blob: 52a13a614addb34a5819aeafc294d643d09116c6 [file] [log] [blame]
#![doc(hidden)]
//! `CodedInputStream` and `CodedOutputStream` implementations
use std::io;
use std::io::BufRead;
use std::io::Read;
use std::mem;
use std::slice;
#[cfg(feature = "bytes")]
use crate::chars::Chars;
#[cfg(feature = "bytes")]
use bytes::Bytes;
use crate::buf_read_iter::BufReadIter;
use crate::enums::ProtobufEnum;
use crate::error::ProtobufError;
use crate::error::ProtobufResult;
use crate::error::WireError;
use crate::message::Message;
use crate::unknown::UnknownValue;
use crate::wire_format;
use crate::zigzag::decode_zig_zag_32;
use crate::zigzag::decode_zig_zag_64;
/// Default recursion level limit. 100 is the default value of C++'s implementation.
const DEFAULT_RECURSION_LIMIT: u32 = 100;
/// Max allocated vec when reading length-delimited from unknown input stream
pub(crate) const READ_RAW_BYTES_MAX_ALLOC: usize = 10_000_000;
/// Buffered read with handy utilities.
pub struct CodedInputStream<'a> {
source: BufReadIter<'a>,
recursion_level: u32,
recursion_limit: u32,
}
impl<'a> CodedInputStream<'a> {
/// Wrap a `Read`.
///
/// Note resulting `CodedInputStream` is buffered even if `Read` is not.
pub fn new(read: &'a mut dyn Read) -> CodedInputStream<'a> {
CodedInputStream::from_buf_read_iter(BufReadIter::from_read(read))
}
/// Create from `BufRead`.
///
/// `CodedInputStream` will utilize `BufRead` buffer.
pub fn from_buffered_reader(buf_read: &'a mut dyn BufRead) -> CodedInputStream<'a> {
CodedInputStream::from_buf_read_iter(BufReadIter::from_buf_read(buf_read))
}
/// Read from byte slice
pub fn from_bytes(bytes: &'a [u8]) -> CodedInputStream<'a> {
CodedInputStream::from_buf_read_iter(BufReadIter::from_byte_slice(bytes))
}
/// Read from `Bytes`.
///
/// `CodedInputStream` operations like
/// [`read_carllerche_bytes`](crate::CodedInputStream::read_carllerche_bytes)
/// will return a shared copy of this bytes object.
#[cfg(feature = "bytes")]
pub fn from_carllerche_bytes(bytes: &'a Bytes) -> CodedInputStream<'a> {
CodedInputStream::from_buf_read_iter(BufReadIter::from_bytes(bytes))
}
fn from_buf_read_iter(source: BufReadIter<'a>) -> CodedInputStream<'a> {
CodedInputStream {
source: source,
recursion_level: 0,
recursion_limit: DEFAULT_RECURSION_LIMIT,
}
}
/// Set the recursion limit.
pub fn set_recursion_limit(&mut self, limit: u32) {
self.recursion_limit = limit;
}
#[inline]
pub(crate) fn incr_recursion(&mut self) -> ProtobufResult<()> {
if self.recursion_level >= self.recursion_limit {
return Err(ProtobufError::WireError(WireError::OverRecursionLimit));
}
self.recursion_level += 1;
Ok(())
}
#[inline]
pub(crate) fn decr_recursion(&mut self) {
self.recursion_level -= 1;
}
/// How many bytes processed
pub fn pos(&self) -> u64 {
self.source.pos()
}
/// How many bytes until current limit
pub fn bytes_until_limit(&self) -> u64 {
self.source.bytes_until_limit()
}
/// Read bytes into given `buf`.
///
/// Return `0` on EOF.
// TODO: overload with `Read::read`
pub fn read(&mut self, buf: &mut [u8]) -> ProtobufResult<()> {
self.source.read_exact(buf)?;
Ok(())
}
/// Read exact number of bytes as `Bytes` object.
///
/// This operation returns a shared view if `CodedInputStream` is
/// constructed with `Bytes` parameter.
#[cfg(feature = "bytes")]
fn read_raw_callerche_bytes(&mut self, count: usize) -> ProtobufResult<Bytes> {
self.source.read_exact_bytes(count)
}
/// Read one byte
#[inline(always)]
pub fn read_raw_byte(&mut self) -> ProtobufResult<u8> {
self.source.read_byte()
}
/// Push new limit, return previous limit.
pub fn push_limit(&mut self, limit: u64) -> ProtobufResult<u64> {
self.source.push_limit(limit)
}
/// Restore previous limit.
pub fn pop_limit(&mut self, old_limit: u64) {
self.source.pop_limit(old_limit);
}
/// Are we at EOF?
#[inline(always)]
pub fn eof(&mut self) -> ProtobufResult<bool> {
self.source.eof()
}
/// Check we are at EOF.
///
/// Return error if we are not at EOF.
pub fn check_eof(&mut self) -> ProtobufResult<()> {
let eof = self.eof()?;
if !eof {
return Err(ProtobufError::WireError(WireError::UnexpectedEof));
}
Ok(())
}
fn read_raw_varint64_slow(&mut self) -> ProtobufResult<u64> {
let mut r: u64 = 0;
let mut i = 0;
loop {
if i == 10 {
return Err(ProtobufError::WireError(WireError::IncorrectVarint));
}
let b = self.read_raw_byte()?;
// TODO: may overflow if i == 9
r = r | (((b & 0x7f) as u64) << (i * 7));
i += 1;
if b < 0x80 {
return Ok(r);
}
}
}
/// Read varint
#[inline(always)]
pub fn read_raw_varint64(&mut self) -> ProtobufResult<u64> {
'slow: loop {
let ret;
let consume;
loop {
let rem = self.source.remaining_in_buf();
if rem.len() >= 1 {
// most varints are in practice fit in 1 byte
if rem[0] < 0x80 {
ret = rem[0] as u64;
consume = 1;
} else {
// handle case of two bytes too
if rem.len() >= 2 && rem[1] < 0x80 {
ret = (rem[0] & 0x7f) as u64 | (rem[1] as u64) << 7;
consume = 2;
} else if rem.len() >= 10 {
// Read from array when buf at at least 10 bytes,
// max len for varint.
let mut r: u64 = 0;
let mut i: usize = 0;
{
let rem = rem;
loop {
if i == 10 {
return Err(ProtobufError::WireError(
WireError::IncorrectVarint,
));
}
let b = if true {
// skip range check
unsafe { *rem.get_unchecked(i) }
} else {
rem[i]
};
// TODO: may overflow if i == 9
r = r | (((b & 0x7f) as u64) << (i * 7));
i += 1;
if b < 0x80 {
break;
}
}
}
consume = i;
ret = r;
} else {
break 'slow;
}
}
} else {
break 'slow;
}
break;
}
self.source.consume(consume);
return Ok(ret);
}
self.read_raw_varint64_slow()
}
/// Read varint
#[inline(always)]
pub fn read_raw_varint32(&mut self) -> ProtobufResult<u32> {
self.read_raw_varint64().map(|v| v as u32)
}
/// Read little-endian 32-bit integer
pub fn read_raw_little_endian32(&mut self) -> ProtobufResult<u32> {
let mut r = 0u32;
let bytes: &mut [u8] = unsafe {
let p: *mut u8 = mem::transmute(&mut r);
slice::from_raw_parts_mut(p, mem::size_of::<u32>())
};
self.read(bytes)?;
Ok(r.to_le())
}
/// Read little-endian 64-bit integer
pub fn read_raw_little_endian64(&mut self) -> ProtobufResult<u64> {
let mut r = 0u64;
let bytes: &mut [u8] = unsafe {
let p: *mut u8 = mem::transmute(&mut r);
slice::from_raw_parts_mut(p, mem::size_of::<u64>())
};
self.read(bytes)?;
Ok(r.to_le())
}
/// Read tag
#[inline]
pub fn read_tag(&mut self) -> ProtobufResult<wire_format::Tag> {
let v = self.read_raw_varint32()?;
match wire_format::Tag::new(v) {
Some(tag) => Ok(tag),
None => Err(ProtobufError::WireError(WireError::IncorrectTag(v))),
}
}
/// Read tag, return it is pair (field number, wire type)
#[inline]
pub fn read_tag_unpack(&mut self) -> ProtobufResult<(u32, wire_format::WireType)> {
self.read_tag().map(|t| t.unpack())
}
/// Read `double`
pub fn read_double(&mut self) -> ProtobufResult<f64> {
let bits = self.read_raw_little_endian64()?;
unsafe { Ok(mem::transmute::<u64, f64>(bits)) }
}
/// Read `float`
pub fn read_float(&mut self) -> ProtobufResult<f32> {
let bits = self.read_raw_little_endian32()?;
unsafe { Ok(mem::transmute::<u32, f32>(bits)) }
}
/// Read `int64`
pub fn read_int64(&mut self) -> ProtobufResult<i64> {
self.read_raw_varint64().map(|v| v as i64)
}
/// Read `int32`
pub fn read_int32(&mut self) -> ProtobufResult<i32> {
self.read_raw_varint32().map(|v| v as i32)
}
/// Read `uint64`
pub fn read_uint64(&mut self) -> ProtobufResult<u64> {
self.read_raw_varint64()
}
/// Read `uint32`
pub fn read_uint32(&mut self) -> ProtobufResult<u32> {
self.read_raw_varint32()
}
/// Read `sint64`
pub fn read_sint64(&mut self) -> ProtobufResult<i64> {
self.read_uint64().map(decode_zig_zag_64)
}
/// Read `sint32`
pub fn read_sint32(&mut self) -> ProtobufResult<i32> {
self.read_uint32().map(decode_zig_zag_32)
}
/// Read `fixed64`
pub fn read_fixed64(&mut self) -> ProtobufResult<u64> {
self.read_raw_little_endian64()
}
/// Read `fixed32`
pub fn read_fixed32(&mut self) -> ProtobufResult<u32> {
self.read_raw_little_endian32()
}
/// Read `sfixed64`
pub fn read_sfixed64(&mut self) -> ProtobufResult<i64> {
self.read_raw_little_endian64().map(|v| v as i64)
}
/// Read `sfixed32`
pub fn read_sfixed32(&mut self) -> ProtobufResult<i32> {
self.read_raw_little_endian32().map(|v| v as i32)
}
/// Read `bool`
pub fn read_bool(&mut self) -> ProtobufResult<bool> {
self.read_raw_varint32().map(|v| v != 0)
}
/// Read `enum` as `ProtobufEnum`
pub fn read_enum<E: ProtobufEnum>(&mut self) -> ProtobufResult<E> {
let i = self.read_int32()?;
match ProtobufEnum::from_i32(i) {
Some(e) => Ok(e),
None => Err(ProtobufError::WireError(WireError::InvalidEnumValue(i))),
}
}
/// Read `repeated` packed `double`
pub fn read_repeated_packed_double_into(
&mut self,
target: &mut Vec<f64>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
target.reserve((len / 4) as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_double()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read `repeated` packed `float`
pub fn read_repeated_packed_float_into(&mut self, target: &mut Vec<f32>) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
target.reserve((len / 4) as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_float()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read `repeated` packed `int64`
pub fn read_repeated_packed_int64_into(&mut self, target: &mut Vec<i64>) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len as u64)?;
while !self.eof()? {
target.push(self.read_int64()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `int32`
pub fn read_repeated_packed_int32_into(&mut self, target: &mut Vec<i32>) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_int32()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `uint64`
pub fn read_repeated_packed_uint64_into(
&mut self,
target: &mut Vec<u64>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_uint64()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `uint32`
pub fn read_repeated_packed_uint32_into(
&mut self,
target: &mut Vec<u32>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_uint32()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `sint64`
pub fn read_repeated_packed_sint64_into(
&mut self,
target: &mut Vec<i64>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_sint64()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `sint32`
pub fn read_repeated_packed_sint32_into(
&mut self,
target: &mut Vec<i32>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_sint32()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `fixed64`
pub fn read_repeated_packed_fixed64_into(
&mut self,
target: &mut Vec<u64>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
target.reserve((len / 8) as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_fixed64()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `fixed32`
pub fn read_repeated_packed_fixed32_into(
&mut self,
target: &mut Vec<u32>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
target.reserve((len / 4) as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_fixed32()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `sfixed64`
pub fn read_repeated_packed_sfixed64_into(
&mut self,
target: &mut Vec<i64>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
target.reserve((len / 8) as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_sfixed64()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `sfixed32`
pub fn read_repeated_packed_sfixed32_into(
&mut self,
target: &mut Vec<i32>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
target.reserve((len / 4) as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_sfixed32()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `bool`
pub fn read_repeated_packed_bool_into(&mut self, target: &mut Vec<bool>) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
// regular bool value is 1-byte size
target.reserve(len as usize);
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_bool()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read repeated packed `enum` into `ProtobufEnum`
pub fn read_repeated_packed_enum_into<E: ProtobufEnum>(
&mut self,
target: &mut Vec<E>,
) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
while !self.eof()? {
target.push(self.read_enum()?);
}
self.pop_limit(old_limit);
Ok(())
}
/// Read `UnknownValue`
pub fn read_unknown(
&mut self,
wire_type: wire_format::WireType,
) -> ProtobufResult<UnknownValue> {
match wire_type {
wire_format::WireTypeVarint => {
self.read_raw_varint64().map(|v| UnknownValue::Varint(v))
}
wire_format::WireTypeFixed64 => self.read_fixed64().map(|v| UnknownValue::Fixed64(v)),
wire_format::WireTypeFixed32 => self.read_fixed32().map(|v| UnknownValue::Fixed32(v)),
wire_format::WireTypeLengthDelimited => {
let len = self.read_raw_varint32()?;
self.read_raw_bytes(len)
.map(|v| UnknownValue::LengthDelimited(v))
}
_ => Err(ProtobufError::WireError(WireError::UnexpectedWireType(
wire_type,
))),
}
}
/// Skip field
pub fn skip_field(&mut self, wire_type: wire_format::WireType) -> ProtobufResult<()> {
self.read_unknown(wire_type).map(|_| ())
}
/// Read raw bytes into the supplied vector. The vector will be resized as needed and
/// overwritten.
pub fn read_raw_bytes_into(&mut self, count: u32, target: &mut Vec<u8>) -> ProtobufResult<()> {
if false {
// Master uses this version, but keep existing version for a while
// to avoid possible breakages.
return self.source.read_exact_to_vec(count as usize, target);
}
let count = count as usize;
// TODO: also do some limits when reading from unlimited source
if count as u64 > self.source.bytes_until_limit() {
return Err(ProtobufError::WireError(WireError::TruncatedMessage));
}
unsafe {
target.set_len(0);
}
if count >= READ_RAW_BYTES_MAX_ALLOC {
// avoid calling `reserve` on buf with very large buffer: could be a malformed message
let mut take = self.by_ref().take(count as u64);
take.read_to_end(target)?;
if target.len() != count {
return Err(ProtobufError::WireError(WireError::TruncatedMessage));
}
} else {
target.reserve(count);
unsafe {
target.set_len(count);
}
self.source.read_exact(target)?;
}
Ok(())
}
/// Read exact number of bytes
pub fn read_raw_bytes(&mut self, count: u32) -> ProtobufResult<Vec<u8>> {
let mut r = Vec::new();
self.read_raw_bytes_into(count, &mut r)?;
Ok(r)
}
/// Skip exact number of bytes
pub fn skip_raw_bytes(&mut self, count: u32) -> ProtobufResult<()> {
// TODO: make it more efficient
self.read_raw_bytes(count).map(|_| ())
}
/// Read `bytes` field, length delimited
pub fn read_bytes(&mut self) -> ProtobufResult<Vec<u8>> {
let mut r = Vec::new();
self.read_bytes_into(&mut r)?;
Ok(r)
}
/// Read `bytes` field, length delimited
#[cfg(feature = "bytes")]
pub fn read_carllerche_bytes(&mut self) -> ProtobufResult<Bytes> {
let len = self.read_raw_varint32()?;
self.read_raw_callerche_bytes(len as usize)
}
/// Read `string` field, length delimited
#[cfg(feature = "bytes")]
pub fn read_carllerche_chars(&mut self) -> ProtobufResult<Chars> {
let bytes = self.read_carllerche_bytes()?;
Ok(Chars::from_bytes(bytes)?)
}
/// Read `bytes` field, length delimited
pub fn read_bytes_into(&mut self, target: &mut Vec<u8>) -> ProtobufResult<()> {
let len = self.read_raw_varint32()?;
self.read_raw_bytes_into(len, target)?;
Ok(())
}
/// Read `string` field, length delimited
pub fn read_string(&mut self) -> ProtobufResult<String> {
let mut r = String::new();
self.read_string_into(&mut r)?;
Ok(r)
}
/// Read `string` field, length delimited
pub fn read_string_into(&mut self, target: &mut String) -> ProtobufResult<()> {
target.clear();
// take target's buffer
let mut vec = mem::replace(target, String::new()).into_bytes();
self.read_bytes_into(&mut vec)?;
let s = match String::from_utf8(vec) {
Ok(t) => t,
Err(_) => return Err(ProtobufError::WireError(WireError::Utf8Error)),
};
*target = s;
Ok(())
}
/// Read message, do not check if message is initialized
pub fn merge_message<M: Message>(&mut self, message: &mut M) -> ProtobufResult<()> {
let len = self.read_raw_varint64()?;
let old_limit = self.push_limit(len)?;
message.merge_from(self)?;
self.pop_limit(old_limit);
Ok(())
}
/// Read message
pub fn read_message<M: Message>(&mut self) -> ProtobufResult<M> {
let mut r: M = Message::new();
self.merge_message(&mut r)?;
r.check_initialized()?;
Ok(r)
}
}
impl<'a> Read for CodedInputStream<'a> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.source.read(buf).map_err(Into::into)
}
}
impl<'a> BufRead for CodedInputStream<'a> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
self.source.fill_buf().map_err(Into::into)
}
fn consume(&mut self, amt: usize) {
self.source.consume(amt)
}
}
/// Helper internal utility, should not be used directly
#[doc(hidden)]
pub trait WithCodedInputStream {
fn with_coded_input_stream<T, F>(self, cb: F) -> ProtobufResult<T>
where
F: FnOnce(&mut CodedInputStream) -> ProtobufResult<T>;
}
impl<'a> WithCodedInputStream for &'a mut (dyn Read + 'a) {
fn with_coded_input_stream<T, F>(self, cb: F) -> ProtobufResult<T>
where
F: FnOnce(&mut CodedInputStream) -> ProtobufResult<T>,
{
let mut is = CodedInputStream::new(self);
let r = cb(&mut is)?;
is.check_eof()?;
Ok(r)
}
}
impl<'a> WithCodedInputStream for &'a mut (dyn BufRead + 'a) {
fn with_coded_input_stream<T, F>(self, cb: F) -> ProtobufResult<T>
where
F: FnOnce(&mut CodedInputStream) -> ProtobufResult<T>,
{
let mut is = CodedInputStream::from_buffered_reader(self);
let r = cb(&mut is)?;
is.check_eof()?;
Ok(r)
}
}
impl<'a> WithCodedInputStream for &'a [u8] {
fn with_coded_input_stream<T, F>(self, cb: F) -> ProtobufResult<T>
where
F: FnOnce(&mut CodedInputStream) -> ProtobufResult<T>,
{
let mut is = CodedInputStream::from_bytes(self);
let r = cb(&mut is)?;
is.check_eof()?;
Ok(r)
}
}
#[cfg(feature = "bytes")]
impl<'a> WithCodedInputStream for &'a Bytes {
fn with_coded_input_stream<T, F>(self, cb: F) -> ProtobufResult<T>
where
F: FnOnce(&mut CodedInputStream) -> ProtobufResult<T>,
{
let mut is = CodedInputStream::from_carllerche_bytes(self);
let r = cb(&mut is)?;
is.check_eof()?;
Ok(r)
}
}
#[cfg(test)]
mod test {
use std::fmt::Debug;
use std::io;
use std::io::BufRead;
use std::io::Read;
use crate::error::ProtobufError;
use crate::error::ProtobufResult;
use crate::hex::decode_hex;
use super::CodedInputStream;
use super::READ_RAW_BYTES_MAX_ALLOC;
fn test_read_partial<F>(hex: &str, mut callback: F)
where
F: FnMut(&mut CodedInputStream),
{
let d = decode_hex(hex);
let mut reader = io::Cursor::new(d);
let mut is = CodedInputStream::from_buffered_reader(&mut reader as &mut dyn BufRead);
assert_eq!(0, is.pos());
callback(&mut is);
}
fn test_read<F>(hex: &str, mut callback: F)
where
F: FnMut(&mut CodedInputStream),
{
let len = decode_hex(hex).len();
test_read_partial(hex, |reader| {
callback(reader);
assert!(reader.eof().expect("eof"));
assert_eq!(len as u64, reader.pos());
});
}
fn test_read_v<F, V>(hex: &str, v: V, mut callback: F)
where
F: FnMut(&mut CodedInputStream) -> ProtobufResult<V>,
V: PartialEq + Debug,
{
test_read(hex, |reader| {
assert_eq!(v, callback(reader).unwrap());
});
}
#[test]
fn test_input_stream_read_raw_byte() {
test_read("17", |is| {
assert_eq!(23, is.read_raw_byte().unwrap());
});
}
#[test]
fn test_input_stream_read_raw_varint() {
test_read_v("07", 7, |reader| reader.read_raw_varint32());
test_read_v("07", 7, |reader| reader.read_raw_varint64());
test_read_v("96 01", 150, |reader| reader.read_raw_varint32());
test_read_v("96 01", 150, |reader| reader.read_raw_varint64());
test_read_v(
"ff ff ff ff ff ff ff ff ff 01",
0xffffffffffffffff,
|reader| reader.read_raw_varint64(),
);
test_read_v("ff ff ff ff 0f", 0xffffffff, |reader| {
reader.read_raw_varint32()
});
test_read_v("ff ff ff ff 0f", 0xffffffff, |reader| {
reader.read_raw_varint64()
});
}
#[test]
fn test_input_stream_read_raw_vaint_malformed() {
// varint cannot have length > 10
test_read_partial("ff ff ff ff ff ff ff ff ff ff 01", |reader| {
let result = reader.read_raw_varint64();
match result {
// TODO: make an enum variant
Err(ProtobufError::WireError(..)) => (),
_ => panic!(),
}
});
test_read_partial("ff ff ff ff ff ff ff ff ff ff 01", |reader| {
let result = reader.read_raw_varint32();
match result {
// TODO: make an enum variant
Err(ProtobufError::WireError(..)) => (),
_ => panic!(),
}
});
}
#[test]
fn test_input_stream_read_raw_varint_unexpected_eof() {
test_read_partial("96 97", |reader| {
let result = reader.read_raw_varint32();
match result {
Err(ProtobufError::WireError(..)) => (),
_ => panic!(),
}
});
}
#[test]
fn test_input_stream_read_raw_varint_pos() {
test_read_partial("95 01 98", |reader| {
assert_eq!(149, reader.read_raw_varint32().unwrap());
assert_eq!(2, reader.pos());
});
}
#[test]
fn test_input_stream_read_int32() {
test_read_v("02", 2, |reader| reader.read_int32());
}
#[test]
fn test_input_stream_read_float() {
test_read_v("95 73 13 61", 17e19, |is| is.read_float());
}
#[test]
fn test_input_stream_read_double() {
test_read_v("40 d5 ab 68 b3 07 3d 46", 23e29, |is| is.read_double());
}
#[test]
fn test_input_stream_skip_raw_bytes() {
test_read("", |reader| {
reader.skip_raw_bytes(0).unwrap();
});
test_read("aa bb", |reader| {
reader.skip_raw_bytes(2).unwrap();
});
test_read("aa bb cc dd ee ff", |reader| {
reader.skip_raw_bytes(6).unwrap();
});
}
#[test]
fn test_input_stream_read_raw_bytes() {
test_read("", |reader| {
assert_eq!(
Vec::from(&b""[..]),
reader.read_raw_bytes(0).expect("read_raw_bytes")
);
})
}
#[test]
fn test_input_stream_limits() {
test_read("aa bb cc", |is| {
let old_limit = is.push_limit(1).unwrap();
assert_eq!(1, is.bytes_until_limit());
let r1 = is.read_raw_bytes(1).unwrap();
assert_eq!(&[0xaa as u8], &r1[..]);
is.pop_limit(old_limit);
let r2 = is.read_raw_bytes(2).unwrap();
assert_eq!(&[0xbb as u8, 0xcc], &r2[..]);
});
}
#[test]
fn test_input_stream_io_read() {
test_read("aa bb cc", |is| {
let mut buf = [0; 3];
assert_eq!(Read::read(is, &mut buf).expect("io::Read"), 3);
assert_eq!(buf, [0xaa, 0xbb, 0xcc]);
});
}
#[test]
fn test_input_stream_io_bufread() {
test_read("aa bb cc", |is| {
assert_eq!(
BufRead::fill_buf(is).expect("io::BufRead::fill_buf"),
&[0xaa, 0xbb, 0xcc]
);
BufRead::consume(is, 3);
});
}
#[test]
fn test_input_stream_read_raw_bytes_into_huge() {
let mut v = Vec::new();
for i in 0..READ_RAW_BYTES_MAX_ALLOC + 1000 {
v.push((i % 10) as u8);
}
let mut slice: &[u8] = v.as_slice();
let mut is = CodedInputStream::new(&mut slice);
let mut buf = Vec::new();
is.read_raw_bytes_into(READ_RAW_BYTES_MAX_ALLOC as u32 + 10, &mut buf)
.expect("read");
assert_eq!(READ_RAW_BYTES_MAX_ALLOC + 10, buf.len());
buf.clear();
is.read_raw_bytes_into(1000 - 10, &mut buf).expect("read");
assert_eq!(1000 - 10, buf.len());
assert!(is.eof().expect("eof"));
}
}