blob: d1d1aaf64da0ed9d5c012472ddc017a8eb277d67 [file] [log] [blame]
use core::num::Wrapping;
/// An `Encoding` of a type `T` can be converted to/from its byte
/// representation without any byte swapping or other computation.
///
/// The `Self: Copy` constraint addresses `clippy::declare_interior_mutable_const`.
pub trait Encoding<T>: From<T> + Into<T>
where
Self: Copy,
{
const ZERO: Self;
}
/// Work around the inability to implement `AsRef` for arrays of `Encoding`s
/// due to the coherence rules.
pub trait ArrayEncoding<T> {
fn as_byte_array(&self) -> &T;
}
/// Work around the inability to implement `from` for arrays of `Encoding`s
/// due to the coherence rules.
pub trait FromByteArray<T> {
fn from_byte_array(a: &T) -> Self;
}
macro_rules! define_endian {
($endian:ident) => {
#[repr(transparent)]
pub struct $endian<T>(T);
impl<T> Copy for $endian<T> where T: Copy {}
impl<T> Clone for $endian<T>
where
T: Clone,
{
#[inline]
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<T> core::ops::BitXorAssign for $endian<T>
where
T: core::ops::BitXorAssign,
{
#[inline(always)]
fn bitxor_assign(&mut self, a: Self) {
self.0 ^= a.0;
}
}
};
}
macro_rules! impl_from_byte_array {
($endian:ident, $base:ident, $elems:expr) => {
impl FromByteArray<[u8; $elems * core::mem::size_of::<$base>()]>
for [$endian<$base>; $elems]
{
#[inline]
fn from_byte_array(a: &[u8; $elems * core::mem::size_of::<$base>()]) -> Self {
unsafe { core::mem::transmute_copy(a) }
}
}
};
}
macro_rules! impl_array_encoding {
($endian:ident, $base:ident, $elems:expr) => {
impl ArrayEncoding<[u8; $elems * core::mem::size_of::<$base>()]>
for [$endian<$base>; $elems]
{
#[inline]
fn as_byte_array(&self) -> &[u8; $elems * core::mem::size_of::<$base>()] {
let as_bytes_ptr =
self.as_ptr() as *const [u8; $elems * core::mem::size_of::<$base>()];
unsafe { &*as_bytes_ptr }
}
}
impl_from_byte_array!($endian, $base, $elems);
};
}
macro_rules! impl_endian {
($endian:ident, $base:ident, $to_endian:ident, $from_endian:ident, $size:expr) => {
impl Encoding<$base> for $endian<$base> {
const ZERO: Self = Self(0);
}
impl From<[u8; $size]> for $endian<$base> {
#[inline]
fn from(bytes: [u8; $size]) -> Self {
Self($base::from_ne_bytes(bytes))
}
}
impl From<$endian<$base>> for [u8; $size] {
#[inline]
fn from(encoded: $endian<$base>) -> Self {
$base::to_ne_bytes(encoded.0)
}
}
impl From<$base> for $endian<$base> {
#[inline]
fn from(value: $base) -> Self {
Self($base::$to_endian(value))
}
}
impl From<Wrapping<$base>> for $endian<$base> {
#[inline]
fn from(Wrapping(value): Wrapping<$base>) -> Self {
Self($base::$to_endian(value))
}
}
impl From<$endian<$base>> for $base {
#[inline]
fn from($endian(value): $endian<$base>) -> Self {
$base::$from_endian(value)
}
}
impl_array_encoding!($endian, $base, 1);
impl_array_encoding!($endian, $base, 2);
impl_array_encoding!($endian, $base, 3);
impl_array_encoding!($endian, $base, 4);
impl_array_encoding!($endian, $base, 8);
};
}
define_endian!(BigEndian);
define_endian!(LittleEndian);
impl_endian!(BigEndian, u32, to_be, from_be, 4);
impl_endian!(BigEndian, u64, to_be, from_be, 8);
impl_endian!(LittleEndian, u32, to_le, from_le, 4);
impl_endian!(LittleEndian, u64, to_le, from_le, 8);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_big_endian() {
let x = BigEndian::from(1u32);
assert_eq!(u32::from(x), 1);
}
}