blob: d39f4575220df7650a62bd9639006efce2297741 [file] [log] [blame]
//! Bit level parsers and combinators
//!
//! Bit parsing is handled by tweaking the input in most macros.
//! In byte level parsing, the input is generally a `&[u8]` passed from combinator
//! to combinator as the slices are manipulated.
//!
//! Bit parsers take a `(&[u8], usize)` as input. The first part of the tuple is a byte slice,
//! the second part is a bit offset in the first byte of the slice.
//!
//! By passing a pair like this, we can leverage most of the existing combinators, and avoid
//! transforming the whole slice to a vector of booleans. This should make it easy
//! to see a byte slice as a bit stream, and parse code points of arbitrary bit length.
//!
/// Transforms its byte slice input into a bit stream for the underlying parser. This allows the
/// given bit stream parser to work on a byte slice input.
///
/// Signature:
/// `bits!( parser ) => ( &[u8], (&[u8], usize) -> IResult<(&[u8], usize), T> ) -> IResult<&[u8], T>`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::{Err, Needed};
/// # fn main() {
/// named!( take_4_bits<u8>, bits!( take_bits!( 4u8 ) ) );
///
/// let input = vec![0xAB, 0xCD, 0xEF, 0x12];
/// let sl = &input[..];
///
/// assert_eq!(take_4_bits( sl ), Ok( (&sl[1..], 0xA) ));
/// assert_eq!(take_4_bits( &b""[..] ), Err(Err::Incomplete(Needed::new(1))));
/// # }
#[macro_export(local_inner_macros)]
macro_rules! bits (
($i:expr, $submac:ident!( $($args:tt)* )) => ({
$crate::bits::bitsc($i, move |i| { $submac!(i, $($args)*) })
});
($i:expr, $f:expr) => (
bits!($i, call!($f))
);
);
/// Counterpart to `bits`, `bytes!` transforms its bit stream input into a byte slice for the underlying
/// parser, allowing byte-slice parsers to work on bit streams.
///
/// Signature:
/// `bytes!( parser ) => ( (&[u8], usize), &[u8] -> IResult<&[u8], T> ) -> IResult<(&[u8], usize), T>`,
///
/// A partial byte remaining in the input will be ignored and the given parser will start parsing
/// at the next full byte.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::combinator::rest;
/// # use nom::error::{Error, ErrorKind};
/// # fn main() {
///
/// named!( parse<(u8, u8, &[u8])>, bits!( tuple!(
/// take_bits!(4u8),
/// take_bits!(8u8),
/// bytes!(rest::<_, Error<_>>)
/// )));
///
/// let input = &[0xde, 0xad, 0xbe, 0xaf];
///
/// assert_eq!(parse( input ), Ok(( &[][..], (0xd, 0xea, &[0xbe, 0xaf][..]) )));
/// # }
#[macro_export(local_inner_macros)]
macro_rules! bytes (
($i:expr, $submac:ident!( $($args:tt)* )) => ({
$crate::bits::bytesc($i, move |i| { $submac!(i, $($args)*) })
});
($i:expr, $f:expr) => (
bytes!($i, call!($f))
);
);
/// Consumes the specified number of bits and returns them as the specified type.
///
/// Signature:
/// `take_bits!(type, count) => ( (&[T], usize), U, usize) -> IResult<(&[T], usize), U>`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
/// named!(bits_pair<(&[u8], usize), (u8, u8)>, pair!( take_bits!(4u8), take_bits!(4u8) ) );
/// named!( take_pair<(u8, u8)>, bits!( bits_pair ) );
///
/// let input = vec![0xAB, 0xCD, 0xEF];
/// let sl = &input[..];
///
/// assert_eq!(take_pair( sl ), Ok((&sl[1..], (0xA, 0xB))) );
/// assert_eq!(take_pair( &sl[1..] ), Ok((&sl[2..], (0xC, 0xD))) );
/// # }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! take_bits (
($i:expr, $count:expr) => (
{
let res: $crate::IResult<_, _> = $crate::bits::streaming::take($count)($i);
res
}
);
);
/// Matches the given bit pattern.
///
/// Signature:
/// `tag_bits!(type, count, pattern) => ( (&[T], usize), U, usize, U) -> IResult<(&[T], usize), U>`
///
/// The caller must specify the number of bits to consume. The matched value is included in the
/// result on success.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
/// named!( take_a<u8>, bits!( tag_bits!(4usize, 0xA) ) );
///
/// let input = vec![0xAB, 0xCD, 0xEF];
/// let sl = &input[..];
///
/// assert_eq!(take_a( sl ), Ok((&sl[1..], 0xA)) );
/// # }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! tag_bits (
($i:expr, $count:expr, $p: expr) => (
{
let res: $crate::IResult<_, _> = $crate::bits::streaming::tag($p, $count)($i);
res
}
)
);
#[cfg(test)]
mod tests {
use crate::error::ErrorKind;
use crate::internal::{Err, IResult, Needed};
use crate::lib::std::ops::{AddAssign, Shl, Shr};
#[test]
fn take_bits() {
let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
let sl = &input[..];
assert_eq!(take_bits!((sl, 0), 0u8), Ok(((sl, 0), 0)));
assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170)));
assert_eq!(take_bits!((sl, 0), 3u8), Ok(((&sl[0..], 3), 5)));
assert_eq!(take_bits!((sl, 0), 6u8), Ok(((&sl[0..], 6), 42)));
assert_eq!(take_bits!((sl, 1), 1u8), Ok(((&sl[0..], 2), 0)));
assert_eq!(take_bits!((sl, 1), 2u8), Ok(((&sl[0..], 3), 1)));
assert_eq!(take_bits!((sl, 1), 3u8), Ok(((&sl[0..], 4), 2)));
assert_eq!(take_bits!((sl, 6), 3u8), Ok(((&sl[1..], 1), 5)));
assert_eq!(take_bits!((sl, 0), 10u8), Ok(((&sl[1..], 2), 683)));
assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170)));
assert_eq!(take_bits!((sl, 6), 10u8), Ok(((&sl[2..], 0), 752)));
assert_eq!(take_bits!((sl, 6), 11u8), Ok(((&sl[2..], 1), 1504)));
assert_eq!(take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), 700_163)));
assert_eq!(take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), 716_851)));
let r: IResult<_, u32> = take_bits!((sl, 4), 22u8);
assert_eq!(r, Err(Err::Incomplete(Needed::new(22))));
}
#[test]
fn tag_bits() {
let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
let sl = &input[..];
assert_eq!(tag_bits!((sl, 0), 3u8, 0b101), Ok(((&sl[0..], 3), 5)));
assert_eq!(tag_bits!((sl, 0), 4u8, 0b1010), Ok(((&sl[0..], 4), 10)));
}
named!(ch<(&[u8],usize),(u8,u8)>,
do_parse!(
tag_bits!(3u8, 0b101) >>
x: take_bits!(4u8) >>
y: take_bits!(5u8) >>
(x,y)
)
);
#[test]
fn chain_bits() {
let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
let sl = &input[..];
assert_eq!(ch((&input[..], 0)), Ok(((&sl[1..], 4), (5, 15))));
assert_eq!(ch((&input[..], 4)), Ok(((&sl[2..], 0), (7, 16))));
assert_eq!(ch((&input[..1], 0)), Err(Err::Incomplete(Needed::new(5))));
}
named!(ch_bytes<(u8, u8)>, bits!(ch));
#[test]
fn bits_to_bytes() {
let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
assert_eq!(ch_bytes(&input[..]), Ok((&input[2..], (5, 15))));
assert_eq!(ch_bytes(&input[..1]), Err(Err::Incomplete(Needed::new(1))));
assert_eq!(
ch_bytes(&input[1..]),
Err(Err::Error(error_position!(&input[1..], ErrorKind::TagBits)))
);
}
named!(
bits_bytes_bs,
bits!(bytes!(
crate::combinator::rest::<_, crate::error::Error<&[u8]>>
))
);
#[test]
fn bits_bytes() {
let input = [0b10_10_10_10];
assert_eq!(
bits_bytes_bs(&input[..]),
Ok((&[][..], &[0b10_10_10_10][..]))
);
}
#[derive(PartialEq, Debug)]
struct FakeUint(u32);
impl AddAssign for FakeUint {
fn add_assign(&mut self, other: FakeUint) {
*self = FakeUint(self.0 + other.0);
}
}
impl Shr<usize> for FakeUint {
type Output = FakeUint;
fn shr(self, shift: usize) -> FakeUint {
FakeUint(self.0 >> shift)
}
}
impl Shl<usize> for FakeUint {
type Output = FakeUint;
fn shl(self, shift: usize) -> FakeUint {
FakeUint(self.0 << shift)
}
}
impl From<u8> for FakeUint {
fn from(i: u8) -> FakeUint {
FakeUint(u32::from(i))
}
}
#[test]
fn non_privitive_type() {
let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
let sl = &input[..];
assert_eq!(
take_bits!((sl, 0), 20u8),
Ok(((&sl[2..], 4), FakeUint(700_163)))
);
assert_eq!(
take_bits!((sl, 4), 20u8),
Ok(((&sl[3..], 0), FakeUint(716_851)))
);
let r3: IResult<_, FakeUint> = take_bits!((sl, 4), 22u8);
assert_eq!(r3, Err(Err::Incomplete(Needed::new(22))));
}
}