blob: 85d8ef2826c9bf53dd23ab7cf8a0b30974635786 [file] [log] [blame]
//! Traits dealing with SQLite data types.
//!
//! SQLite uses a [dynamic type system](https://www.sqlite.org/datatype3.html). Implementations of
//! the `ToSql` and `FromSql` traits are provided for the basic types that
//! SQLite provides methods for:
//!
//! * Integers (`i32` and `i64`; SQLite uses `i64` internally, so getting an
//! `i32` will truncate if the value is too large or too small).
//! * Reals (`f64`)
//! * Strings (`String` and `&str`)
//! * Blobs (`Vec<u8>` and `&[u8]`)
//!
//! Additionally, if the `time` feature is enabled, implementations are
//! provided for `time::OffsetDateTime` that use the RFC 3339 date/time format,
//! `"%Y-%m-%dT%H:%M:%S.%fZ"`, to store time values as strings. These values
//! can be parsed by SQLite's builtin
//! [datetime](https://www.sqlite.org/lang_datefunc.html) functions. If you
//! want different storage for datetimes, you can use a newtype.
//!
#![cfg_attr(
feature = "time",
doc = r##"
For example, to store datetimes as `i64`s counting the number of seconds since
the Unix epoch:
```
use rusqlite::types::{FromSql, FromSqlResult, ToSql, ToSqlOutput, ValueRef};
use rusqlite::Result;
pub struct DateTimeSql(pub time::OffsetDateTime);
impl FromSql for DateTimeSql {
fn column_result(value: ValueRef) -> FromSqlResult<Self> {
i64::column_result(value).map(|as_i64| {
DateTimeSql(time::OffsetDateTime::from_unix_timestamp(as_i64))
})
}
}
impl ToSql for DateTimeSql {
fn to_sql(&self) -> Result<ToSqlOutput> {
Ok(self.0.timestamp().into())
}
}
```
"##
)]
//! `ToSql` and `FromSql` are also implemented for `Option<T>` where `T`
//! implements `ToSql` or `FromSql` for the cases where you want to know if a
//! value was NULL (which gets translated to `None`).
pub use self::from_sql::{FromSql, FromSqlError, FromSqlResult};
pub use self::to_sql::{ToSql, ToSqlOutput};
pub use self::value::Value;
pub use self::value_ref::ValueRef;
use std::fmt;
#[cfg(feature = "chrono")]
mod chrono;
mod from_sql;
#[cfg(feature = "serde_json")]
mod serde_json;
#[cfg(feature = "time")]
mod time;
mod to_sql;
#[cfg(feature = "url")]
mod url;
mod value;
mod value_ref;
/// Empty struct that can be used to fill in a query parameter as `NULL`.
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// # use rusqlite::types::{Null};
///
/// fn insert_null(conn: &Connection) -> Result<usize> {
/// conn.execute("INSERT INTO people (name) VALUES (?)", &[Null])
/// }
/// ```
#[derive(Copy, Clone)]
pub struct Null;
/// SQLite data types.
/// See [Fundamental Datatypes](https://sqlite.org/c3ref/c_blob.html).
#[derive(Clone, Debug, PartialEq)]
pub enum Type {
/// NULL
Null,
/// 64-bit signed integer
Integer,
/// 64-bit IEEE floating point number
Real,
/// String
Text,
/// BLOB
Blob,
}
impl fmt::Display for Type {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Type::Null => write!(f, "Null"),
Type::Integer => write!(f, "Integer"),
Type::Real => write!(f, "Real"),
Type::Text => write!(f, "Text"),
Type::Blob => write!(f, "Blob"),
}
}
}
#[cfg(test)]
mod test {
use super::Value;
use crate::{Connection, Error, NO_PARAMS};
use std::f64::EPSILON;
use std::os::raw::{c_double, c_int};
fn checked_memory_handle() -> Connection {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("CREATE TABLE foo (b BLOB, t TEXT, i INTEGER, f FLOAT, n)")
.unwrap();
db
}
#[test]
fn test_blob() {
let db = checked_memory_handle();
let v1234 = vec![1u8, 2, 3, 4];
db.execute("INSERT INTO foo(b) VALUES (?)", &[&v1234])
.unwrap();
let v: Vec<u8> = db
.query_row("SELECT b FROM foo", NO_PARAMS, |r| r.get(0))
.unwrap();
assert_eq!(v, v1234);
}
#[test]
fn test_empty_blob() {
let db = checked_memory_handle();
let empty = vec![];
db.execute("INSERT INTO foo(b) VALUES (?)", &[&empty])
.unwrap();
let v: Vec<u8> = db
.query_row("SELECT b FROM foo", NO_PARAMS, |r| r.get(0))
.unwrap();
assert_eq!(v, empty);
}
#[test]
fn test_str() {
let db = checked_memory_handle();
let s = "hello, world!";
db.execute("INSERT INTO foo(t) VALUES (?)", &[&s]).unwrap();
let from: String = db
.query_row("SELECT t FROM foo", NO_PARAMS, |r| r.get(0))
.unwrap();
assert_eq!(from, s);
}
#[test]
fn test_string() {
let db = checked_memory_handle();
let s = "hello, world!";
db.execute("INSERT INTO foo(t) VALUES (?)", &[s.to_owned()])
.unwrap();
let from: String = db
.query_row("SELECT t FROM foo", NO_PARAMS, |r| r.get(0))
.unwrap();
assert_eq!(from, s);
}
#[test]
fn test_value() {
let db = checked_memory_handle();
db.execute("INSERT INTO foo(i) VALUES (?)", &[Value::Integer(10)])
.unwrap();
assert_eq!(
10i64,
db.query_row::<i64, _, _>("SELECT i FROM foo", NO_PARAMS, |r| r.get(0))
.unwrap()
);
}
#[test]
fn test_option() {
let db = checked_memory_handle();
let s = Some("hello, world!");
let b = Some(vec![1u8, 2, 3, 4]);
db.execute("INSERT INTO foo(t) VALUES (?)", &[&s]).unwrap();
db.execute("INSERT INTO foo(b) VALUES (?)", &[&b]).unwrap();
let mut stmt = db
.prepare("SELECT t, b FROM foo ORDER BY ROWID ASC")
.unwrap();
let mut rows = stmt.query(NO_PARAMS).unwrap();
{
let row1 = rows.next().unwrap().unwrap();
let s1: Option<String> = row1.get_unwrap(0);
let b1: Option<Vec<u8>> = row1.get_unwrap(1);
assert_eq!(s.unwrap(), s1.unwrap());
assert!(b1.is_none());
}
{
let row2 = rows.next().unwrap().unwrap();
let s2: Option<String> = row2.get_unwrap(0);
let b2: Option<Vec<u8>> = row2.get_unwrap(1);
assert!(s2.is_none());
assert_eq!(b, b2);
}
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_mismatched_types() {
fn is_invalid_column_type(err: Error) -> bool {
matches!(err, Error::InvalidColumnType(..))
}
let db = checked_memory_handle();
db.execute(
"INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)",
NO_PARAMS,
)
.unwrap();
let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap();
let mut rows = stmt.query(NO_PARAMS).unwrap();
let row = rows.next().unwrap().unwrap();
// check the correct types come back as expected
assert_eq!(vec![1, 2], row.get::<_, Vec<u8>>(0).unwrap());
assert_eq!("text", row.get::<_, String>(1).unwrap());
assert_eq!(1, row.get::<_, c_int>(2).unwrap());
assert!((1.5 - row.get::<_, c_double>(3).unwrap()).abs() < EPSILON);
assert!(row.get::<_, Option<c_int>>(4).unwrap().is_none());
assert!(row.get::<_, Option<c_double>>(4).unwrap().is_none());
assert!(row.get::<_, Option<String>>(4).unwrap().is_none());
// check some invalid types
// 0 is actually a blob (Vec<u8>)
assert!(is_invalid_column_type(
row.get::<_, c_int>(0).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, c_int>(0).err().unwrap()
));
assert!(is_invalid_column_type(row.get::<_, i64>(0).err().unwrap()));
assert!(is_invalid_column_type(
row.get::<_, c_double>(0).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, String>(0).err().unwrap()
));
#[cfg(feature = "time")]
assert!(is_invalid_column_type(
row.get::<_, time::OffsetDateTime>(0).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Option<c_int>>(0).err().unwrap()
));
// 1 is actually a text (String)
assert!(is_invalid_column_type(
row.get::<_, c_int>(1).err().unwrap()
));
assert!(is_invalid_column_type(row.get::<_, i64>(1).err().unwrap()));
assert!(is_invalid_column_type(
row.get::<_, c_double>(1).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Vec<u8>>(1).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Option<c_int>>(1).err().unwrap()
));
// 2 is actually an integer
assert!(is_invalid_column_type(
row.get::<_, String>(2).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Vec<u8>>(2).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Option<String>>(2).err().unwrap()
));
// 3 is actually a float (c_double)
assert!(is_invalid_column_type(
row.get::<_, c_int>(3).err().unwrap()
));
assert!(is_invalid_column_type(row.get::<_, i64>(3).err().unwrap()));
assert!(is_invalid_column_type(
row.get::<_, String>(3).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Vec<u8>>(3).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Option<c_int>>(3).err().unwrap()
));
// 4 is actually NULL
assert!(is_invalid_column_type(
row.get::<_, c_int>(4).err().unwrap()
));
assert!(is_invalid_column_type(row.get::<_, i64>(4).err().unwrap()));
assert!(is_invalid_column_type(
row.get::<_, c_double>(4).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, String>(4).err().unwrap()
));
assert!(is_invalid_column_type(
row.get::<_, Vec<u8>>(4).err().unwrap()
));
#[cfg(feature = "time")]
assert!(is_invalid_column_type(
row.get::<_, time::OffsetDateTime>(4).err().unwrap()
));
}
#[test]
fn test_dynamic_type() {
use super::Value;
let db = checked_memory_handle();
db.execute(
"INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)",
NO_PARAMS,
)
.unwrap();
let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap();
let mut rows = stmt.query(NO_PARAMS).unwrap();
let row = rows.next().unwrap().unwrap();
assert_eq!(Value::Blob(vec![1, 2]), row.get::<_, Value>(0).unwrap());
assert_eq!(
Value::Text(String::from("text")),
row.get::<_, Value>(1).unwrap()
);
assert_eq!(Value::Integer(1), row.get::<_, Value>(2).unwrap());
match row.get::<_, Value>(3).unwrap() {
Value::Real(val) => assert!((1.5 - val).abs() < EPSILON),
x => panic!("Invalid Value {:?}", x),
}
assert_eq!(Value::Null, row.get::<_, Value>(4).unwrap());
}
}