedData`
/// structure that can be passed to `verify_signed_data`.
pub(crate) fn parse_signed_data<'a>(
der: &mut untrusted::Reader<'a>,
) -> Result<(untrusted::Input<'a>, SignedData<'a>), Error> {
let (data, tbs) =
der.read_partial(|input| der::expect_tag_and_get_value(input, der::Tag::Sequence))?;
let algorithm = der::expect_tag_and_get_value(der, der::Tag::Sequence)?;
let signature = der::bit_string_with_no_unused_bits(der)?;
Ok((
tbs,
SignedData {
data,
algorithm,
signature,
},
))
}
/// Verify `signed_data` using the public key in the DER-encoded
/// SubjectPublicKeyInfo `spki` using one of the algorithms in
/// `supported_algorithms`.
///
/// The algorithm is chosen based on the algorithm information encoded in the
/// algorithm identifiers in `public_key` and `signed_data.algorithm`. The
/// ordering of the algorithms in `supported_algorithms` does not really matter,
/// but generally more common algorithms should go first, as it is scanned
/// linearly for matches.
pub(crate) fn verify_signed_data(
supported_algorithms: &[&SignatureAlgorithm],
spki_value: untrusted::Input,
signed_data: &SignedData,
) -> Result<(), Error> {
// We need to verify the signature in `signed_data` using the public key
// in `public_key`. In order to know which *ring* signature verification
// algorithm to use, we need to know the public key algorithm (ECDSA,
// RSA PKCS#1, etc.), the curve (if applicable), and the digest algorithm.
// `signed_data` identifies only the public key algorithm and the digest
// algorithm, and `public_key` identifies only the public key algorithm and
// the curve (if any). Thus, we have to combine information from both
// inputs to figure out which `ring::signature::VerificationAlgorithm` to
// use to verify the signature.
//
// This is all further complicated by the fact that we don't have any
// implicit knowledge about any algorithms or identifiers, since all of
// that information is encoded in `supported_algorithms.` In particular, we
// avoid hard-coding any of that information so that (link-time) dead code
// elimination will work effectively in eliminating code for unused
// algorithms.
// Parse the signature.
//
let mut found_signature_alg_match = false;
for supported_alg in supported_algorithms.iter().filter(|alg| {
alg.signature_alg_id
.matches_algorithm_id_value(signed_data.algorithm)
}) {
match verify_signature(
supported_alg,
spki_value,
signed_data.data,
signed_data.signature,
) {
Err(Error::UnsupportedSignatureAlgorithmForPublicKey) => {
found_signature_alg_match = true;
continue;
}
result => {
return result;
}
}
}
if found_signature_alg_match {
Err(Error::UnsupportedSignatureAlgorithmForPublicKey)
} else {
Err(Error::UnsupportedSignatureAlgorithm)
}
}
pub(crate) fn verify_signature(
signature_alg: &SignatureAlgorithm,
spki_value: untrusted::Input,
msg: untrusted::Input,
signature: untrusted::Input,
) -> Result<(), Error> {
let spki = parse_spki_value(spki_value)?;
if !signature_alg
.public_key_alg_id
.matches_algorithm_id_value(spki.algorithm_id_value)
{
return Err(Error::UnsupportedSignatureAlgorithmForPublicKey);
}
signature::UnparsedPublicKey::new(
signature_alg.verification_alg,
spki.key_value.as_slice_less_safe(),
)
.verify(msg.as_slice_less_safe(), signature.as_slice_less_safe())
.map_err(|_| Error::InvalidSignatureForPublicKey)
}
struct SubjectPublicKeyInfo<'a> {
algorithm_id_value: untrusted::Input<'a>,
key_value: untrusted::Input<'a>,
}
// Parse the public key into an algorithm OID, an optional curve OID, and the
// key value. The caller needs to check whether these match the
// `PublicKeyAlgorithm` for the `SignatureAlgorithm` that is matched when
// parsing the signature.
fn parse_spki_value(input: untrusted::Input) -> Result<SubjectPublicKeyInfo, Error> {
input.read_all(Error::BadDer, |input| {
let algorithm_id_value = der::expect_tag_and_get_value(input, der::Tag::Sequence)?;
let key_value = der::bit_string_with_no_unused_bits(input)?;
Ok(SubjectPublicKeyInfo {
algorithm_id_value,
key_value,
})
})
}
/// A signature algorithm.
pub struct SignatureAlgorithm {
public_key_alg_id: AlgorithmIdentifier,
signature_alg_id: AlgorithmIdentifier,
verification_alg: &'static dyn signature::VerificationAlgorithm,
}
/// ECDSA signatures using the P-256 curve and SHA-256.
pub static ECDSA_P256_SHA256: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: ECDSA_P256,
signature_alg_id: ECDSA_SHA256,
verification_alg: &signature::ECDSA_P256_SHA256_ASN1,
};
/// ECDSA signatures using the P-256 curve and SHA-384. Deprecated.
pub static ECDSA_P256_SHA384: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: ECDSA_P256,
signature_alg_id: ECDSA_SHA384,
verification_alg: &signature::ECDSA_P256_SHA384_ASN1,
};
/// ECDSA signatures using the P-384 curve and SHA-256. Deprecated.
pub static ECDSA_P384_SHA256: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: ECDSA_P384,
signature_alg_id: ECDSA_SHA256,
verification_alg: &signature::ECDSA_P384_SHA256_ASN1,
};
/// ECDSA signatures using the P-384 curve and SHA-384.
pub static ECDSA_P384_SHA384: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: ECDSA_P384,
signature_alg_id: ECDSA_SHA384,
verification_alg: &signature::ECDSA_P384_SHA384_ASN1,
};
/// RSA PKCS#1 1.5 signatures using SHA-256 for keys of 2048-8192 bits.
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PKCS1_2048_8192_SHA256: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PKCS1_SHA256,
verification_alg: &signature::RSA_PKCS1_2048_8192_SHA256,
};
/// RSA PKCS#1 1.5 signatures using SHA-384 for keys of 2048-8192 bits.
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PKCS1_2048_8192_SHA384: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PKCS1_SHA384,
verification_alg: &signature::RSA_PKCS1_2048_8192_SHA384,
};
/// RSA PKCS#1 1.5 signatures using SHA-512 for keys of 2048-8192 bits.
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PKCS1_2048_8192_SHA512: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PKCS1_SHA512,
verification_alg: &signature::RSA_PKCS1_2048_8192_SHA512,
};
/// RSA PKCS#1 1.5 signatures using SHA-384 for keys of 3072-8192 bits.
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PKCS1_3072_8192_SHA384: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PKCS1_SHA384,
verification_alg: &signature::RSA_PKCS1_3072_8192_SHA384,
};
/// RSA PSS signatures using SHA-256 for keys of 2048-8192 bits and of
/// type rsaEncryption; see [RFC 4055 Section 1.2].
///
/// [RFC 4055 Section 1.2]: https://tools.ietf.org/html/rfc4055#section-1.2
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PSS_2048_8192_SHA256_LEGACY_KEY: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PSS_SHA256,
verification_alg: &signature::RSA_PSS_2048_8192_SHA256,
};
/// RSA PSS signatures using SHA-384 for keys of 2048-8192 bits and of
/// type rsaEncryption; see [RFC 4055 Section 1.2].
///
/// [RFC 4055 Section 1.2]: https://tools.ietf.org/html/rfc4055#section-1.2
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PSS_2048_8192_SHA384_LEGACY_KEY: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PSS_SHA384,
verification_alg: &signature::RSA_PSS_2048_8192_SHA384,
};
/// RSA PSS signatures using SHA-512 for keys of 2048-8192 bits and of
/// type rsaEncryption; see [RFC 4055 Section 1.2].
///
/// [RFC 4055 Section 1.2]: https://tools.ietf.org/html/rfc4055#section-1.2
///
/// Requires the `alloc` feature.
#[cfg(feature = "alloc")]
pub static RSA_PSS_2048_8192_SHA512_LEGACY_KEY: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: RSA_ENCRYPTION,
signature_alg_id: RSA_PSS_SHA512,
verification_alg: &signature::RSA_PSS_2048_8192_SHA512,
};
/// ED25519 signatures according to RFC 8410
pub static ED25519: SignatureAlgorithm = SignatureAlgorithm {
public_key_alg_id: ED_25519,
signature_alg_id: ED_25519,
verification_alg: &signature::ED25519,
};
struct AlgorithmIdentifier {
asn1_id_value: untrusted::Input<'static>,
}
impl AlgorithmIdentifier {
fn matches_algorithm_id_value(&self, encoded: untrusted::Input) -> bool {
encoded == self.asn1_id_value
}
}
// See src/data/README.md.
const ECDSA_P256: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-ecdsa-p256.der")),
};
const ECDSA_P384: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-ecdsa-p384.der")),
};
const ECDSA_SHA256: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-ecdsa-sha256.der")),
};
const ECDSA_SHA384: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-ecdsa-sha384.der")),
};
#[cfg(feature = "alloc")]
const RSA_ENCRYPTION: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-encryption.der")),
};
#[cfg(feature = "alloc")]
const RSA_PKCS1_SHA256: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-pkcs1-sha256.der")),
};
#[cfg(feature = "alloc")]
const RSA_PKCS1_SHA384: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-pkcs1-sha384.der")),
};
#[cfg(feature = "alloc")]
const RSA_PKCS1_SHA512: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-pkcs1-sha512.der")),
};
#[cfg(feature = "alloc")]
const RSA_PSS_SHA256: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-pss-sha256.der")),
};
#[cfg(feature = "alloc")]
const RSA_PSS_SHA384: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-pss-sha384.der")),
};
#[cfg(feature = "alloc")]
const RSA_PSS_SHA512: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-rsa-pss-sha512.der")),
};
const ED_25519: AlgorithmIdentifier = AlgorithmIdentifier {
asn1_id_value: untrusted::Input::from(include_bytes!("data/alg-ed25519.der")),
};
#[cfg(test)]
mod tests {
use crate::{der, signed_data, Error};
use alloc::{string::String, vec::Vec};
macro_rules! test_file_bytes {
( $file_name:expr ) => {
include_bytes!(concat!(
"../third-party/chromium/data/verify_signed_data/",
$file_name
))
};
}
// TODO: The expected results need to be modified for SHA-1 deprecation.
macro_rules! test_verify_signed_data {
($fn_name:ident, $file_name:expr, $expected_result:expr) => {
#[test]
fn $fn_name() {
test_verify_signed_data(test_file_bytes!($file_name), $expected_result);
}
};
}
fn test_verify_signed_data(file_contents: &[u8], expected_result: Result<(), Error>) {
let tsd = parse_test_signed_data(file_contents);
let spki_value = untrusted::Input::from(&tsd.spki);
let spki_value = spki_value
.read_all(Error::BadDer, |input| {
der::expect_tag_and_get_value(input, der::Tag::Sequence)
})
.unwrap();
// we can't use `parse_signed_data` because it requires `data`
// to be an ASN.1 SEQUENCE, and that isn't the case with
// Chromium's test data. TODO: The test data set should be
// expanded with SEQUENCE-wrapped data so that we can actually
// test `parse_signed_data`.
let algorithm = untrusted::Input::from(&tsd.algorithm);
let algorithm = algorithm
.read_all(Error::BadDer, |input| {
der::expect_tag_and_get_value(input, der::Tag::Sequence)
})
.unwrap();
let signature = untrusted::Input::from(&tsd.signature);
let signature = signature
.read_all(Error::BadDer, |input| {
der::bit_string_with_no_unused_bits(input)
})
.unwrap();
let signed_data = signed_data::SignedData {
data: untrusted::Input::from(&tsd.data),
algorithm,
signature,
};
assert_eq!(
expected_result,
signed_data::verify_signed_data(
SUPPORTED_ALGORITHMS_IN_TESTS,
spki_value,
&signed_data
)
);
}
// XXX: This is testing code that isn't even in this module.
macro_rules! test_verify_signed_data_signature_outer {
($fn_name:ident, $file_name:expr, $expected_result:expr) => {
#[test]
fn $fn_name() {
test_verify_signed_data_signature_outer(
test_file_bytes!($file_name),
$expected_result,
);
}
};
}
fn test_verify_signed_data_signature_outer(file_contents: &[u8], expected_error: Error) {
let tsd = parse_test_signed_data(file_contents);
let signature = untrusted::Input::from(&tsd.signature);
assert_eq!(
Err(expected_error),
signature.read_all(Error::BadDer, |input| {
der::bit_string_with_no_unused_bits(input)
})
);
}
// XXX: This is testing code that is not even in this module.
macro_rules! test_parse_spki_bad_outer {
($fn_name:ident, $file_name:expr, $error:expr) => {
#[test]
fn $fn_name() {
test_parse_spki_bad_outer(test_file_bytes!($file_name), $error)
}
};
}
fn test_parse_spki_bad_outer(file_contents: &[u8], expected_error: Error) {
let tsd = parse_test_signed_data(file_contents);
let spki = untrusted::Input::from(&tsd.spki);
assert_eq!(
Err(expected_error),
spki.read_all(Error::BadDer, |input| {
der::expect_tag_and_get_value(input, der::Tag::Sequence)
})
);
}
const UNSUPPORTED_SIGNATURE_ALGORITHM_FOR_RSA_KEY: Error = if cfg!(feature = "alloc") {
Error::UnsupportedSignatureAlgorithmForPublicKey
} else {
Error::UnsupportedSignatureAlgorithm
};
const INVALID_SIGNATURE_FOR_RSA_KEY: Error = if cfg!(feature = "alloc") {
Error::InvalidSignatureForPublicKey
} else {
Error::UnsupportedSignatureAlgorithm
};
const OK_IF_RSA_AVAILABLE: Result<(), Error> = if cfg!(feature = "alloc") {
Ok(())
} else {
Err(Error::UnsupportedSignatureAlgorithm)
};
// XXX: Some of the BadDER tests should have better error codes, maybe?
// XXX: We should have a variant of this test with a SHA-256 digest that gives
// `Error::UnsupportedSignatureAlgorithmForPublicKey`.
test_verify_signed_data!(
test_ecdsa_prime256v1_sha512_spki_params_null,
"ecdsa-prime256v1-sha512-spki-params-null.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data_signature_outer!(
test_ecdsa_prime256v1_sha512_unused_bits_signature,
"ecdsa-prime256v1-sha512-unused-bits-signature.pem",
Error::BadDer
);
// XXX: We should have a variant of this test with a SHA-256 digest that gives
// `Error::UnsupportedSignatureAlgorithmForPublicKey`.
test_verify_signed_data!(
test_ecdsa_prime256v1_sha512_using_ecdh_key,
"ecdsa-prime256v1-sha512-using-ecdh-key.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
// XXX: We should have a variant of this test with a SHA-256 digest that gives
// `Error::UnsupportedSignatureAlgorithmForPublicKey`.
test_verify_signed_data!(
test_ecdsa_prime256v1_sha512_using_ecmqv_key,
"ecdsa-prime256v1-sha512-using-ecmqv-key.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_ecdsa_prime256v1_sha512_using_rsa_algorithm,
"ecdsa-prime256v1-sha512-using-rsa-algorithm.pem",
Err(UNSUPPORTED_SIGNATURE_ALGORITHM_FOR_RSA_KEY)
);
// XXX: We should have a variant of this test with a SHA-256 digest that gives
// `Error::InvalidSignatureForPublicKey`.
test_verify_signed_data!(
test_ecdsa_prime256v1_sha512_wrong_signature_format,
"ecdsa-prime256v1-sha512-wrong-signature-format.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
// Differs from Chromium because we don't support P-256 with SHA-512.
test_verify_signed_data!(
test_ecdsa_prime256v1_sha512,
"ecdsa-prime256v1-sha512.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_ecdsa_secp384r1_sha256_corrupted_data,
"ecdsa-secp384r1-sha256-corrupted-data.pem",
Err(Error::InvalidSignatureForPublicKey)
);
test_verify_signed_data!(
test_ecdsa_secp384r1_sha256,
"ecdsa-secp384r1-sha256.pem",
Ok(())
);
test_verify_signed_data!(
test_ecdsa_using_rsa_key,
"ecdsa-using-rsa-key.pem",
Err(Error::UnsupportedSignatureAlgorithmForPublicKey)
);
test_parse_spki_bad_outer!(
test_rsa_pkcs1_sha1_bad_key_der_length,
"rsa-pkcs1-sha1-bad-key-der-length.pem",
Error::BadDer
);
test_parse_spki_bad_outer!(
test_rsa_pkcs1_sha1_bad_key_der_null,
"rsa-pkcs1-sha1-bad-key-der-null.pem",
Error::BadDer
);
test_verify_signed_data!(
test_rsa_pkcs1_sha1_key_params_absent,
"rsa-pkcs1-sha1-key-params-absent.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pkcs1_sha1_using_pss_key_no_params,
"rsa-pkcs1-sha1-using-pss-key-no-params.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pkcs1_sha1_wrong_algorithm,
"rsa-pkcs1-sha1-wrong-algorithm.pem",
Err(INVALID_SIGNATURE_FOR_RSA_KEY)
);
test_verify_signed_data!(
test_rsa_pkcs1_sha1,
"rsa-pkcs1-sha1.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
// XXX: RSA PKCS#1 with SHA-1 is a supported algorithm, but we only accept
// 2048-8192 bit keys, and this test file is using a 1024 bit key. Thus,
// our results differ from Chromium's. TODO: this means we need a 2048+ bit
// version of this test.
test_verify_signed_data!(
test_rsa_pkcs1_sha256,
"rsa-pkcs1-sha256.pem",
Err(INVALID_SIGNATURE_FOR_RSA_KEY)
);
test_parse_spki_bad_outer!(
test_rsa_pkcs1_sha256_key_encoded_ber,
"rsa-pkcs1-sha256-key-encoded-ber.pem",
Error::BadDer
);
test_verify_signed_data!(
test_rsa_pkcs1_sha256_spki_non_null_params,
"rsa-pkcs1-sha256-spki-non-null-params.pem",
Err(UNSUPPORTED_SIGNATURE_ALGORITHM_FOR_RSA_KEY)
);
test_verify_signed_data!(
test_rsa_pkcs1_sha256_using_ecdsa_algorithm,
"rsa-pkcs1-sha256-using-ecdsa-algorithm.pem",
Err(Error::UnsupportedSignatureAlgorithmForPublicKey)
);
test_verify_signed_data!(
test_rsa_pkcs1_sha256_using_id_ea_rsa,
"rsa-pkcs1-sha256-using-id-ea-rsa.pem",
Err(UNSUPPORTED_SIGNATURE_ALGORITHM_FOR_RSA_KEY)
);
// Chromium's PSS test are for parameter combinations we don't support.
test_verify_signed_data!(
test_rsa_pss_sha1_salt20_using_pss_key_no_params,
"rsa-pss-sha1-salt20-using-pss-key-no-params.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha1_salt20_using_pss_key_with_null_params,
"rsa-pss-sha1-salt20-using-pss-key-with-null-params.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha1_salt20,
"rsa-pss-sha1-salt20.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha1_wrong_salt,
"rsa-pss-sha1-wrong-salt.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha256_mgf1_sha512_salt33,
"rsa-pss-sha256-mgf1-sha512-salt33.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha256_salt10_using_pss_key_with_params,
"rsa-pss-sha256-salt10-using-pss-key-with-params.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha256_salt10_using_pss_key_with_wrong_params,
"rsa-pss-sha256-salt10-using-pss-key-with-wrong-params.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
test_verify_signed_data!(
test_rsa_pss_sha256_salt10,
"rsa-pss-sha256-salt10.pem",
Err(Error::UnsupportedSignatureAlgorithm)
);
// Our PSS tests that should work.
test_verify_signed_data!(
test_rsa_pss_sha256_salt32,
"ours/rsa-pss-sha256-salt32.pem",
OK_IF_RSA_AVAILABLE
);
test_verify_signed_data!(
test_rsa_pss_sha384_salt48,
"ours/rsa-pss-sha384-salt48.pem",
OK_IF_RSA_AVAILABLE
);
test_verify_signed_data!(
test_rsa_pss_sha512_salt64,
"ours/rsa-pss-sha512-salt64.pem",
OK_IF_RSA_AVAILABLE
);
test_verify_signed_data!(
test_rsa_pss_sha256_salt32_corrupted_data,
"ours/rsa-pss-sha256-salt32-corrupted-data.pem",
Err(INVALID_SIGNATURE_FOR_RSA_KEY)
);
test_verify_signed_data!(
test_rsa_pss_sha384_salt48_corrupted_data,
"ours/rsa-pss-sha384-salt48-corrupted-data.pem",
Err(INVALID_SIGNATURE_FOR_RSA_KEY)
);
test_verify_signed_data!(
test_rsa_pss_sha512_salt64_corrupted_data,
"ours/rsa-pss-sha512-salt64-corrupted-data.pem",
Err(INVALID_SIGNATURE_FOR_RSA_KEY)
);
test_verify_signed_data!(
test_rsa_using_ec_key,
"rsa-using-ec-key.pem",
Err(UNSUPPORTED_SIGNATURE_ALGORITHM_FOR_RSA_KEY)
);
test_verify_signed_data!(
test_rsa2048_pkcs1_sha512,
"rsa2048-pkcs1-sha512.pem",
OK_IF_RSA_AVAILABLE
);
struct TestSignedData {
spki: Vec<u8>,
data: Vec<u8>,
algorithm: Vec<u8>,
signature: Vec<u8>,
}
fn parse_test_signed_data(file_contents: &[u8]) -> TestSignedData {
let mut lines = core::str::from_utf8(file_contents).unwrap().lines();
let spki = read_pem_section(&mut lines, "PUBLIC KEY");
let algorithm = read_pem_section(&mut lines, "ALGORITHM");
let data = read_pem_section(&mut lines, "DATA");
let signature = read_pem_section(&mut lines, "SIGNATURE");
TestSignedData {
spki,
data,
algorithm,
signature,
}
}
use alloc::str::Lines;
fn read_pem_section(lines: &mut Lines, section_name: &str) -> Vec<u8> {
// Skip comments and header
let begin_section = format!("-----BEGIN {}-----", section_name);
loop {
let line = lines.next().unwrap();
if line == begin_section {
break;
}
}
let mut base64 = String::new();
let end_section = format!("-----END {}-----", section_name);
loop {
let line = lines.next().unwrap();
if line == end_section {
break;
}
base64.push_str(&line);
}
base64::decode(&base64).unwrap()
}
static SUPPORTED_ALGORITHMS_IN_TESTS: &[&signed_data::SignatureAlgorithm] = &[
// Reasonable algorithms.
&signed_data::ECDSA_P256_SHA256,
&signed_data::ECDSA_P384_SHA384,
&signed_data::ED25519,
#[cfg(feature = "alloc")]
&signed_data::RSA_PKCS1_2048_8192_SHA256,
#[cfg(feature = "alloc")]
&signed_data::RSA_PKCS1_2048_8192_SHA384,
#[cfg(feature = "alloc")]
&signed_data::RSA_PKCS1_2048_8192_SHA512,
#[cfg(feature = "alloc")]
&signed_data::RSA_PKCS1_3072_8192_SHA384,
#[cfg(feature = "alloc")]
&signed_data::RSA_PSS_2048_8192_SHA256_LEGACY_KEY,
#[cfg(feature = "alloc")]
&signed_data::RSA_PSS_2048_8192_SHA384_LEGACY_KEY,
#[cfg(feature = "alloc")]
&signed_data::RSA_PSS_2048_8192_SHA512_LEGACY_KEY,
// Algorithms deprecated because they are annoying (P-521) or because
// they are nonsensical combinations.
&signed_data::ECDSA_P256_SHA384, // Truncates digest.
&signed_data::ECDSA_P384_SHA256, // Digest is unnecessarily short.
];
}