blob: b5d4259cc795ba86222d08b254490875fba1defc [file] [log] [blame]
use super::addition::__add2;
#[cfg(not(u64_digit))]
use super::u32_to_u128;
use super::{cmp_slice, BigUint};
use crate::big_digit::{self, BigDigit, DoubleBigDigit};
use crate::UsizePromotion;
use core::cmp::Ordering::{Equal, Greater, Less};
use core::mem;
use core::ops::{Div, DivAssign, Rem, RemAssign};
use num_integer::Integer;
use num_traits::{CheckedDiv, One, ToPrimitive, Zero};
/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
///
/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
/// This is _not_ true for an arbitrary numerator/denominator.
///
/// (This function also matches what the x86 divide instruction does).
#[inline]
fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
debug_assert!(hi < divisor);
let lhs = big_digit::to_doublebigdigit(hi, lo);
let rhs = DoubleBigDigit::from(divisor);
((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
}
/// For small divisors, we can divide without promoting to `DoubleBigDigit` by
/// using half-size pieces of digit, like long-division.
#[inline]
fn div_half(rem: BigDigit, digit: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
use crate::big_digit::{HALF, HALF_BITS};
debug_assert!(rem < divisor && divisor <= HALF);
let (hi, rem) = ((rem << HALF_BITS) | (digit >> HALF_BITS)).div_rem(&divisor);
let (lo, rem) = ((rem << HALF_BITS) | (digit & HALF)).div_rem(&divisor);
((hi << HALF_BITS) | lo, rem)
}
#[inline]
pub(super) fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
if b == 0 {
panic!("attempt to divide by zero")
}
let mut rem = 0;
if b <= big_digit::HALF {
for d in a.data.iter_mut().rev() {
let (q, r) = div_half(rem, *d, b);
*d = q;
rem = r;
}
} else {
for d in a.data.iter_mut().rev() {
let (q, r) = div_wide(rem, *d, b);
*d = q;
rem = r;
}
}
(a.normalized(), rem)
}
#[inline]
fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit {
if b == 0 {
panic!("attempt to divide by zero")
}
let mut rem = 0;
if b <= big_digit::HALF {
for &digit in a.data.iter().rev() {
let (_, r) = div_half(rem, digit, b);
rem = r;
}
} else {
for &digit in a.data.iter().rev() {
let (_, r) = div_wide(rem, digit, b);
rem = r;
}
}
rem
}
/// Subtract a multiple.
/// a -= b * c
/// Returns a borrow (if a < b then borrow > 0).
fn sub_mul_digit_same_len(a: &mut [BigDigit], b: &[BigDigit], c: BigDigit) -> BigDigit {
debug_assert!(a.len() == b.len());
// carry is between -big_digit::MAX and 0, so to avoid overflow we store
// offset_carry = carry + big_digit::MAX
let mut offset_carry = big_digit::MAX;
for (x, y) in a.iter_mut().zip(b) {
// We want to calculate sum = x - y * c + carry.
// sum >= -(big_digit::MAX * big_digit::MAX) - big_digit::MAX
// sum <= big_digit::MAX
// Offsetting sum by (big_digit::MAX << big_digit::BITS) puts it in DoubleBigDigit range.
let offset_sum = big_digit::to_doublebigdigit(big_digit::MAX, *x)
- big_digit::MAX as DoubleBigDigit
+ offset_carry as DoubleBigDigit
- *y as DoubleBigDigit * c as DoubleBigDigit;
let (new_offset_carry, new_x) = big_digit::from_doublebigdigit(offset_sum);
offset_carry = new_offset_carry;
*x = new_x;
}
// Return the borrow.
big_digit::MAX - offset_carry
}
fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
if d.is_zero() {
panic!("attempt to divide by zero")
}
if u.is_zero() {
return (Zero::zero(), Zero::zero());
}
if d.data.len() == 1 {
if d.data == [1] {
return (u, Zero::zero());
}
let (div, rem) = div_rem_digit(u, d.data[0]);
// reuse d
d.data.clear();
d += rem;
return (div, d);
}
// Required or the q_len calculation below can underflow:
match u.cmp(&d) {
Less => return (Zero::zero(), u),
Equal => {
u.set_one();
return (u, Zero::zero());
}
Greater => {} // Do nothing
}
// This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
//
// First, normalize the arguments so the highest bit in the highest digit of the divisor is
// set: the main loop uses the highest digit of the divisor for generating guesses, so we
// want it to be the largest number we can efficiently divide by.
//
let shift = d.data.last().unwrap().leading_zeros() as usize;
if shift == 0 {
// no need to clone d
div_rem_core(u, &d.data)
} else {
let (q, r) = div_rem_core(u << shift, &(d << shift).data);
// renormalize the remainder
(q, r >> shift)
}
}
pub(super) fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
if d.is_zero() {
panic!("attempt to divide by zero")
}
if u.is_zero() {
return (Zero::zero(), Zero::zero());
}
if d.data.len() == 1 {
if d.data == [1] {
return (u.clone(), Zero::zero());
}
let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
return (div, rem.into());
}
// Required or the q_len calculation below can underflow:
match u.cmp(d) {
Less => return (Zero::zero(), u.clone()),
Equal => return (One::one(), Zero::zero()),
Greater => {} // Do nothing
}
// This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
//
// First, normalize the arguments so the highest bit in the highest digit of the divisor is
// set: the main loop uses the highest digit of the divisor for generating guesses, so we
// want it to be the largest number we can efficiently divide by.
//
let shift = d.data.last().unwrap().leading_zeros() as usize;
if shift == 0 {
// no need to clone d
div_rem_core(u.clone(), &d.data)
} else {
let (q, r) = div_rem_core(u << shift, &(d << shift).data);
// renormalize the remainder
(q, r >> shift)
}
}
/// An implementation of the base division algorithm.
/// Knuth, TAOCP vol 2 section 4.3.1, algorithm D, with an improvement from exercises 19-21.
fn div_rem_core(mut a: BigUint, b: &[BigDigit]) -> (BigUint, BigUint) {
debug_assert!(a.data.len() >= b.len() && b.len() > 1);
debug_assert!(b.last().unwrap().leading_zeros() == 0);
// The algorithm works by incrementally calculating "guesses", q0, for the next digit of the
// quotient. Once we have any number q0 such that (q0 << j) * b <= a, we can set
//
// q += q0 << j
// a -= (q0 << j) * b
//
// and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
//
// q0, our guess, is calculated by dividing the last three digits of a by the last two digits of
// b - this will give us a guess that is close to the actual quotient, but is possibly greater.
// It can only be greater by 1 and only in rare cases, with probability at most
// 2^-(big_digit::BITS-1) for random a, see TAOCP 4.3.1 exercise 21.
//
// If the quotient turns out to be too large, we adjust it by 1:
// q -= 1 << j
// a += b << j
// a0 stores an additional extra most significant digit of the dividend, not stored in a.
let mut a0 = 0;
// [b1, b0] are the two most significant digits of the divisor. They never change.
let b0 = *b.last().unwrap();
let b1 = b[b.len() - 2];
let q_len = a.data.len() - b.len() + 1;
let mut q = BigUint {
data: vec![0; q_len],
};
for j in (0..q_len).rev() {
debug_assert!(a.data.len() == b.len() + j);
let a1 = *a.data.last().unwrap();
let a2 = a.data[a.data.len() - 2];
// The first q0 estimate is [a1,a0] / b0. It will never be too small, it may be too large
// by at most 2.
let (mut q0, mut r) = if a0 < b0 {
let (q0, r) = div_wide(a0, a1, b0);
(q0, r as DoubleBigDigit)
} else {
debug_assert!(a0 == b0);
// Avoid overflowing q0, we know the quotient fits in BigDigit.
// [a1,a0] = b0 * (1<<BITS - 1) + (a0 + a1)
(big_digit::MAX, a0 as DoubleBigDigit + a1 as DoubleBigDigit)
};
// r = [a1,a0] - q0 * b0
//
// Now we want to compute a more precise estimate [a2,a1,a0] / [b1,b0] which can only be
// less or equal to the current q0.
//
// q0 is too large if:
// [a2,a1,a0] < q0 * [b1,b0]
// (r << BITS) + a2 < q0 * b1
while r <= big_digit::MAX as DoubleBigDigit
&& big_digit::to_doublebigdigit(r as BigDigit, a2)
< q0 as DoubleBigDigit * b1 as DoubleBigDigit
{
q0 -= 1;
r += b0 as DoubleBigDigit;
}
// q0 is now either the correct quotient digit, or in rare cases 1 too large.
// Subtract (q0 << j) from a. This may overflow, in which case we will have to correct.
let mut borrow = sub_mul_digit_same_len(&mut a.data[j..], b, q0);
if borrow > a0 {
// q0 is too large. We need to add back one multiple of b.
q0 -= 1;
borrow -= __add2(&mut a.data[j..], b);
}
// The top digit of a, stored in a0, has now been zeroed.
debug_assert!(borrow == a0);
q.data[j] = q0;
// Pop off the next top digit of a.
a0 = a.data.pop().unwrap();
}
a.data.push(a0);
a.normalize();
debug_assert_eq!(cmp_slice(&a.data, b), Less);
(q.normalized(), a)
}
forward_val_ref_binop!(impl Div for BigUint, div);
forward_ref_val_binop!(impl Div for BigUint, div);
forward_val_assign!(impl DivAssign for BigUint, div_assign);
impl Div<BigUint> for BigUint {
type Output = BigUint;
#[inline]
fn div(self, other: BigUint) -> BigUint {
let (q, _) = div_rem(self, other);
q
}
}
impl<'a, 'b> Div<&'b BigUint> for &'a BigUint {
type Output = BigUint;
#[inline]
fn div(self, other: &BigUint) -> BigUint {
let (q, _) = self.div_rem(other);
q
}
}
impl<'a> DivAssign<&'a BigUint> for BigUint {
#[inline]
fn div_assign(&mut self, other: &'a BigUint) {
*self = &*self / other;
}
}
promote_unsigned_scalars!(impl Div for BigUint, div);
promote_unsigned_scalars_assign!(impl DivAssign for BigUint, div_assign);
forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigUint, div);
forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigUint, div);
forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigUint, div);
impl Div<u32> for BigUint {
type Output = BigUint;
#[inline]
fn div(self, other: u32) -> BigUint {
let (q, _) = div_rem_digit(self, other as BigDigit);
q
}
}
impl DivAssign<u32> for BigUint {
#[inline]
fn div_assign(&mut self, other: u32) {
*self = &*self / other;
}
}
impl Div<BigUint> for u32 {
type Output = BigUint;
#[inline]
fn div(self, other: BigUint) -> BigUint {
match other.data.len() {
0 => panic!("attempt to divide by zero"),
1 => From::from(self as BigDigit / other.data[0]),
_ => Zero::zero(),
}
}
}
impl Div<u64> for BigUint {
type Output = BigUint;
#[inline]
fn div(self, other: u64) -> BigUint {
let (q, _) = div_rem(self, From::from(other));
q
}
}
impl DivAssign<u64> for BigUint {
#[inline]
fn div_assign(&mut self, other: u64) {
// a vec of size 0 does not allocate, so this is fairly cheap
let temp = mem::replace(self, Zero::zero());
*self = temp / other;
}
}
impl Div<BigUint> for u64 {
type Output = BigUint;
#[cfg(not(u64_digit))]
#[inline]
fn div(self, other: BigUint) -> BigUint {
match other.data.len() {
0 => panic!("attempt to divide by zero"),
1 => From::from(self / u64::from(other.data[0])),
2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])),
_ => Zero::zero(),
}
}
#[cfg(u64_digit)]
#[inline]
fn div(self, other: BigUint) -> BigUint {
match other.data.len() {
0 => panic!("attempt to divide by zero"),
1 => From::from(self / other.data[0]),
_ => Zero::zero(),
}
}
}
impl Div<u128> for BigUint {
type Output = BigUint;
#[inline]
fn div(self, other: u128) -> BigUint {
let (q, _) = div_rem(self, From::from(other));
q
}
}
impl DivAssign<u128> for BigUint {
#[inline]
fn div_assign(&mut self, other: u128) {
*self = &*self / other;
}
}
impl Div<BigUint> for u128 {
type Output = BigUint;
#[cfg(not(u64_digit))]
#[inline]
fn div(self, other: BigUint) -> BigUint {
match other.data.len() {
0 => panic!("attempt to divide by zero"),
1 => From::from(self / u128::from(other.data[0])),
2 => From::from(
self / u128::from(big_digit::to_doublebigdigit(other.data[1], other.data[0])),
),
3 => From::from(self / u32_to_u128(0, other.data[2], other.data[1], other.data[0])),
4 => From::from(
self / u32_to_u128(other.data[3], other.data[2], other.data[1], other.data[0]),
),
_ => Zero::zero(),
}
}
#[cfg(u64_digit)]
#[inline]
fn div(self, other: BigUint) -> BigUint {
match other.data.len() {
0 => panic!("attempt to divide by zero"),
1 => From::from(self / other.data[0] as u128),
2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])),
_ => Zero::zero(),
}
}
}
forward_val_ref_binop!(impl Rem for BigUint, rem);
forward_ref_val_binop!(impl Rem for BigUint, rem);
forward_val_assign!(impl RemAssign for BigUint, rem_assign);
impl Rem<BigUint> for BigUint {
type Output = BigUint;
#[inline]
fn rem(self, other: BigUint) -> BigUint {
if let Some(other) = other.to_u32() {
&self % other
} else {
let (_, r) = div_rem(self, other);
r
}
}
}
impl<'a, 'b> Rem<&'b BigUint> for &'a BigUint {
type Output = BigUint;
#[inline]
fn rem(self, other: &BigUint) -> BigUint {
if let Some(other) = other.to_u32() {
self % other
} else {
let (_, r) = self.div_rem(other);
r
}
}
}
impl<'a> RemAssign<&'a BigUint> for BigUint {
#[inline]
fn rem_assign(&mut self, other: &BigUint) {
*self = &*self % other;
}
}
promote_unsigned_scalars!(impl Rem for BigUint, rem);
promote_unsigned_scalars_assign!(impl RemAssign for BigUint, rem_assign);
forward_all_scalar_binop_to_ref_val!(impl Rem<u32> for BigUint, rem);
forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigUint, rem);
forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigUint, rem);
impl<'a> Rem<u32> for &'a BigUint {
type Output = BigUint;
#[inline]
fn rem(self, other: u32) -> BigUint {
rem_digit(self, other as BigDigit).into()
}
}
impl RemAssign<u32> for BigUint {
#[inline]
fn rem_assign(&mut self, other: u32) {
*self = &*self % other;
}
}
impl<'a> Rem<&'a BigUint> for u32 {
type Output = BigUint;
#[inline]
fn rem(mut self, other: &'a BigUint) -> BigUint {
self %= other;
From::from(self)
}
}
macro_rules! impl_rem_assign_scalar {
($scalar:ty, $to_scalar:ident) => {
forward_val_assign_scalar!(impl RemAssign for BigUint, $scalar, rem_assign);
impl<'a> RemAssign<&'a BigUint> for $scalar {
#[inline]
fn rem_assign(&mut self, other: &BigUint) {
*self = match other.$to_scalar() {
None => *self,
Some(0) => panic!("attempt to divide by zero"),
Some(v) => *self % v
};
}
}
}
}
// we can scalar %= BigUint for any scalar, including signed types
impl_rem_assign_scalar!(u128, to_u128);
impl_rem_assign_scalar!(usize, to_usize);
impl_rem_assign_scalar!(u64, to_u64);
impl_rem_assign_scalar!(u32, to_u32);
impl_rem_assign_scalar!(u16, to_u16);
impl_rem_assign_scalar!(u8, to_u8);
impl_rem_assign_scalar!(i128, to_i128);
impl_rem_assign_scalar!(isize, to_isize);
impl_rem_assign_scalar!(i64, to_i64);
impl_rem_assign_scalar!(i32, to_i32);
impl_rem_assign_scalar!(i16, to_i16);
impl_rem_assign_scalar!(i8, to_i8);
impl Rem<u64> for BigUint {
type Output = BigUint;
#[inline]
fn rem(self, other: u64) -> BigUint {
let (_, r) = div_rem(self, From::from(other));
r
}
}
impl RemAssign<u64> for BigUint {
#[inline]
fn rem_assign(&mut self, other: u64) {
*self = &*self % other;
}
}
impl Rem<BigUint> for u64 {
type Output = BigUint;
#[inline]
fn rem(mut self, other: BigUint) -> BigUint {
self %= other;
From::from(self)
}
}
impl Rem<u128> for BigUint {
type Output = BigUint;
#[inline]
fn rem(self, other: u128) -> BigUint {
let (_, r) = div_rem(self, From::from(other));
r
}
}
impl RemAssign<u128> for BigUint {
#[inline]
fn rem_assign(&mut self, other: u128) {
*self = &*self % other;
}
}
impl Rem<BigUint> for u128 {
type Output = BigUint;
#[inline]
fn rem(mut self, other: BigUint) -> BigUint {
self %= other;
From::from(self)
}
}
impl CheckedDiv for BigUint {
#[inline]
fn checked_div(&self, v: &BigUint) -> Option<BigUint> {
if v.is_zero() {
return None;
}
Some(self.div(v))
}
}