blob: b9f1f73bc961e3b797702de9654d56094d4750f2 [file] [log] [blame]
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! ECDSA Signatures using the P-256 and P-384 curves.
use super::digest_scalar::digest_scalar;
use crate::{
arithmetic::montgomery::*,
cpu, digest,
ec::{
self,
suite_b::{ops::*, private_key},
},
error,
io::der,
limb, pkcs8, rand, sealed, signature,
};
/// An ECDSA signing algorithm.
pub struct EcdsaSigningAlgorithm {
curve: &'static ec::Curve,
private_scalar_ops: &'static PrivateScalarOps,
private_key_ops: &'static PrivateKeyOps,
digest_alg: &'static digest::Algorithm,
pkcs8_template: &'static pkcs8::Template,
format_rs: fn(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize,
id: AlgorithmID,
}
#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
ECDSA_P256_SHA256_FIXED_SIGNING,
ECDSA_P384_SHA384_FIXED_SIGNING,
ECDSA_P256_SHA256_ASN1_SIGNING,
ECDSA_P384_SHA384_ASN1_SIGNING,
}
derive_debug_via_id!(EcdsaSigningAlgorithm);
impl PartialEq for EcdsaSigningAlgorithm {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for EcdsaSigningAlgorithm {}
impl sealed::Sealed for EcdsaSigningAlgorithm {}
/// An ECDSA key pair, used for signing.
pub struct EcdsaKeyPair {
d: Scalar<R>,
nonce_key: NonceRandomKey,
alg: &'static EcdsaSigningAlgorithm,
public_key: PublicKey,
}
derive_debug_via_field!(EcdsaKeyPair, stringify!(EcdsaKeyPair), public_key);
impl EcdsaKeyPair {
/// Generates a new key pair and returns the key pair serialized as a
/// PKCS#8 document.
///
/// The PKCS#8 document will be a v1 `OneAsymmetricKey` with the public key
/// included in the `ECPrivateKey` structure, as described in
/// [RFC 5958 Section 2] and [RFC 5915]. The `ECPrivateKey` structure will
/// not have a `parameters` field so the generated key is compatible with
/// PKCS#11.
///
/// [RFC 5915]: https://tools.ietf.org/html/rfc5915
/// [RFC 5958 Section 2]: https://tools.ietf.org/html/rfc5958#section-2
pub fn generate_pkcs8(
alg: &'static EcdsaSigningAlgorithm,
rng: &dyn rand::SecureRandom,
) -> Result<pkcs8::Document, error::Unspecified> {
let private_key = ec::Seed::generate(alg.curve, rng, cpu::features())?;
let public_key = private_key.compute_public_key()?;
Ok(pkcs8::wrap_key(
&alg.pkcs8_template,
private_key.bytes_less_safe(),
public_key.as_ref(),
))
}
/// Constructs an ECDSA key pair by parsing an unencrypted PKCS#8 v1
/// id-ecPublicKey `ECPrivateKey` key.
///
/// The input must be in PKCS#8 v1 format. It must contain the public key in
/// the `ECPrivateKey` structure; `from_pkcs8()` will verify that the public
/// key and the private key are consistent with each other. The algorithm
/// identifier must identify the curve by name; it must not use an
/// "explicit" encoding of the curve. The `parameters` field of the
/// `ECPrivateKey`, if present, must be the same named curve that is in the
/// algorithm identifier in the PKCS#8 header.
pub fn from_pkcs8(
alg: &'static EcdsaSigningAlgorithm,
pkcs8: &[u8],
) -> Result<Self, error::KeyRejected> {
let key_pair = ec::suite_b::key_pair_from_pkcs8(
alg.curve,
alg.pkcs8_template,
untrusted::Input::from(pkcs8),
cpu::features(),
)?;
let rng = rand::SystemRandom::new(); // TODO: make this a parameter.
Self::new(alg, key_pair, &rng)
}
/// Constructs an ECDSA key pair from the private key and public key bytes
///
/// The private key must encoded as a big-endian fixed-length integer. For
/// example, a P-256 private key must be 32 bytes prefixed with leading
/// zeros as needed.
///
/// The public key is encoding in uncompressed form using the
/// Octet-String-to-Elliptic-Curve-Point algorithm in
/// [SEC 1: Elliptic Curve Cryptography, Version 2.0].
///
/// This is intended for use by code that deserializes key pairs. It is
/// recommended to use `EcdsaKeyPair::from_pkcs8()` (with a PKCS#8-encoded
/// key) instead.
///
/// [SEC 1: Elliptic Curve Cryptography, Version 2.0]:
/// http://www.secg.org/sec1-v2.pdf
pub fn from_private_key_and_public_key(
alg: &'static EcdsaSigningAlgorithm,
private_key: &[u8],
public_key: &[u8],
) -> Result<Self, error::KeyRejected> {
let key_pair = ec::suite_b::key_pair_from_bytes(
alg.curve,
untrusted::Input::from(private_key),
untrusted::Input::from(public_key),
cpu::features(),
)?;
let rng = rand::SystemRandom::new(); // TODO: make this a parameter.
Self::new(alg, key_pair, &rng)
}
fn new(
alg: &'static EcdsaSigningAlgorithm,
key_pair: ec::KeyPair,
rng: &dyn rand::SecureRandom,
) -> Result<Self, error::KeyRejected> {
let (seed, public_key) = key_pair.split();
let d = private_key::private_key_as_scalar(alg.private_key_ops, &seed);
let d = alg
.private_scalar_ops
.scalar_ops
.scalar_product(&d, &alg.private_scalar_ops.oneRR_mod_n);
let nonce_key = NonceRandomKey::new(alg, &seed, rng)?;
Ok(Self {
d,
nonce_key,
alg,
public_key: PublicKey(public_key),
})
}
/// Deprecated. Returns the signature of the `message` using a random nonce
/// generated by `rng`.
pub fn sign(
&self,
rng: &dyn rand::SecureRandom,
message: &[u8],
) -> Result<signature::Signature, error::Unspecified> {
// Step 4 (out of order).
let h = digest::digest(self.alg.digest_alg, message);
// Incorporate `h` into the nonce to hedge against faulty RNGs. (This
// is not an approved random number generator that is mandated in
// the spec.)
let nonce_rng = NonceRandom {
key: &self.nonce_key,
message_digest: &h,
rng,
};
self.sign_digest(h, &nonce_rng)
}
#[cfg(test)]
fn sign_with_fixed_nonce_during_test(
&self,
rng: &dyn rand::SecureRandom,
message: &[u8],
) -> Result<signature::Signature, error::Unspecified> {
// Step 4 (out of order).
let h = digest::digest(self.alg.digest_alg, message);
self.sign_digest(h, rng)
}
/// Returns the signature of message digest `h` using a "random" nonce
/// generated by `rng`.
fn sign_digest(
&self,
h: digest::Digest,
rng: &dyn rand::SecureRandom,
) -> Result<signature::Signature, error::Unspecified> {
// NSA Suite B Implementer's Guide to ECDSA Section 3.4.1: ECDSA
// Signature Generation.
// NSA Guide Prerequisites:
//
// Prior to generating an ECDSA signature, the signatory shall
// obtain:
//
// 1. an authentic copy of the domain parameters,
// 2. a digital signature key pair (d,Q), either generated by a
// method from Appendix A.1, or obtained from a trusted third
// party,
// 3. assurance of the validity of the public key Q (see Appendix
// A.3), and
// 4. assurance that he/she/it actually possesses the associated
// private key d (see [SP800-89] Section 6).
//
// The domain parameters are hard-coded into the source code.
// `EcdsaKeyPair::generate_pkcs8()` can be used to meet the second
// requirement; otherwise, it is up to the user to ensure the key pair
// was obtained from a trusted private key. The constructors for
// `EcdsaKeyPair` ensure that #3 and #4 are met subject to the caveats
// in SP800-89 Section 6.
let ops = self.alg.private_scalar_ops;
let scalar_ops = ops.scalar_ops;
let cops = scalar_ops.common;
let private_key_ops = self.alg.private_key_ops;
for _ in 0..100 {
// XXX: iteration conut?
// Step 1.
let k = private_key::random_scalar(self.alg.private_key_ops, rng)?;
let k_inv = scalar_ops.scalar_inv_to_mont(&k);
// Step 2.
let r = private_key_ops.point_mul_base(&k);
// Step 3.
let r = {
let (x, _) = private_key::affine_from_jacobian(private_key_ops, &r)?;
let x = cops.elem_unencoded(&x);
elem_reduced_to_scalar(cops, &x)
};
if cops.is_zero(&r) {
continue;
}
// Step 4 is done by the caller.
// Step 5.
let e = digest_scalar(scalar_ops, h);
// Step 6.
let s = {
let dr = scalar_ops.scalar_product(&self.d, &r);
let e_plus_dr = scalar_sum(cops, &e, &dr);
scalar_ops.scalar_product(&k_inv, &e_plus_dr)
};
if cops.is_zero(&s) {
continue;
}
// Step 7 with encoding.
return Ok(signature::Signature::new(|sig_bytes| {
(self.alg.format_rs)(scalar_ops, &r, &s, sig_bytes)
}));
}
Err(error::Unspecified)
}
}
/// Generates an ECDSA nonce in a way that attempts to protect against a faulty
/// `SecureRandom`.
struct NonceRandom<'a> {
key: &'a NonceRandomKey,
message_digest: &'a digest::Digest,
rng: &'a dyn rand::SecureRandom,
}
impl core::fmt::Debug for NonceRandom<'_> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("NonceRandom").finish()
}
}
impl rand::sealed::SecureRandom for NonceRandom<'_> {
fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
// Use the same digest algorithm that will be used to digest the
// message. The digest algorithm's output is exactly the right size;
// this is checked below.
//
// XXX(perf): The single iteration will require two digest block
// operations because the amount of data digested is larger than one
// block.
let digest_alg = self.key.0.algorithm();
let mut ctx = digest::Context::new(digest_alg);
// Digest the randomized digest of the private key.
let key = self.key.0.as_ref();
ctx.update(key);
// The random value is digested between the key and the message so that
// the key and the message are not directly digested in the same digest
// block.
assert!(key.len() <= digest_alg.block_len / 2);
{
let mut rand = [0u8; digest::MAX_BLOCK_LEN];
let rand = &mut rand[..digest_alg.block_len - key.len()];
assert!(rand.len() >= dest.len());
self.rng.fill(rand)?;
ctx.update(rand);
}
ctx.update(self.message_digest.as_ref());
let nonce = ctx.finish();
// `copy_from_slice()` panics if the lengths differ, so we don't have
// to separately assert that the lengths are the same.
dest.copy_from_slice(nonce.as_ref());
Ok(())
}
}
impl<'a> sealed::Sealed for NonceRandom<'a> {}
struct NonceRandomKey(digest::Digest);
impl NonceRandomKey {
fn new(
alg: &EcdsaSigningAlgorithm,
seed: &ec::Seed,
rng: &dyn rand::SecureRandom,
) -> Result<Self, error::KeyRejected> {
let mut rand = [0; digest::MAX_OUTPUT_LEN];
let rand = &mut rand[0..alg.curve.elem_scalar_seed_len];
// XXX: `KeyRejected` isn't the right way to model failure of the RNG,
// but to fix that we'd need to break the API by changing the result type.
// TODO: Fix the API in the next breaking release.
rng.fill(rand)
.map_err(|error::Unspecified| error::KeyRejected::rng_failed())?;
let mut ctx = digest::Context::new(alg.digest_alg);
ctx.update(rand);
ctx.update(seed.bytes_less_safe());
Ok(Self(ctx.finish()))
}
}
impl signature::KeyPair for EcdsaKeyPair {
type PublicKey = PublicKey;
fn public_key(&self) -> &Self::PublicKey {
&self.public_key
}
}
#[derive(Clone, Copy)]
pub struct PublicKey(ec::PublicKey);
derive_debug_self_as_ref_hex_bytes!(PublicKey);
impl AsRef<[u8]> for PublicKey {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
fn format_rs_fixed(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize {
let scalar_len = ops.scalar_bytes_len();
let (r_out, rest) = out.split_at_mut(scalar_len);
limb::big_endian_from_limbs(&r.limbs[..ops.common.num_limbs], r_out);
let (s_out, _) = rest.split_at_mut(scalar_len);
limb::big_endian_from_limbs(&s.limbs[..ops.common.num_limbs], s_out);
2 * scalar_len
}
fn format_rs_asn1(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize {
// This assumes `a` is not zero since neither `r` or `s` is allowed to be
// zero.
fn format_integer_tlv(ops: &ScalarOps, a: &Scalar, out: &mut [u8]) -> usize {
let mut fixed = [0u8; ec::SCALAR_MAX_BYTES + 1];
let fixed = &mut fixed[..(ops.scalar_bytes_len() + 1)];
limb::big_endian_from_limbs(&a.limbs[..ops.common.num_limbs], &mut fixed[1..]);
// Since `a_fixed_out` is an extra byte long, it is guaranteed to start
// with a zero.
debug_assert_eq!(fixed[0], 0);
// There must be at least one non-zero byte since `a` isn't zero.
let first_index = fixed.iter().position(|b| *b != 0).unwrap();
// If the first byte has its high bit set, it needs to be prefixed with 0x00.
let first_index = if fixed[first_index] & 0x80 != 0 {
first_index - 1
} else {
first_index
};
let value = &fixed[first_index..];
out[0] = der::Tag::Integer as u8;
// Lengths less than 128 are encoded in one byte.
assert!(value.len() < 128);
out[1] = value.len() as u8;
out[2..][..value.len()].copy_from_slice(&value);
2 + value.len()
}
out[0] = der::Tag::Sequence as u8;
let r_tlv_len = format_integer_tlv(ops, r, &mut out[2..]);
let s_tlv_len = format_integer_tlv(ops, s, &mut out[2..][r_tlv_len..]);
// Lengths less than 128 are encoded in one byte.
let value_len = r_tlv_len + s_tlv_len;
assert!(value_len < 128);
out[1] = value_len as u8;
2 + value_len
}
/// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the
/// P-256 curve and SHA-256.
///
/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA256_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
curve: &ec::suite_b::curve::P256,
private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
private_key_ops: &p256::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA256,
pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
format_rs: format_rs_fixed,
id: AlgorithmID::ECDSA_P256_SHA256_FIXED_SIGNING,
};
/// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the
/// P-384 curve and SHA-384.
///
/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA384_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
curve: &ec::suite_b::curve::P384,
private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
private_key_ops: &p384::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA384,
pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
format_rs: format_rs_fixed,
id: AlgorithmID::ECDSA_P384_SHA384_FIXED_SIGNING,
};
/// Signing of ASN.1 DER-encoded ECDSA signatures using the P-256 curve and
/// SHA-256.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA256_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
curve: &ec::suite_b::curve::P256,
private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
private_key_ops: &p256::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA256,
pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
format_rs: format_rs_asn1,
id: AlgorithmID::ECDSA_P256_SHA256_ASN1_SIGNING,
};
/// Signing of ASN.1 DER-encoded ECDSA signatures using the P-384 curve and
/// SHA-384.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA384_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
curve: &ec::suite_b::curve::P384,
private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
private_key_ops: &p384::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA384,
pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
format_rs: format_rs_asn1,
id: AlgorithmID::ECDSA_P384_SHA384_ASN1_SIGNING,
};
static EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
bytes: include_bytes!("ecPublicKey_p256_pkcs8_v1_template.der"),
alg_id_range: core::ops::Range { start: 8, end: 27 },
curve_id_index: 9,
private_key_index: 0x24,
};
static EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
bytes: include_bytes!("ecPublicKey_p384_pkcs8_v1_template.der"),
alg_id_range: core::ops::Range { start: 8, end: 24 },
curve_id_index: 9,
private_key_index: 0x23,
};
#[cfg(test)]
mod tests {
use crate::{signature, test};
#[test]
fn signature_ecdsa_sign_fixed_test() {
test::run(
test_file!("ecdsa_sign_fixed_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let d = test_case.consume_bytes("d");
let q = test_case.consume_bytes("Q");
let k = test_case.consume_bytes("k");
let expected_result = test_case.consume_bytes("Sig");
let alg = match (curve_name.as_str(), digest_name.as_str()) {
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED_SIGNING,
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED_SIGNING,
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
}
};
let private_key =
signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q).unwrap();
let rng = test::rand::FixedSliceRandom { bytes: &k };
let actual_result = private_key
.sign_with_fixed_nonce_during_test(&rng, &msg)
.unwrap();
assert_eq!(actual_result.as_ref(), &expected_result[..]);
Ok(())
},
);
}
#[test]
fn signature_ecdsa_sign_asn1_test() {
test::run(
test_file!("ecdsa_sign_asn1_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let d = test_case.consume_bytes("d");
let q = test_case.consume_bytes("Q");
let k = test_case.consume_bytes("k");
let expected_result = test_case.consume_bytes("Sig");
let alg = match (curve_name.as_str(), digest_name.as_str()) {
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1_SIGNING,
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1_SIGNING,
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
}
};
let private_key =
signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q).unwrap();
let rng = test::rand::FixedSliceRandom { bytes: &k };
let actual_result = private_key
.sign_with_fixed_nonce_during_test(&rng, &msg)
.unwrap();
assert_eq!(actual_result.as_ref(), &expected_result[..]);
Ok(())
},
);
}
}