blob: 8f335003b9fe62d878cde51b68da48797ccfe14f [file] [log] [blame]
use tests::memchr_tests;
use {Memchr, Memchr2, Memchr3};
#[test]
fn memchr1_iter() {
for test in memchr_tests() {
test.iter_one(false, Memchr::new);
}
}
#[test]
fn memchr2_iter() {
for test in memchr_tests() {
test.iter_two(false, Memchr2::new);
}
}
#[test]
fn memchr3_iter() {
for test in memchr_tests() {
test.iter_three(false, Memchr3::new);
}
}
#[test]
fn memrchr1_iter() {
for test in memchr_tests() {
test.iter_one(true, |n1, corpus| Memchr::new(n1, corpus).rev());
}
}
#[test]
fn memrchr2_iter() {
for test in memchr_tests() {
test.iter_two(true, |n1, n2, corpus| {
Memchr2::new(n1, n2, corpus).rev()
})
}
}
#[test]
fn memrchr3_iter() {
for test in memchr_tests() {
test.iter_three(true, |n1, n2, n3, corpus| {
Memchr3::new(n1, n2, n3, corpus).rev()
})
}
}
quickcheck! {
fn qc_memchr_double_ended_iter(
needle: u8, data: Vec<u8>, take_side: Vec<bool>
) -> bool {
// make nonempty
let mut take_side = take_side;
if take_side.is_empty() { take_side.push(true) };
let iter = Memchr::new(needle, &data);
let all_found = double_ended_take(
iter, take_side.iter().cycle().cloned());
all_found.iter().cloned().eq(positions1(needle, &data))
}
fn qc_memchr2_double_ended_iter(
needle1: u8, needle2: u8, data: Vec<u8>, take_side: Vec<bool>
) -> bool {
// make nonempty
let mut take_side = take_side;
if take_side.is_empty() { take_side.push(true) };
let iter = Memchr2::new(needle1, needle2, &data);
let all_found = double_ended_take(
iter, take_side.iter().cycle().cloned());
all_found.iter().cloned().eq(positions2(needle1, needle2, &data))
}
fn qc_memchr3_double_ended_iter(
needle1: u8, needle2: u8, needle3: u8,
data: Vec<u8>, take_side: Vec<bool>
) -> bool {
// make nonempty
let mut take_side = take_side;
if take_side.is_empty() { take_side.push(true) };
let iter = Memchr3::new(needle1, needle2, needle3, &data);
let all_found = double_ended_take(
iter, take_side.iter().cycle().cloned());
all_found
.iter()
.cloned()
.eq(positions3(needle1, needle2, needle3, &data))
}
fn qc_memchr1_iter(data: Vec<u8>) -> bool {
let needle = 0;
let answer = positions1(needle, &data);
answer.eq(Memchr::new(needle, &data))
}
fn qc_memchr1_rev_iter(data: Vec<u8>) -> bool {
let needle = 0;
let answer = positions1(needle, &data);
answer.rev().eq(Memchr::new(needle, &data).rev())
}
fn qc_memchr2_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let answer = positions2(needle1, needle2, &data);
answer.eq(Memchr2::new(needle1, needle2, &data))
}
fn qc_memchr2_rev_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let answer = positions2(needle1, needle2, &data);
answer.rev().eq(Memchr2::new(needle1, needle2, &data).rev())
}
fn qc_memchr3_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let needle3 = 2;
let answer = positions3(needle1, needle2, needle3, &data);
answer.eq(Memchr3::new(needle1, needle2, needle3, &data))
}
fn qc_memchr3_rev_iter(data: Vec<u8>) -> bool {
let needle1 = 0;
let needle2 = 1;
let needle3 = 2;
let answer = positions3(needle1, needle2, needle3, &data);
answer.rev().eq(Memchr3::new(needle1, needle2, needle3, &data).rev())
}
fn qc_memchr1_iter_size_hint(data: Vec<u8>) -> bool {
// test that the size hint is within reasonable bounds
let needle = 0;
let mut iter = Memchr::new(needle, &data);
let mut real_count = data
.iter()
.filter(|&&elt| elt == needle)
.count();
while let Some(index) = iter.next() {
real_count -= 1;
let (lower, upper) = iter.size_hint();
assert!(lower <= real_count);
assert!(upper.unwrap() >= real_count);
assert!(upper.unwrap() <= data.len() - index);
}
true
}
}
// take items from a DEI, taking front for each true and back for each false.
// Return a vector with the concatenation of the fronts and the reverse of the
// backs.
fn double_ended_take<I, J>(mut iter: I, take_side: J) -> Vec<I::Item>
where
I: DoubleEndedIterator,
J: Iterator<Item = bool>,
{
let mut found_front = Vec::new();
let mut found_back = Vec::new();
for take_front in take_side {
if take_front {
if let Some(pos) = iter.next() {
found_front.push(pos);
} else {
break;
}
} else {
if let Some(pos) = iter.next_back() {
found_back.push(pos);
} else {
break;
}
};
}
let mut all_found = found_front;
all_found.extend(found_back.into_iter().rev());
all_found
}
// return an iterator of the 0-based indices of haystack that match the needle
fn positions1<'a>(
n1: u8,
haystack: &'a [u8],
) -> Box<dyn DoubleEndedIterator<Item = usize> + 'a> {
let it = haystack
.iter()
.enumerate()
.filter(move |&(_, &b)| b == n1)
.map(|t| t.0);
Box::new(it)
}
fn positions2<'a>(
n1: u8,
n2: u8,
haystack: &'a [u8],
) -> Box<dyn DoubleEndedIterator<Item = usize> + 'a> {
let it = haystack
.iter()
.enumerate()
.filter(move |&(_, &b)| b == n1 || b == n2)
.map(|t| t.0);
Box::new(it)
}
fn positions3<'a>(
n1: u8,
n2: u8,
n3: u8,
haystack: &'a [u8],
) -> Box<dyn DoubleEndedIterator<Item = usize> + 'a> {
let it = haystack
.iter()
.enumerate()
.filter(move |&(_, &b)| b == n1 || b == n2 || b == n3)
.map(|t| t.0);
Box::new(it)
}