blob: aecbaecbdcde83f461cb0cf0162c8be1744b3b94 [file] [log] [blame]
//! Message signatures.
//!
//! The `Signer` allows for the computation of cryptographic signatures of
//! data given a private key. The `Verifier` can then be used with the
//! corresponding public key to verify the integrity and authenticity of that
//! data given the signature.
//!
//! # Examples
//!
//! Sign and verify data given an RSA keypair:
//!
//! ```rust
//! use openssl::sign::{Signer, Verifier};
//! use openssl::rsa::Rsa;
//! use openssl::pkey::PKey;
//! use openssl::hash::MessageDigest;
//!
//! // Generate a keypair
//! let keypair = Rsa::generate(2048).unwrap();
//! let keypair = PKey::from_rsa(keypair).unwrap();
//!
//! let data = b"hello, world!";
//! let data2 = b"hola, mundo!";
//!
//! // Sign the data
//! let mut signer = Signer::new(MessageDigest::sha256(), &keypair).unwrap();
//! signer.update(data).unwrap();
//! signer.update(data2).unwrap();
//! let signature = signer.sign_to_vec().unwrap();
//!
//! // Verify the data
//! let mut verifier = Verifier::new(MessageDigest::sha256(), &keypair).unwrap();
//! verifier.update(data).unwrap();
//! verifier.update(data2).unwrap();
//! assert!(verifier.verify(&signature).unwrap());
//! ```
//!
//! Compute an HMAC:
//!
//! ```rust
//! use openssl::hash::MessageDigest;
//! use openssl::memcmp;
//! use openssl::pkey::PKey;
//! use openssl::sign::Signer;
//!
//! // Create a PKey
//! let key = PKey::hmac(b"my secret").unwrap();
//!
//! let data = b"hello, world!";
//! let data2 = b"hola, mundo!";
//!
//! // Compute the HMAC
//! let mut signer = Signer::new(MessageDigest::sha256(), &key).unwrap();
//! signer.update(data).unwrap();
//! signer.update(data2).unwrap();
//! let hmac = signer.sign_to_vec().unwrap();
//!
//! // `Verifier` cannot be used with HMACs; use the `memcmp::eq` function instead
//! //
//! // Do not simply check for equality with `==`!
//! # let target = hmac.clone();
//! assert!(memcmp::eq(&hmac, &target));
//! ```
use cfg_if::cfg_if;
use foreign_types::ForeignTypeRef;
use libc::c_int;
use std::io::{self, Write};
use std::marker::PhantomData;
use std::ptr;
use crate::error::ErrorStack;
use crate::hash::MessageDigest;
use crate::pkey::{HasPrivate, HasPublic, PKeyRef};
use crate::rsa::Padding;
use crate::{cvt, cvt_p};
cfg_if! {
if #[cfg(ossl110)] {
use ffi::{EVP_MD_CTX_free, EVP_MD_CTX_new};
} else {
use ffi::{EVP_MD_CTX_create as EVP_MD_CTX_new, EVP_MD_CTX_destroy as EVP_MD_CTX_free};
}
}
/// Salt lengths that must be used with `set_rsa_pss_saltlen`.
pub struct RsaPssSaltlen(c_int);
impl RsaPssSaltlen {
/// Returns the integer representation of `RsaPssSaltlen`.
fn as_raw(&self) -> c_int {
self.0
}
/// Sets the salt length to the given value.
pub fn custom(val: c_int) -> RsaPssSaltlen {
RsaPssSaltlen(val)
}
/// The salt length is set to the digest length.
/// Corresponds to the special value `-1`.
pub const DIGEST_LENGTH: RsaPssSaltlen = RsaPssSaltlen(-1);
/// The salt length is set to the maximum permissible value.
/// Corresponds to the special value `-2`.
pub const MAXIMUM_LENGTH: RsaPssSaltlen = RsaPssSaltlen(-2);
}
/// A type which computes cryptographic signatures of data.
pub struct Signer<'a> {
md_ctx: *mut ffi::EVP_MD_CTX,
pctx: *mut ffi::EVP_PKEY_CTX,
_p: PhantomData<&'a ()>,
}
unsafe impl<'a> Sync for Signer<'a> {}
unsafe impl<'a> Send for Signer<'a> {}
impl<'a> Drop for Signer<'a> {
fn drop(&mut self) {
// pkey_ctx is owned by the md_ctx, so no need to explicitly free it.
unsafe {
EVP_MD_CTX_free(self.md_ctx);
}
}
}
#[allow(clippy::len_without_is_empty)]
impl<'a> Signer<'a> {
/// Creates a new `Signer`.
///
/// This cannot be used with Ed25519 or Ed448 keys. Please refer to
/// `new_without_digest`.
///
/// OpenSSL documentation at [`EVP_DigestSignInit`].
///
/// [`EVP_DigestSignInit`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestSignInit.html
pub fn new<T>(type_: MessageDigest, pkey: &'a PKeyRef<T>) -> Result<Signer<'a>, ErrorStack>
where
T: HasPrivate,
{
Self::new_intern(Some(type_), pkey)
}
/// Creates a new `Signer` without a digest.
///
/// This is the only way to create a `Verifier` for Ed25519 or Ed448 keys.
/// It can also be used to create a CMAC.
///
/// OpenSSL documentation at [`EVP_DigestSignInit`].
///
/// [`EVP_DigestSignInit`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestSignInit.html
pub fn new_without_digest<T>(pkey: &'a PKeyRef<T>) -> Result<Signer<'a>, ErrorStack>
where
T: HasPrivate,
{
Self::new_intern(None, pkey)
}
fn new_intern<T>(
type_: Option<MessageDigest>,
pkey: &'a PKeyRef<T>,
) -> Result<Signer<'a>, ErrorStack>
where
T: HasPrivate,
{
unsafe {
ffi::init();
let ctx = cvt_p(EVP_MD_CTX_new())?;
let mut pctx: *mut ffi::EVP_PKEY_CTX = ptr::null_mut();
let r = ffi::EVP_DigestSignInit(
ctx,
&mut pctx,
type_.map(|t| t.as_ptr()).unwrap_or(ptr::null()),
ptr::null_mut(),
pkey.as_ptr(),
);
if r != 1 {
EVP_MD_CTX_free(ctx);
return Err(ErrorStack::get());
}
assert!(!pctx.is_null());
Ok(Signer {
md_ctx: ctx,
pctx,
_p: PhantomData,
})
}
}
/// Returns the RSA padding mode in use.
///
/// This is only useful for RSA keys.
///
/// This corresponds to `EVP_PKEY_CTX_get_rsa_padding`.
pub fn rsa_padding(&self) -> Result<Padding, ErrorStack> {
unsafe {
let mut pad = 0;
cvt(ffi::EVP_PKEY_CTX_get_rsa_padding(self.pctx, &mut pad))
.map(|_| Padding::from_raw(pad))
}
}
/// Sets the RSA padding mode.
///
/// This is only useful for RSA keys.
///
/// This corresponds to [`EVP_PKEY_CTX_set_rsa_padding`].
///
/// [`EVP_PKEY_CTX_set_rsa_padding`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_CTX_set_rsa_padding.html
pub fn set_rsa_padding(&mut self, padding: Padding) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_PKEY_CTX_set_rsa_padding(
self.pctx,
padding.as_raw(),
))
.map(|_| ())
}
}
/// Sets the RSA PSS salt length.
///
/// This is only useful for RSA keys.
///
/// This corresponds to [`EVP_PKEY_CTX_set_rsa_pss_saltlen`].
///
/// [`EVP_PKEY_CTX_set_rsa_pss_saltlen`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_CTX_set_rsa_pss_saltlen.html
pub fn set_rsa_pss_saltlen(&mut self, len: RsaPssSaltlen) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_PKEY_CTX_set_rsa_pss_saltlen(
self.pctx,
len.as_raw(),
))
.map(|_| ())
}
}
/// Sets the RSA MGF1 algorithm.
///
/// This is only useful for RSA keys.
///
/// This corresponds to [`EVP_PKEY_CTX_set_rsa_mgf1_md`].
///
/// [`EVP_PKEY_CTX_set_rsa_mgf1_md`]: https://www.openssl.org/docs/manmaster/man7/RSA-PSS.html
pub fn set_rsa_mgf1_md(&mut self, md: MessageDigest) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_PKEY_CTX_set_rsa_mgf1_md(
self.pctx,
md.as_ptr() as *mut _,
))
.map(|_| ())
}
}
/// Feeds more data into the `Signer`.
///
/// Please note that PureEdDSA (Ed25519 and Ed448 keys) do not support streaming.
/// Use `sign_oneshot` instead.
///
/// OpenSSL documentation at [`EVP_DigestUpdate`].
///
/// [`EVP_DigestUpdate`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestInit.html
pub fn update(&mut self, buf: &[u8]) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_DigestUpdate(
self.md_ctx,
buf.as_ptr() as *const _,
buf.len(),
))
.map(|_| ())
}
}
/// Computes an upper bound on the signature length.
///
/// The actual signature may be shorter than this value. Check the return value of
/// `sign` to get the exact length.
///
/// OpenSSL documentation at [`EVP_DigestSignFinal`].
///
/// [`EVP_DigestSignFinal`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_DigestSignFinal.html
pub fn len(&self) -> Result<usize, ErrorStack> {
self.len_intern()
}
#[cfg(not(any(boringssl, ossl111)))]
fn len_intern(&self) -> Result<usize, ErrorStack> {
unsafe {
let mut len = 0;
cvt(ffi::EVP_DigestSignFinal(
self.md_ctx,
ptr::null_mut(),
&mut len,
))?;
Ok(len)
}
}
#[cfg(any(boringssl, ossl111))]
fn len_intern(&self) -> Result<usize, ErrorStack> {
unsafe {
let mut len = 0;
cvt(ffi::EVP_DigestSign(
self.md_ctx,
ptr::null_mut(),
&mut len,
ptr::null(),
0,
))?;
Ok(len)
}
}
/// Writes the signature into the provided buffer, returning the number of bytes written.
///
/// This method will fail if the buffer is not large enough for the signature. Use the `len`
/// method to get an upper bound on the required size.
///
/// OpenSSL documentation at [`EVP_DigestSignFinal`].
///
/// [`EVP_DigestSignFinal`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_DigestSignFinal.html
pub fn sign(&self, buf: &mut [u8]) -> Result<usize, ErrorStack> {
unsafe {
let mut len = buf.len();
cvt(ffi::EVP_DigestSignFinal(
self.md_ctx,
buf.as_mut_ptr() as *mut _,
&mut len,
))?;
Ok(len)
}
}
/// Returns the signature.
///
/// This is a simple convenience wrapper over `len` and `sign`.
pub fn sign_to_vec(&self) -> Result<Vec<u8>, ErrorStack> {
let mut buf = vec![0; self.len()?];
let len = self.sign(&mut buf)?;
// The advertised length is not always equal to the real length for things like DSA
buf.truncate(len);
Ok(buf)
}
/// Signs the data in `data_buf` and writes the signature into the buffer `sig_buf`, returning the
/// number of bytes written.
///
/// For PureEdDSA (Ed25519 and Ed448 keys), this is the only way to sign data.
///
/// This method will fail if the buffer is not large enough for the signature. Use the `len`
/// method to get an upper bound on the required size.
///
/// OpenSSL documentation at [`EVP_DigestSign`].
///
/// [`EVP_DigestSign`]: https://www.openssl.org/docs/man1.1.1/man3/EVP_DigestSign.html
#[cfg(any(boringssl, ossl111))]
pub fn sign_oneshot(
&mut self,
sig_buf: &mut [u8],
data_buf: &[u8],
) -> Result<usize, ErrorStack> {
unsafe {
let mut sig_len = sig_buf.len();
cvt(ffi::EVP_DigestSign(
self.md_ctx,
sig_buf.as_mut_ptr() as *mut _,
&mut sig_len,
data_buf.as_ptr() as *const _,
data_buf.len(),
))?;
Ok(sig_len)
}
}
/// Returns the signature.
///
/// This is a simple convenience wrapper over `len` and `sign_oneshot`.
#[cfg(any(boringssl, ossl111))]
pub fn sign_oneshot_to_vec(&mut self, data_buf: &[u8]) -> Result<Vec<u8>, ErrorStack> {
let mut sig_buf = vec![0; self.len()?];
let len = self.sign_oneshot(&mut sig_buf, data_buf)?;
// The advertised length is not always equal to the real length for things like DSA
sig_buf.truncate(len);
Ok(sig_buf)
}
}
impl<'a> Write for Signer<'a> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.update(buf)?;
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
pub struct Verifier<'a> {
md_ctx: *mut ffi::EVP_MD_CTX,
pctx: *mut ffi::EVP_PKEY_CTX,
pkey_pd: PhantomData<&'a ()>,
}
unsafe impl<'a> Sync for Verifier<'a> {}
unsafe impl<'a> Send for Verifier<'a> {}
impl<'a> Drop for Verifier<'a> {
fn drop(&mut self) {
// pkey_ctx is owned by the md_ctx, so no need to explicitly free it.
unsafe {
EVP_MD_CTX_free(self.md_ctx);
}
}
}
/// A type which verifies cryptographic signatures of data.
impl<'a> Verifier<'a> {
/// Creates a new `Verifier`.
///
/// This cannot be used with Ed25519 or Ed448 keys. Please refer to
/// `new_without_digest`.
///
/// OpenSSL documentation at [`EVP_DigestVerifyInit`].
///
/// [`EVP_DigestVerifyInit`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestVerifyInit.html
pub fn new<T>(type_: MessageDigest, pkey: &'a PKeyRef<T>) -> Result<Verifier<'a>, ErrorStack>
where
T: HasPublic,
{
Verifier::new_intern(Some(type_), pkey)
}
/// Creates a new `Verifier` without a digest.
///
/// This is the only way to create a `Verifier` for Ed25519 or Ed448 keys.
///
/// OpenSSL documentation at [`EVP_DigestVerifyInit`].
///
/// [`EVP_DigestVerifyInit`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestVerifyInit.html
pub fn new_without_digest<T>(pkey: &'a PKeyRef<T>) -> Result<Verifier<'a>, ErrorStack>
where
T: HasPublic,
{
Verifier::new_intern(None, pkey)
}
fn new_intern<T>(
type_: Option<MessageDigest>,
pkey: &'a PKeyRef<T>,
) -> Result<Verifier<'a>, ErrorStack>
where
T: HasPublic,
{
unsafe {
ffi::init();
let ctx = cvt_p(EVP_MD_CTX_new())?;
let mut pctx: *mut ffi::EVP_PKEY_CTX = ptr::null_mut();
let r = ffi::EVP_DigestVerifyInit(
ctx,
&mut pctx,
type_.map(|t| t.as_ptr()).unwrap_or(ptr::null()),
ptr::null_mut(),
pkey.as_ptr(),
);
if r != 1 {
EVP_MD_CTX_free(ctx);
return Err(ErrorStack::get());
}
assert!(!pctx.is_null());
Ok(Verifier {
md_ctx: ctx,
pctx,
pkey_pd: PhantomData,
})
}
}
/// Returns the RSA padding mode in use.
///
/// This is only useful for RSA keys.
///
/// This corresponds to `EVP_PKEY_CTX_get_rsa_padding`.
pub fn rsa_padding(&self) -> Result<Padding, ErrorStack> {
unsafe {
let mut pad = 0;
cvt(ffi::EVP_PKEY_CTX_get_rsa_padding(self.pctx, &mut pad))
.map(|_| Padding::from_raw(pad))
}
}
/// Sets the RSA padding mode.
///
/// This is only useful for RSA keys.
///
/// This corresponds to [`EVP_PKEY_CTX_set_rsa_padding`].
///
/// [`EVP_PKEY_CTX_set_rsa_padding`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_CTX_set_rsa_padding.html
pub fn set_rsa_padding(&mut self, padding: Padding) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_PKEY_CTX_set_rsa_padding(
self.pctx,
padding.as_raw(),
))
.map(|_| ())
}
}
/// Sets the RSA PSS salt length.
///
/// This is only useful for RSA keys.
///
/// This corresponds to [`EVP_PKEY_CTX_set_rsa_pss_saltlen`].
///
/// [`EVP_PKEY_CTX_set_rsa_pss_saltlen`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_CTX_set_rsa_pss_saltlen.html
pub fn set_rsa_pss_saltlen(&mut self, len: RsaPssSaltlen) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_PKEY_CTX_set_rsa_pss_saltlen(
self.pctx,
len.as_raw(),
))
.map(|_| ())
}
}
/// Sets the RSA MGF1 algorithm.
///
/// This is only useful for RSA keys.
///
/// This corresponds to [`EVP_PKEY_CTX_set_rsa_mgf1_md`].
///
/// [`EVP_PKEY_CTX_set_rsa_mgf1_md`]: https://www.openssl.org/docs/manmaster/man7/RSA-PSS.html
pub fn set_rsa_mgf1_md(&mut self, md: MessageDigest) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_PKEY_CTX_set_rsa_mgf1_md(
self.pctx,
md.as_ptr() as *mut _,
))
.map(|_| ())
}
}
/// Feeds more data into the `Verifier`.
///
/// Please note that PureEdDSA (Ed25519 and Ed448 keys) do not support streaming.
/// Use `verify_oneshot` instead.
///
/// OpenSSL documentation at [`EVP_DigestUpdate`].
///
/// [`EVP_DigestUpdate`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestInit.html
pub fn update(&mut self, buf: &[u8]) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_DigestUpdate(
self.md_ctx,
buf.as_ptr() as *const _,
buf.len(),
))
.map(|_| ())
}
}
/// Determines if the data fed into the `Verifier` matches the provided signature.
///
/// OpenSSL documentation at [`EVP_DigestVerifyFinal`].
///
/// [`EVP_DigestVerifyFinal`]: https://www.openssl.org/docs/manmaster/man3/EVP_DigestVerifyFinal.html
pub fn verify(&self, signature: &[u8]) -> Result<bool, ErrorStack> {
unsafe {
let r =
EVP_DigestVerifyFinal(self.md_ctx, signature.as_ptr() as *mut _, signature.len());
match r {
1 => Ok(true),
0 => {
ErrorStack::get(); // discard error stack
Ok(false)
}
_ => Err(ErrorStack::get()),
}
}
}
/// Determines if the data given in `buf` matches the provided signature.
///
/// OpenSSL documentation at [`EVP_DigestVerify`].
///
/// [`EVP_DigestVerify`]: https://www.openssl.org/docs/man1.1.1/man3/EVP_DigestVerify.html
#[cfg(any(boringssl, ossl111))]
pub fn verify_oneshot(&mut self, signature: &[u8], buf: &[u8]) -> Result<bool, ErrorStack> {
unsafe {
let r = ffi::EVP_DigestVerify(
self.md_ctx,
signature.as_ptr() as *const _,
signature.len(),
buf.as_ptr() as *const _,
buf.len(),
);
match r {
1 => Ok(true),
0 => {
ErrorStack::get();
Ok(false)
}
_ => Err(ErrorStack::get()),
}
}
}
}
impl<'a> Write for Verifier<'a> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.update(buf)?;
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(not(ossl101))]
use ffi::EVP_DigestVerifyFinal;
#[cfg(ossl101)]
#[allow(bad_style)]
unsafe fn EVP_DigestVerifyFinal(
ctx: *mut ffi::EVP_MD_CTX,
sigret: *const ::libc::c_uchar,
siglen: ::libc::size_t,
) -> ::libc::c_int {
ffi::EVP_DigestVerifyFinal(ctx, sigret as *mut _, siglen)
}
#[cfg(test)]
mod test {
use hex::{self, FromHex};
use std::iter;
use crate::ec::{EcGroup, EcKey};
use crate::hash::MessageDigest;
use crate::nid::Nid;
use crate::pkey::PKey;
use crate::rsa::{Padding, Rsa};
#[cfg(ossl111)]
use crate::sign::RsaPssSaltlen;
use crate::sign::{Signer, Verifier};
const INPUT: &str =
"65794a68624763694f694a53557a49314e694a392e65794a7063334d694f694a71623255694c41304b49434a6c\
654841694f6a457a4d4441344d546b7a4f44417344516f67496d6830644841364c79396c654746746347786c4c\
6d4e76625339706331397962323930496a7030636e566c6651";
const SIGNATURE: &str =
"702e218943e88fd11eb5d82dbf7845f34106ae1b81fff7731116add1717d83656d420afd3c96eedd73a2663e51\
66687b000b87226e0187ed1073f945e582adfcef16d85a798ee8c66ddb3db8975b17d09402beedd5d9d9700710\
8db28160d5f8040ca7445762b81fbe7ff9d92e0ae76f24f25b33bbe6f44ae61eb1040acb20044d3ef9128ed401\
30795bd4bd3b41eecad066ab651981fde48df77f372dc38b9fafdd3befb18b5da3cc3c2eb02f9e3a41d612caad\
15911273a05f23b9e838faaf849d698429ef5a1e88798236c3d40e604522a544c8f27a7a2db80663d16cf7caea\
56de405cb2215a45b2c25566b55ac1a748a070dfc8a32a469543d019eefb47";
#[test]
fn rsa_sign() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut signer = Signer::new(MessageDigest::sha256(), &pkey).unwrap();
assert_eq!(signer.rsa_padding().unwrap(), Padding::PKCS1);
signer.set_rsa_padding(Padding::PKCS1).unwrap();
signer.update(&Vec::from_hex(INPUT).unwrap()).unwrap();
let result = signer.sign_to_vec().unwrap();
assert_eq!(hex::encode(result), SIGNATURE);
}
#[test]
fn rsa_verify_ok() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &pkey).unwrap();
assert_eq!(verifier.rsa_padding().unwrap(), Padding::PKCS1);
verifier.update(&Vec::from_hex(INPUT).unwrap()).unwrap();
assert!(verifier.verify(&Vec::from_hex(SIGNATURE).unwrap()).unwrap());
}
#[test]
fn rsa_verify_invalid() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &pkey).unwrap();
verifier.update(&Vec::from_hex(INPUT).unwrap()).unwrap();
verifier.update(b"foobar").unwrap();
assert!(!verifier.verify(&Vec::from_hex(SIGNATURE).unwrap()).unwrap());
}
#[cfg(not(boringssl))]
fn test_hmac(ty: MessageDigest, tests: &[(Vec<u8>, Vec<u8>, Vec<u8>)]) {
for &(ref key, ref data, ref res) in tests.iter() {
let pkey = PKey::hmac(key).unwrap();
let mut signer = Signer::new(ty, &pkey).unwrap();
signer.update(data).unwrap();
assert_eq!(signer.sign_to_vec().unwrap(), *res);
}
}
#[test]
#[cfg(not(boringssl))]
fn hmac_md5() {
// test vectors from RFC 2202
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 7] = [
(
iter::repeat(0x0b_u8).take(16).collect(),
b"Hi There".to_vec(),
Vec::from_hex("9294727a3638bb1c13f48ef8158bfc9d").unwrap(),
),
(
b"Jefe".to_vec(),
b"what do ya want for nothing?".to_vec(),
Vec::from_hex("750c783e6ab0b503eaa86e310a5db738").unwrap(),
),
(
iter::repeat(0xaa_u8).take(16).collect(),
iter::repeat(0xdd_u8).take(50).collect(),
Vec::from_hex("56be34521d144c88dbb8c733f0e8b3f6").unwrap(),
),
(
Vec::from_hex("0102030405060708090a0b0c0d0e0f10111213141516171819").unwrap(),
iter::repeat(0xcd_u8).take(50).collect(),
Vec::from_hex("697eaf0aca3a3aea3a75164746ffaa79").unwrap(),
),
(
iter::repeat(0x0c_u8).take(16).collect(),
b"Test With Truncation".to_vec(),
Vec::from_hex("56461ef2342edc00f9bab995690efd4c").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
Vec::from_hex("6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data"
.to_vec(),
Vec::from_hex("6f630fad67cda0ee1fb1f562db3aa53e").unwrap(),
),
];
test_hmac(MessageDigest::md5(), &tests);
}
#[test]
#[cfg(not(boringssl))]
fn hmac_sha1() {
// test vectors from RFC 2202
let tests: [(Vec<u8>, Vec<u8>, Vec<u8>); 7] = [
(
iter::repeat(0x0b_u8).take(20).collect(),
b"Hi There".to_vec(),
Vec::from_hex("b617318655057264e28bc0b6fb378c8ef146be00").unwrap(),
),
(
b"Jefe".to_vec(),
b"what do ya want for nothing?".to_vec(),
Vec::from_hex("effcdf6ae5eb2fa2d27416d5f184df9c259a7c79").unwrap(),
),
(
iter::repeat(0xaa_u8).take(20).collect(),
iter::repeat(0xdd_u8).take(50).collect(),
Vec::from_hex("125d7342b9ac11cd91a39af48aa17b4f63f175d3").unwrap(),
),
(
Vec::from_hex("0102030405060708090a0b0c0d0e0f10111213141516171819").unwrap(),
iter::repeat(0xcd_u8).take(50).collect(),
Vec::from_hex("4c9007f4026250c6bc8414f9bf50c86c2d7235da").unwrap(),
),
(
iter::repeat(0x0c_u8).take(20).collect(),
b"Test With Truncation".to_vec(),
Vec::from_hex("4c1a03424b55e07fe7f27be1d58bb9324a9a5a04").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key - Hash Key First".to_vec(),
Vec::from_hex("aa4ae5e15272d00e95705637ce8a3b55ed402112").unwrap(),
),
(
iter::repeat(0xaa_u8).take(80).collect(),
b"Test Using Larger Than Block-Size Key \
and Larger Than One Block-Size Data"
.to_vec(),
Vec::from_hex("e8e99d0f45237d786d6bbaa7965c7808bbff1a91").unwrap(),
),
];
test_hmac(MessageDigest::sha1(), &tests);
}
#[test]
#[cfg(ossl110)]
fn test_cmac() {
let cipher = crate::symm::Cipher::aes_128_cbc();
let key = Vec::from_hex("9294727a3638bb1c13f48ef8158bfc9d").unwrap();
let pkey = PKey::cmac(&cipher, &key).unwrap();
let mut signer = Signer::new_without_digest(&pkey).unwrap();
let data = b"Hi There";
signer.update(data as &[u8]).unwrap();
let expected = vec![
136, 101, 61, 167, 61, 30, 248, 234, 124, 166, 196, 157, 203, 52, 171, 19,
];
assert_eq!(signer.sign_to_vec().unwrap(), expected);
}
#[test]
fn ec() {
let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
let key = EcKey::generate(&group).unwrap();
let key = PKey::from_ec_key(key).unwrap();
let mut signer = Signer::new(MessageDigest::sha256(), &key).unwrap();
signer.update(b"hello world").unwrap();
let signature = signer.sign_to_vec().unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &key).unwrap();
verifier.update(b"hello world").unwrap();
assert!(verifier.verify(&signature).unwrap());
}
#[test]
#[cfg(ossl111)]
fn eddsa() {
let key = PKey::generate_ed25519().unwrap();
let mut signer = Signer::new_without_digest(&key).unwrap();
let signature = signer.sign_oneshot_to_vec(b"hello world").unwrap();
let mut verifier = Verifier::new_without_digest(&key).unwrap();
assert!(verifier.verify_oneshot(&signature, b"hello world").unwrap());
}
#[test]
#[cfg(ossl111)]
fn rsa_sign_verify() {
let key = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(key).unwrap();
let pkey = PKey::from_rsa(private_key).unwrap();
let mut signer = Signer::new(MessageDigest::sha256(), &pkey).unwrap();
signer.set_rsa_padding(Padding::PKCS1_PSS).unwrap();
assert_eq!(signer.rsa_padding().unwrap(), Padding::PKCS1_PSS);
signer
.set_rsa_pss_saltlen(RsaPssSaltlen::DIGEST_LENGTH)
.unwrap();
signer.set_rsa_mgf1_md(MessageDigest::sha256()).unwrap();
signer.update(&Vec::from_hex(INPUT).unwrap()).unwrap();
let signature = signer.sign_to_vec().unwrap();
let mut verifier = Verifier::new(MessageDigest::sha256(), &pkey).unwrap();
verifier.set_rsa_padding(Padding::PKCS1_PSS).unwrap();
verifier
.set_rsa_pss_saltlen(RsaPssSaltlen::DIGEST_LENGTH)
.unwrap();
verifier.set_rsa_mgf1_md(MessageDigest::sha256()).unwrap();
verifier.update(&Vec::from_hex(INPUT).unwrap()).unwrap();
assert!(verifier.verify(&signature).unwrap());
}
}