blob: 27373efbae721c9609d4e79c0e4ef00c7f1e8ae9 [file] [log] [blame]
use std::{iter::FromIterator, mem};
use proc_macro2::{Group, Spacing, Span, TokenStream, TokenTree};
use quote::{quote, quote_spanned, ToTokens};
use syn::{
parse::{Parse, ParseBuffer, ParseStream},
parse_quote,
punctuated::Punctuated,
token,
visit_mut::{self, VisitMut},
Attribute, ExprPath, ExprStruct, Generics, Ident, Item, Lifetime, LifetimeDef, Macro, PatPath,
PatStruct, PatTupleStruct, Path, PathArguments, PredicateType, QSelf, Result, Token, Type,
TypeParamBound, TypePath, Variant, Visibility, WherePredicate,
};
pub(crate) type Variants = Punctuated<Variant, Token![,]>;
macro_rules! format_err {
($span:expr, $msg:expr $(,)?) => {
syn::Error::new_spanned(&$span as &dyn quote::ToTokens, &$msg as &dyn std::fmt::Display)
};
($span:expr, $($tt:tt)*) => {
format_err!($span, format!($($tt)*))
};
}
macro_rules! bail {
($($tt:tt)*) => {
return Err(format_err!($($tt)*))
};
}
macro_rules! parse_quote_spanned {
($span:expr => $($tt:tt)*) => {
syn::parse2(quote::quote_spanned!($span => $($tt)*)).unwrap_or_else(|e| panic!("{}", e))
};
}
/// Determines the lifetime names. Ensure it doesn't overlap with any existing
/// lifetime names.
pub(crate) fn determine_lifetime_name(lifetime_name: &mut String, generics: &mut Generics) {
struct CollectLifetimes(Vec<String>);
impl VisitMut for CollectLifetimes {
fn visit_lifetime_def_mut(&mut self, def: &mut LifetimeDef) {
self.0.push(def.lifetime.to_string());
}
}
debug_assert!(lifetime_name.starts_with('\''));
let mut lifetimes = CollectLifetimes(Vec::new());
lifetimes.visit_generics_mut(generics);
while lifetimes.0.iter().any(|name| name.starts_with(&**lifetime_name)) {
lifetime_name.push('_');
}
}
/// Like `insert_lifetime`, but also generates a bound of the form
/// `OriginalType<A, B>: 'lifetime`. Used when generating the definition
/// of a projection type
pub(crate) fn insert_lifetime_and_bound(
generics: &mut Generics,
lifetime: Lifetime,
orig_generics: &Generics,
orig_ident: &Ident,
) -> WherePredicate {
insert_lifetime(generics, lifetime.clone());
let orig_type: Type = parse_quote!(#orig_ident #orig_generics);
let mut punct = Punctuated::new();
punct.push(TypeParamBound::Lifetime(lifetime));
WherePredicate::Type(PredicateType {
lifetimes: None,
bounded_ty: orig_type,
colon_token: <Token![:]>::default(),
bounds: punct,
})
}
/// Inserts a `lifetime` at position `0` of `generics.params`.
pub(crate) fn insert_lifetime(generics: &mut Generics, lifetime: Lifetime) {
generics.lt_token.get_or_insert_with(<Token![<]>::default);
generics.gt_token.get_or_insert_with(<Token![>]>::default);
generics.params.insert(0, LifetimeDef::new(lifetime).into());
}
/// Determines the visibility of the projected types and projection methods.
///
/// If given visibility is `pub`, returned visibility is `pub(crate)`.
/// Otherwise, returned visibility is the same as given visibility.
pub(crate) fn determine_visibility(vis: &Visibility) -> Visibility {
if let Visibility::Public(token) = vis {
parse_quote_spanned!(token.pub_token.span => pub(crate))
} else {
vis.clone()
}
}
/// Checks if `tokens` is an empty `TokenStream`.
///
/// This is almost equivalent to `syn::parse2::<Nothing>()`, but produces
/// a better error message and does not require ownership of `tokens`.
pub(crate) fn parse_as_empty(tokens: &TokenStream) -> Result<()> {
if tokens.is_empty() {
Ok(())
} else {
bail!(tokens, "unexpected token: `{}`", tokens)
}
}
pub(crate) fn respan<T>(node: &T, span: Span) -> T
where
T: ToTokens + Parse,
{
let tokens = node.to_token_stream();
let respanned = respan_tokens(tokens, span);
syn::parse2(respanned).unwrap()
}
fn respan_tokens(tokens: TokenStream, span: Span) -> TokenStream {
tokens
.into_iter()
.map(|mut token| {
token.set_span(span);
token
})
.collect()
}
// =================================================================================================
// extension traits
pub(crate) trait SliceExt {
fn position_exact(&self, ident: &str) -> Result<Option<usize>>;
fn find(&self, ident: &str) -> Option<&Attribute>;
}
impl SliceExt for [Attribute] {
/// # Errors
///
/// - There are multiple specified attributes.
/// - The `Attribute::tokens` field of the specified attribute is not empty.
fn position_exact(&self, ident: &str) -> Result<Option<usize>> {
self.iter()
.try_fold((0, None), |(i, mut prev), attr| {
if attr.path.is_ident(ident) {
if prev.replace(i).is_some() {
bail!(attr, "duplicate #[{}] attribute", ident);
}
parse_as_empty(&attr.tokens)?;
}
Ok((i + 1, prev))
})
.map(|(_, pos)| pos)
}
fn find(&self, ident: &str) -> Option<&Attribute> {
self.iter().position(|attr| attr.path.is_ident(ident)).map(|i| &self[i])
}
}
pub(crate) trait ParseBufferExt<'a> {
fn parenthesized(self) -> Result<ParseBuffer<'a>>;
}
impl<'a> ParseBufferExt<'a> for ParseStream<'a> {
fn parenthesized(self) -> Result<ParseBuffer<'a>> {
let content;
let _: token::Paren = syn::parenthesized!(content in self);
Ok(content)
}
}
impl<'a> ParseBufferExt<'a> for ParseBuffer<'a> {
fn parenthesized(self) -> Result<ParseBuffer<'a>> {
let content;
let _: token::Paren = syn::parenthesized!(content in self);
Ok(content)
}
}
// =================================================================================================
// visitors
// Replace `self`/`Self` with `__self`/`self_ty`.
// Based on:
// - https://github.com/dtolnay/async-trait/blob/0.1.35/src/receiver.rs
// - https://github.com/dtolnay/async-trait/commit/6029cbf375c562ca98fa5748e9d950a8ff93b0e7
pub(crate) struct ReplaceReceiver<'a>(pub(crate) &'a TypePath);
impl ReplaceReceiver<'_> {
fn self_ty(&self, span: Span) -> TypePath {
respan(self.0, span)
}
fn self_to_qself(&self, qself: &mut Option<QSelf>, path: &mut Path) {
if path.leading_colon.is_some() {
return;
}
let first = &path.segments[0];
if first.ident != "Self" || !first.arguments.is_empty() {
return;
}
if path.segments.len() == 1 {
self.self_to_expr_path(path);
return;
}
let span = first.ident.span();
*qself = Some(QSelf {
lt_token: Token![<](span),
ty: Box::new(self.self_ty(span).into()),
position: 0,
as_token: None,
gt_token: Token![>](span),
});
path.leading_colon = Some(**path.segments.pairs().next().unwrap().punct().unwrap());
let segments = mem::replace(&mut path.segments, Punctuated::new());
path.segments = segments.into_pairs().skip(1).collect();
}
fn self_to_expr_path(&self, path: &mut Path) {
if path.leading_colon.is_some() {
return;
}
let first = &path.segments[0];
if first.ident != "Self" || !first.arguments.is_empty() {
return;
}
let self_ty = self.self_ty(first.ident.span());
let variant = mem::replace(path, self_ty.path);
for segment in &mut path.segments {
if let PathArguments::AngleBracketed(bracketed) = &mut segment.arguments {
if bracketed.colon2_token.is_none() && !bracketed.args.is_empty() {
bracketed.colon2_token = Some(<Token![::]>::default());
}
}
}
if variant.segments.len() > 1 {
path.segments.push_punct(<Token![::]>::default());
path.segments.extend(variant.segments.into_pairs().skip(1));
}
}
fn visit_token_stream(&self, tokens: &mut TokenStream) -> bool {
let mut out = Vec::new();
let mut modified = false;
let mut iter = tokens.clone().into_iter().peekable();
while let Some(tt) = iter.next() {
match tt {
TokenTree::Ident(mut ident) => {
modified |= prepend_underscore_to_self(&mut ident);
if ident == "Self" {
modified = true;
let self_ty = self.self_ty(ident.span());
match iter.peek() {
Some(TokenTree::Punct(p))
if p.as_char() == ':' && p.spacing() == Spacing::Joint =>
{
let next = iter.next().unwrap();
match iter.peek() {
Some(TokenTree::Punct(p)) if p.as_char() == ':' => {
let span = ident.span();
out.extend(quote_spanned!(span=> <#self_ty>));
}
_ => out.extend(quote!(#self_ty)),
}
out.push(next);
}
_ => out.extend(quote!(#self_ty)),
}
} else {
out.push(TokenTree::Ident(ident));
}
}
TokenTree::Group(group) => {
let mut content = group.stream();
modified |= self.visit_token_stream(&mut content);
let mut new = Group::new(group.delimiter(), content);
new.set_span(group.span());
out.push(TokenTree::Group(new));
}
other => out.push(other),
}
}
if modified {
*tokens = TokenStream::from_iter(out);
}
modified
}
}
impl VisitMut for ReplaceReceiver<'_> {
// `Self` -> `Receiver`
fn visit_type_mut(&mut self, ty: &mut Type) {
if let Type::Path(node) = ty {
if node.qself.is_none() && node.path.is_ident("Self") {
*ty = self.self_ty(node.path.segments[0].ident.span()).into();
} else {
self.visit_type_path_mut(node);
}
} else {
visit_mut::visit_type_mut(self, ty);
}
}
// `Self::Assoc` -> `<Receiver>::Assoc`
fn visit_type_path_mut(&mut self, ty: &mut TypePath) {
if ty.qself.is_none() {
self.self_to_qself(&mut ty.qself, &mut ty.path);
}
visit_mut::visit_type_path_mut(self, ty);
}
// `Self::method` -> `<Receiver>::method`
fn visit_expr_path_mut(&mut self, expr: &mut ExprPath) {
if expr.qself.is_none() {
self.self_to_qself(&mut expr.qself, &mut expr.path);
}
visit_mut::visit_expr_path_mut(self, expr);
}
fn visit_expr_struct_mut(&mut self, expr: &mut ExprStruct) {
self.self_to_expr_path(&mut expr.path);
visit_mut::visit_expr_struct_mut(self, expr);
}
fn visit_pat_path_mut(&mut self, pat: &mut PatPath) {
if pat.qself.is_none() {
self.self_to_qself(&mut pat.qself, &mut pat.path);
}
visit_mut::visit_pat_path_mut(self, pat);
}
fn visit_pat_struct_mut(&mut self, pat: &mut PatStruct) {
self.self_to_expr_path(&mut pat.path);
visit_mut::visit_pat_struct_mut(self, pat);
}
fn visit_pat_tuple_struct_mut(&mut self, pat: &mut PatTupleStruct) {
self.self_to_expr_path(&mut pat.path);
visit_mut::visit_pat_tuple_struct_mut(self, pat);
}
fn visit_path_mut(&mut self, path: &mut Path) {
if path.segments.len() == 1 {
// Replace `self`, but not `self::function`.
prepend_underscore_to_self(&mut path.segments[0].ident);
}
for segment in &mut path.segments {
self.visit_path_arguments_mut(&mut segment.arguments);
}
}
fn visit_item_mut(&mut self, item: &mut Item) {
match item {
// Visit `macro_rules!` because locally defined macros can refer to `self`.
Item::Macro(item) if item.mac.path.is_ident("macro_rules") => {
self.visit_macro_mut(&mut item.mac);
}
// Otherwise, do not recurse into nested items.
_ => {}
}
}
fn visit_macro_mut(&mut self, mac: &mut Macro) {
// We can't tell in general whether `self` inside a macro invocation
// refers to the self in the argument list or a different self
// introduced within the macro. Heuristic: if the macro input contains
// `fn`, then `self` is more likely to refer to something other than the
// outer function's self argument.
if !contains_fn(mac.tokens.clone()) {
self.visit_token_stream(&mut mac.tokens);
}
}
}
fn contains_fn(tokens: TokenStream) -> bool {
tokens.into_iter().any(|tt| match tt {
TokenTree::Ident(ident) => ident == "fn",
TokenTree::Group(group) => contains_fn(group.stream()),
_ => false,
})
}
pub(crate) fn prepend_underscore_to_self(ident: &mut Ident) -> bool {
let modified = ident == "self";
if modified {
*ident = Ident::new("__self", ident.span());
}
modified
}