blob: 585914b14d3b06bb30061a687f32d3ab85ecf03e [file] [log] [blame]
// Copyright 2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! The [chacha20-poly1305@openssh.com] AEAD-ish construct.
//!
//! This should only be used by SSH implementations. It has a similar, but
//! different API from `ring::aead` because the construct cannot use the same
//! API as `ring::aead` due to the way the construct handles the encrypted
//! packet length.
//!
//! The concatenation of a and b is denoted `a||b`. `K_1` and `K_2` are defined
//! in the [chacha20-poly1305@openssh.com] specification. `packet_length`,
//! `padding_length`, `payload`, and `random padding` are defined in
//! [RFC 4253]. The term `plaintext` is used as a shorthand for
//! `padding_length||payload||random padding`.
//!
//! [chacha20-poly1305@openssh.com]:
//! http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?annotate=HEAD
//! [RFC 4253]: https://tools.ietf.org/html/rfc4253
use super::{
chacha::{self, *},
chacha20_poly1305::derive_poly1305_key,
cpu, poly1305,
polyfill::ChunksFixed,
Nonce, Tag,
};
use crate::{constant_time, endian::*, error};
/// A key for sealing packets.
pub struct SealingKey {
key: Key,
}
impl SealingKey {
/// Constructs a new `SealingKey`.
pub fn new(key_material: &[u8; KEY_LEN]) -> Self {
Self {
key: Key::new(key_material, cpu::features()),
}
}
/// Seals (encrypts and signs) a packet.
///
/// On input, `plaintext_in_ciphertext_out` must contain the unencrypted
/// `packet_length||plaintext` where `plaintext` is the
/// `padding_length||payload||random padding`. It will be overwritten by
/// `encrypted_packet_length||ciphertext`, where `encrypted_packet_length`
/// is encrypted with `K_1` and `ciphertext` is encrypted by `K_2`.
pub fn seal_in_place(
&self,
sequence_number: u32,
plaintext_in_ciphertext_out: &mut [u8],
tag_out: &mut [u8; TAG_LEN],
) {
let mut counter = make_counter(sequence_number);
let poly_key = derive_poly1305_key(&self.key.k_2, counter.increment());
{
let (len_in_out, data_and_padding_in_out) =
plaintext_in_ciphertext_out.split_at_mut(PACKET_LENGTH_LEN);
self.key
.k_1
.encrypt_in_place(make_counter(sequence_number), len_in_out);
self.key
.k_2
.encrypt_in_place(counter, data_and_padding_in_out);
}
let Tag(tag) = poly1305::sign(poly_key, plaintext_in_ciphertext_out);
tag_out.copy_from_slice(tag.as_ref());
}
}
/// A key for opening packets.
pub struct OpeningKey {
key: Key,
}
impl OpeningKey {
/// Constructs a new `OpeningKey`.
pub fn new(key_material: &[u8; KEY_LEN]) -> Self {
Self {
key: Key::new(key_material, cpu::features()),
}
}
/// Returns the decrypted, but unauthenticated, packet length.
///
/// Importantly, the result won't be authenticated until `open_in_place` is
/// called.
pub fn decrypt_packet_length(
&self,
sequence_number: u32,
encrypted_packet_length: [u8; PACKET_LENGTH_LEN],
) -> [u8; PACKET_LENGTH_LEN] {
let mut packet_length = encrypted_packet_length;
let counter = make_counter(sequence_number);
self.key.k_1.encrypt_in_place(counter, &mut packet_length);
packet_length
}
/// Opens (authenticates and decrypts) a packet.
///
/// `ciphertext_in_plaintext_out` must be of the form
/// `encrypted_packet_length||ciphertext` where `ciphertext` is the
/// encrypted `plaintext`. When the function succeeds the ciphertext is
/// replaced by the plaintext and the result is `Ok(plaintext)`, where
/// `plaintext` is `&ciphertext_in_plaintext_out[PACKET_LENGTH_LEN..]`;
/// otherwise the contents of `ciphertext_in_plaintext_out` are unspecified
/// and must not be used.
pub fn open_in_place<'a>(
&self,
sequence_number: u32,
ciphertext_in_plaintext_out: &'a mut [u8],
tag: &[u8; TAG_LEN],
) -> Result<&'a [u8], error::Unspecified> {
let mut counter = make_counter(sequence_number);
// We must verify the tag before decrypting so that
// `ciphertext_in_plaintext_out` is unmodified if verification fails.
// This is beyond what we guarantee.
let poly_key = derive_poly1305_key(&self.key.k_2, counter.increment());
verify(poly_key, ciphertext_in_plaintext_out, tag)?;
let plaintext_in_ciphertext_out = &mut ciphertext_in_plaintext_out[PACKET_LENGTH_LEN..];
self.key
.k_2
.encrypt_in_place(counter, plaintext_in_ciphertext_out);
Ok(plaintext_in_ciphertext_out)
}
}
struct Key {
k_1: chacha::Key,
k_2: chacha::Key,
}
impl Key {
fn new(key_material: &[u8; KEY_LEN], cpu_features: cpu::Features) -> Self {
// The first half becomes K_2 and the second half becomes K_1.
let &[k_2, k_1]: &[[u8; chacha::KEY_LEN]; 2] = key_material.chunks_fixed();
Self {
k_1: chacha::Key::new(k_1, cpu_features),
k_2: chacha::Key::new(k_2, cpu_features),
}
}
}
fn make_counter(sequence_number: u32) -> Counter {
let nonce = [
BigEndian::ZERO,
BigEndian::ZERO,
BigEndian::from(sequence_number),
];
Counter::zero(Nonce::assume_unique_for_key(*(nonce.as_byte_array())))
}
/// The length of key.
pub const KEY_LEN: usize = chacha::KEY_LEN * 2;
/// The length in bytes of the `packet_length` field in a SSH packet.
pub const PACKET_LENGTH_LEN: usize = 4; // 32 bits
/// The length in bytes of an authentication tag.
pub const TAG_LEN: usize = super::TAG_LEN;
fn verify(key: poly1305::Key, msg: &[u8], tag: &[u8; TAG_LEN]) -> Result<(), error::Unspecified> {
let Tag(calculated_tag) = poly1305::sign(key, msg);
constant_time::verify_slices_are_equal(calculated_tag.as_ref(), tag)
}