|  | //! General purpose combinators | 
|  |  | 
|  | use nom::bytes::streaming::take; | 
|  | use nom::combinator::map_parser; | 
|  | use nom::error::{make_error, ErrorKind, ParseError}; | 
|  | use nom::{IResult, Needed, Parser}; | 
|  | use nom::{InputIter, InputTake}; | 
|  | use nom::{InputLength, ToUsize}; | 
|  |  | 
|  | #[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")] | 
|  | /// Read an entire slice as a big-endian value. | 
|  | /// | 
|  | /// Returns the value as `u64`. This function checks for integer overflows, and returns a | 
|  | /// `Result::Err` value if the value is too big. | 
|  | pub fn bytes_to_u64(s: &[u8]) -> Result<u64, &'static str> { | 
|  | let mut u: u64 = 0; | 
|  |  | 
|  | if s.is_empty() { | 
|  | return Err("empty"); | 
|  | }; | 
|  | if s.len() > 8 { | 
|  | return Err("overflow"); | 
|  | } | 
|  | for &c in s { | 
|  | let u1 = u << 8; | 
|  | u = u1 | (c as u64); | 
|  | } | 
|  |  | 
|  | Ok(u) | 
|  | } | 
|  |  | 
|  | /// Read the entire slice as a big endian unsigned integer, up to 8 bytes | 
|  | #[inline] | 
|  | pub fn be_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> { | 
|  | if input.is_empty() { | 
|  | return Err(nom::Err::Incomplete(Needed::new(1))); | 
|  | } | 
|  | if input.len() > 8 { | 
|  | return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge))); | 
|  | } | 
|  | let mut res = 0u64; | 
|  | for byte in input { | 
|  | res = (res << 8) + *byte as u64; | 
|  | } | 
|  |  | 
|  | Ok((&b""[..], res)) | 
|  | } | 
|  |  | 
|  | /// Read the entire slice as a little endian unsigned integer, up to 8 bytes | 
|  | #[inline] | 
|  | pub fn le_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> { | 
|  | if input.is_empty() { | 
|  | return Err(nom::Err::Incomplete(Needed::new(1))); | 
|  | } | 
|  | if input.len() > 8 { | 
|  | return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge))); | 
|  | } | 
|  | let mut res = 0u64; | 
|  | for byte in input.iter().rev() { | 
|  | res = (res << 8) + *byte as u64; | 
|  | } | 
|  |  | 
|  | Ok((&b""[..], res)) | 
|  | } | 
|  |  | 
|  | /// Read a slice as a big-endian value. | 
|  | #[inline] | 
|  | pub fn parse_hex_to_u64<S>(i: &[u8], size: S) -> IResult<&[u8], u64> | 
|  | where | 
|  | S: ToUsize + Copy, | 
|  | { | 
|  | map_parser(take(size.to_usize()), be_var_u64)(i) | 
|  | } | 
|  |  | 
|  | /// Apply combinator, automatically converts between errors if the underlying type supports it | 
|  | pub fn upgrade_error<I, O, E1: ParseError<I>, E2: ParseError<I>, F>( | 
|  | mut f: F, | 
|  | ) -> impl FnMut(I) -> IResult<I, O, E2> | 
|  | where | 
|  | F: FnMut(I) -> IResult<I, O, E1>, | 
|  | E2: From<E1>, | 
|  | { | 
|  | move |i| f(i).map_err(nom::Err::convert) | 
|  | } | 
|  |  | 
|  | /// Create a combinator that returns the provided value, and input unchanged | 
|  | pub fn pure<I, O, E: ParseError<I>>(val: O) -> impl Fn(I) -> IResult<I, O, E> | 
|  | where | 
|  | O: Clone, | 
|  | { | 
|  | move |input: I| Ok((input, val.clone())) | 
|  | } | 
|  |  | 
|  | /// Return a closure that takes `len` bytes from input, and applies `parser`. | 
|  | pub fn flat_take<I, C, O, E: ParseError<I>, F>( | 
|  | len: C, | 
|  | mut parser: F, | 
|  | ) -> impl FnMut(I) -> IResult<I, O, E> | 
|  | where | 
|  | I: InputTake + InputLength + InputIter, | 
|  | C: ToUsize + Copy, | 
|  | F: Parser<I, O, E>, | 
|  | { | 
|  | // Note: this is the same as `map_parser(take(len), parser)` | 
|  | move |input: I| { | 
|  | let (input, o1) = take(len.to_usize())(input)?; | 
|  | let (_, o2) = parser.parse(o1)?; | 
|  | Ok((input, o2)) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Take `len` bytes from `input`, and apply `parser`. | 
|  | pub fn flat_takec<I, O, E: ParseError<I>, C, F>(input: I, len: C, parser: F) -> IResult<I, O, E> | 
|  | where | 
|  | C: ToUsize + Copy, | 
|  | F: Parser<I, O, E>, | 
|  | I: InputTake + InputLength + InputIter, | 
|  | O: InputLength, | 
|  | { | 
|  | flat_take(len, parser)(input) | 
|  | } | 
|  |  | 
|  | /// Helper macro for nom parsers: run first parser if condition is true, else second parser | 
|  | pub fn cond_else<I, O, E: ParseError<I>, C, F, G>( | 
|  | cond: C, | 
|  | mut first: F, | 
|  | mut second: G, | 
|  | ) -> impl FnMut(I) -> IResult<I, O, E> | 
|  | where | 
|  | C: Fn() -> bool, | 
|  | F: Parser<I, O, E>, | 
|  | G: Parser<I, O, E>, | 
|  | { | 
|  | move |input: I| { | 
|  | if cond() { | 
|  | first.parse(input) | 
|  | } else { | 
|  | second.parse(input) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Align input value to the next multiple of n bytes | 
|  | /// Valid only if n is a power of 2 | 
|  | pub const fn align_n2(x: usize, n: usize) -> usize { | 
|  | (x + (n - 1)) & !(n - 1) | 
|  | } | 
|  |  | 
|  | /// Align input value to the next multiple of 4 bytes | 
|  | pub const fn align32(x: usize) -> usize { | 
|  | (x + 3) & !3 | 
|  | } | 
|  |  | 
|  | #[cfg(test)] | 
|  | mod tests { | 
|  | use super::{align32, be_var_u64, cond_else, flat_take, pure}; | 
|  | use nom::bytes::streaming::take; | 
|  | use nom::number::streaming::{be_u16, be_u32, be_u8}; | 
|  | use nom::{Err, IResult, Needed}; | 
|  |  | 
|  | #[test] | 
|  | fn test_be_var_u64() { | 
|  | let res: IResult<&[u8], u64> = be_var_u64(b"\x12\x34\x56"); | 
|  | let (_, v) = res.expect("be_var_u64 failed"); | 
|  | assert_eq!(v, 0x123456); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_flat_take() { | 
|  | let input = &[0x00, 0x01, 0xff]; | 
|  | // read first 2 bytes and use correct combinator: OK | 
|  | let res: IResult<&[u8], u16> = flat_take(2u8, be_u16)(input); | 
|  | assert_eq!(res, Ok((&input[2..], 0x0001))); | 
|  | // read 3 bytes and use 2: OK (some input is just lost) | 
|  | let res: IResult<&[u8], u16> = flat_take(3u8, be_u16)(input); | 
|  | assert_eq!(res, Ok((&b""[..], 0x0001))); | 
|  | // read 2 bytes and a combinator requiring more bytes | 
|  | let res: IResult<&[u8], u32> = flat_take(2u8, be_u32)(input); | 
|  | assert_eq!(res, Err(Err::Incomplete(Needed::new(2)))); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_flat_take_str() { | 
|  | let input = "abcdef"; | 
|  | // read first 2 bytes and use correct combinator: OK | 
|  | let res: IResult<&str, &str> = flat_take(2u8, take(2u8))(input); | 
|  | assert_eq!(res, Ok(("cdef", "ab"))); | 
|  | // read 3 bytes and use 2: OK (some input is just lost) | 
|  | let res: IResult<&str, &str> = flat_take(3u8, take(2u8))(input); | 
|  | assert_eq!(res, Ok(("def", "ab"))); | 
|  | // read 2 bytes and a use combinator requiring more bytes | 
|  | let res: IResult<&str, &str> = flat_take(2u8, take(4u8))(input); | 
|  | assert_eq!(res, Err(Err::Incomplete(Needed::Unknown))); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_cond_else() { | 
|  | let input = &[0x01][..]; | 
|  | let empty = &b""[..]; | 
|  | let a = 1; | 
|  | fn parse_u8(i: &[u8]) -> IResult<&[u8], u8> { | 
|  | be_u8(i) | 
|  | } | 
|  | assert_eq!( | 
|  | cond_else(|| a == 1, parse_u8, pure(0x02))(input), | 
|  | Ok((empty, 0x01)) | 
|  | ); | 
|  | assert_eq!( | 
|  | cond_else(|| a == 1, parse_u8, pure(0x02))(input), | 
|  | Ok((empty, 0x01)) | 
|  | ); | 
|  | assert_eq!( | 
|  | cond_else(|| a == 2, parse_u8, pure(0x02))(input), | 
|  | Ok((input, 0x02)) | 
|  | ); | 
|  | assert_eq!( | 
|  | cond_else(|| a == 1, pure(0x02), parse_u8)(input), | 
|  | Ok((input, 0x02)) | 
|  | ); | 
|  | let res: IResult<&[u8], u8> = cond_else(|| a == 1, parse_u8, parse_u8)(input); | 
|  | assert_eq!(res, Ok((empty, 0x01))); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_align32() { | 
|  | assert_eq!(align32(3), 4); | 
|  | assert_eq!(align32(4), 4); | 
|  | assert_eq!(align32(5), 8); | 
|  | assert_eq!(align32(5usize), 8); | 
|  | } | 
|  | } |