blob: 0b4b5086f036fc99c0a353ffc93d23e12c7e9773 [file] [log] [blame]
use crate::coord::ranged1d::{
AsRangedCoord, DiscreteRanged, KeyPointHint, NoDefaultFormatting, Ranged, ValueFormatter,
};
use std::ops::Range;
/// Grouping the value in the coordinate specification.
///
/// This combinator doesn't change the coordinate mapping behavior. But it changes how
/// the key point is generated, this coordinate specification will enforce that only the first value in each group
/// can be emitted as the bold key points.
///
/// This is useful, for example, when we have an X axis is a integer and denotes days.
/// And we are expecting the tick mark denotes weeks, in this way we can make the range
/// spec grouping by 7 elements.
/// With the help of the GroupBy decorator, this can be archived quite easily:
///```rust
///use plotters::prelude::*;
///let mut buf = vec![0;1024*768*3];
///let area = BitMapBackend::with_buffer(buf.as_mut(), (1024, 768)).into_drawing_area();
///let chart = ChartBuilder::on(&area)
/// .build_ranged((0..100).group_by(7), 0..100)
/// .unwrap();
///```
///
/// To apply this combinator, call [ToGroupByRange::group_by](trait.ToGroupByRange.html#tymethod.group_by) method on any discrete coordinate spec.
#[derive(Clone)]
pub struct GroupBy<T: DiscreteRanged>(T, usize);
/// The trait that provides method `Self::group_by` function which creates a
/// `GroupBy` decorated ranged value.
pub trait ToGroupByRange: AsRangedCoord + Sized
where
Self::CoordDescType: DiscreteRanged,
{
/// Make a grouping ranged value, see the documentation for `GroupBy` for details.
///
/// - `value`: The number of values we want to group it
/// - **return**: The newly created grouping range specification
fn group_by(self, value: usize) -> GroupBy<<Self as AsRangedCoord>::CoordDescType> {
GroupBy(self.into(), value)
}
}
impl<T: AsRangedCoord + Sized> ToGroupByRange for T where T::CoordDescType: DiscreteRanged {}
impl<T: DiscreteRanged> DiscreteRanged for GroupBy<T> {
fn size(&self) -> usize {
(self.0.size() + self.1 - 1) / self.1
}
fn index_of(&self, value: &Self::ValueType) -> Option<usize> {
self.0.index_of(value).map(|idx| idx / self.1)
}
fn from_index(&self, index: usize) -> Option<Self::ValueType> {
self.0.from_index(index * self.1)
}
}
impl<T, R: DiscreteRanged<ValueType = T> + ValueFormatter<T>> ValueFormatter<T> for GroupBy<R> {
fn format(value: &T) -> String {
R::format(value)
}
}
impl<T: DiscreteRanged> Ranged for GroupBy<T> {
type FormatOption = NoDefaultFormatting;
type ValueType = T::ValueType;
fn map(&self, value: &T::ValueType, limit: (i32, i32)) -> i32 {
self.0.map(value, limit)
}
fn range(&self) -> Range<T::ValueType> {
self.0.range()
}
// TODO: See issue issue #88
fn key_points<HintType: KeyPointHint>(&self, hint: HintType) -> Vec<T::ValueType> {
let range = 0..(self.0.size() + self.1) / self.1;
//let logic_range: RangedCoordusize = range.into();
let interval =
((range.end - range.start + hint.bold_points() - 1) / hint.bold_points()).max(1);
let count = (range.end - range.start) / interval;
let idx_iter = (0..hint.bold_points()).map(|x| x * interval);
if hint.weight().allow_light_points() && count < hint.bold_points() * 2 {
let outter_ticks = idx_iter;
let outter_tick_size = interval * self.1;
let inner_ticks_per_group = hint.max_num_points() / outter_ticks.len();
let inner_ticks =
(outter_tick_size + inner_ticks_per_group - 1) / inner_ticks_per_group;
let inner_ticks: Vec<_> = (0..(outter_tick_size / inner_ticks))
.map(move |x| x * inner_ticks)
.collect();
let size = self.0.size();
return outter_ticks
.map(|base| inner_ticks.iter().map(move |&ofs| base * self.1 + ofs))
.flatten()
.take_while(|&idx| idx < size)
.map(|x| self.0.from_index(x).unwrap())
.collect();
}
idx_iter
.map(|x| self.0.from_index(x * self.1).unwrap())
.collect()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_group_by() {
let coord = (0..100).group_by(10);
assert_eq!(coord.size(), 11);
for (idx, val) in (0..).zip(coord.values()) {
assert_eq!(val, idx * 10);
assert_eq!(coord.from_index(idx as usize), Some(val));
}
}
}