blob: 29d2003659feddc9b8f5a7d466a5561379746fbc [file] [log] [blame]
use util::{ensure_compatible_types, cstr_cow_from_bytes};
use std::ffi::{CStr, OsStr};
use std::{fmt, marker, mem, ptr};
use std::os::raw;
use std::os::unix::ffi::OsStrExt;
// dl* family of functions did not have enough thought put into it.
//
// Whole error handling scheme is done via setting and querying some global state, therefore it is
// not safe to use dynamic library loading in MT-capable environment at all. Only in POSIX 2008+TC1
// a thread-local state was allowed for `dlerror`, making the dl* family of functions MT-safe.
//
// In practice (as of 2020-04-01) most of the widely used targets use a thread-local for error
// state and have been doing so for a long time. Regardless the comments in this function shall
// remain as a documentation for the future generations.
fn with_dlerror<T, F>(wrap: fn(crate::error::DlDescription) -> crate::Error, closure: F)
-> Result<T, Option<crate::Error>>
where F: FnOnce() -> Option<T> {
// We used to guard all uses of dl* functions with our own mutex. This made them safe to use in
// MT programs provided the only way a program used dl* was via this library. However, it also
// had a number of downsides or cases where it failed to handle the problems. For instance,
// if any other library called `dlerror` internally concurrently with `libloading` things would
// still go awry.
//
// On platforms where `dlerror` is still MT-unsafe, `dlsym` (`Library::get`) can spuriously
// succeed and return a null pointer for a symbol when the actual symbol look-up operation
// fails. Instances where the actual symbol _could_ be `NULL` are platform specific. For
// instance on GNU glibc based-systems (an excerpt from dlsym(3)):
//
// > The value of a symbol returned by dlsym() will never be NULL if the shared object is the
// > result of normal compilation, since a global symbol is never placed at the NULL
// > address. There are nevertheless cases where a lookup using dlsym() may return NULL as the
// > value of a symbol. For example, the symbol value may be the result of a GNU indirect
// > function (IFUNC) resolver function that returns NULL as the resolved value.
// While we could could call `dlerror` here to clear the previous error value, only the `dlsym`
// call depends on it being cleared beforehand and only in some cases too. We will instead
// clear the error inside the dlsym binding instead.
//
// In all the other cases, clearing the error here will only be hiding misuse of these bindings
// or a bug in implementation of dl* family of functions.
closure().ok_or_else(|| unsafe {
// This code will only get executed if the `closure` returns `None`.
let error = dlerror();
if error.is_null() {
// In non-dlsym case this may happen when there’re bugs in our bindings or there’s
// non-libloading user of libdl; possibly in another thread.
None
} else {
// You can’t even rely on error string being static here; call to subsequent dlerror
// may invalidate or overwrite the error message. Why couldn’t they simply give up the
// ownership over the message?
// TODO: should do locale-aware conversion here. OTOH Rust doesn’t seem to work well in
// any system that uses non-utf8 locale, so I doubt there’s a problem here.
let message = CStr::from_ptr(error).into();
Some(wrap(crate::error::DlDescription(message)))
// Since we do a copy of the error string above, maybe we should call dlerror again to
// let libdl know it may free its copy of the string now?
}
})
}
/// A platform-specific equivalent of the cross-platform `Library`.
pub struct Library {
handle: *mut raw::c_void
}
unsafe impl Send for Library {}
// That being said... this section in the volume 2 of POSIX.1-2008 states:
//
// > All functions defined by this volume of POSIX.1-2008 shall be thread-safe, except that the
// > following functions need not be thread-safe.
//
// With notable absence of any dl* function other than dlerror in the list. By “this volume”
// I suppose they refer precisely to the “volume 2”. dl* family of functions are specified
// by this same volume, so the conclusion is indeed that dl* functions are required by POSIX
// to be thread-safe. Great!
//
// See for more details:
//
// * https://github.com/nagisa/rust_libloading/pull/17
// * http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
unsafe impl Sync for Library {}
impl Library {
/// Find and load a shared library (module).
///
/// Locations where library is searched for is platform specific and can’t be adjusted
/// portably.
///
/// Corresponds to `dlopen(filename, RTLD_NOW)`.
#[inline]
pub fn new<P: AsRef<OsStr>>(filename: P) -> Result<Library, crate::Error> {
Library::open(Some(filename), RTLD_NOW)
}
/// Load the dynamic libraries linked into main program.
///
/// This allows retrieving symbols from any **dynamic** library linked into the program,
/// without specifying the exact library.
///
/// Corresponds to `dlopen(NULL, RTLD_NOW)`.
#[inline]
pub fn this() -> Library {
Library::open(None::<&OsStr>, RTLD_NOW).expect("this should never fail")
}
/// Find and load a shared library (module).
///
/// Locations where library is searched for is platform specific and can’t be adjusted
/// portably.
///
/// If the `filename` is None, null pointer is passed to `dlopen`.
///
/// Corresponds to `dlopen(filename, flags)`.
pub fn open<P>(filename: Option<P>, flags: raw::c_int) -> Result<Library, crate::Error>
where P: AsRef<OsStr> {
let filename = match filename {
None => None,
Some(ref f) => Some(cstr_cow_from_bytes(f.as_ref().as_bytes())?),
};
with_dlerror(|desc| crate::Error::DlOpen { desc }, move || {
let result = unsafe {
let r = dlopen(match filename {
None => ptr::null(),
Some(ref f) => f.as_ptr()
}, flags);
// ensure filename lives until dlopen completes
drop(filename);
r
};
if result.is_null() {
None
} else {
Some(Library {
handle: result
})
}
}).map_err(|e| e.unwrap_or(crate::Error::DlOpenUnknown))
}
unsafe fn get_impl<T, F>(&self, symbol: &[u8], on_null: F) -> Result<Symbol<T>, crate::Error>
where F: FnOnce() -> Result<Symbol<T>, crate::Error>
{
ensure_compatible_types::<T, *mut raw::c_void>()?;
let symbol = cstr_cow_from_bytes(symbol)?;
// `dlsym` may return nullptr in two cases: when a symbol genuinely points to a null
// pointer or the symbol cannot be found. In order to detect this case a double dlerror
// pattern must be used, which is, sadly, a little bit racy.
//
// We try to leave as little space as possible for this to occur, but we can’t exactly
// fully prevent it.
match with_dlerror(|desc| crate::Error::DlSym { desc }, || {
dlerror();
let symbol = dlsym(self.handle, symbol.as_ptr());
if symbol.is_null() {
None
} else {
Some(Symbol {
pointer: symbol,
pd: marker::PhantomData
})
}
}) {
Err(None) => on_null(),
Err(Some(e)) => Err(e),
Ok(x) => Ok(x)
}
}
/// Get a pointer to function or static variable by symbol name.
///
/// The `symbol` may not contain any null bytes, with an exception of last byte. A null
/// terminated `symbol` may avoid a string allocation in some cases.
///
/// Symbol is interpreted as-is; no mangling is done. This means that symbols like `x::y` are
/// most likely invalid.
///
/// ## Unsafety
///
/// This function does not validate the type `T`. It is up to the user of this function to
/// ensure that the loaded symbol is in fact a `T`. Using a value with a wrong type has no
/// definied behaviour.
///
///
///
/// ## Platform-specific behaviour
///
/// OS X uses some sort of lazy initialization scheme, which makes loading TLS variables
/// impossible. Using a TLS variable loaded this way on OS X is undefined behaviour.
///
/// On POSIX implementations where the `dlerror` function is not confirmed to be MT-safe (such
/// as FreeBSD), this function will unconditionally return an error the underlying `dlsym` call
/// returns a null pointer. There are rare situations where `dlsym` returns a genuine null
/// pointer without it being an error. If loading a null pointer is something you care about,
/// consider using the [`Library::get_singlethreaded`] call.
#[inline(always)]
pub unsafe fn get<T>(&self, symbol: &[u8]) -> Result<Symbol<T>, crate::Error> {
#[cfg(mtsafe_dlerror)]
{ return self.get_singlethreaded(symbol); }
#[cfg(not(mtsafe_dlerror))]
{
return self.get_impl(symbol, || Err(crate::Error::DlSymUnknown));
}
}
/// Get a pointer to function or static variable by symbol name.
///
/// The `symbol` may not contain any null bytes, with an exception of last byte. A null
/// terminated `symbol` may avoid a string allocation in some cases.
///
/// Symbol is interpreted as-is; no mangling is done. This means that symbols like `x::y` are
/// most likely invalid.
///
/// ## Unsafety
///
/// This function does not validate the type `T`. It is up to the user of this function to
/// ensure that the loaded symbol is in fact a `T`. Using a value with a wrong type has no
/// definied behaviour.
///
/// It is up to the user of this library to ensure that no other calls to an MT-unsafe
/// implementation of `dlerror` occur while this function is executing. Failing that the
/// results of this function are not defined.
///
/// ## Platform-specific behaviour
///
/// OS X uses some sort of lazy initialization scheme, which makes loading TLS variables
/// impossible. Using a TLS variable loaded this way on OS X is undefined behaviour.
#[inline(always)]
pub unsafe fn get_singlethreaded<T>(&self, symbol: &[u8]) -> Result<Symbol<T>, crate::Error> {
self.get_impl(symbol, || Ok(Symbol {
pointer: ptr::null_mut(),
pd: marker::PhantomData
}))
}
/// Convert the `Library` to a raw handle.
///
/// The handle returned by this function shall be usable with APIs which accept handles
/// as returned by `dlopen`.
pub fn into_raw(self) -> *mut raw::c_void {
let handle = self.handle;
mem::forget(self);
handle
}
/// Convert a raw handle returned by `dlopen`-family of calls to a `Library`.
///
/// ## Unsafety
///
/// The pointer shall be a result of a successful call of the `dlopen`-family of functions or a
/// pointer previously returned by `Library::into_raw` call. It must be valid to call `dlclose`
/// with this pointer as an argument.
pub unsafe fn from_raw(handle: *mut raw::c_void) -> Library {
Library {
handle: handle
}
}
/// Unload the library.
///
/// This method might be a no-op, depending on the flags with which the `Library` was opened,
/// what library was opened or other platform specifics.
///
/// You only need to call this if you are interested in handling any errors that may arise when
/// library is unloaded. Otherwise the implementation of `Drop` for `Library` will close the
/// library and ignore the errors were they arise.
pub fn close(self) -> Result<(), crate::Error> {
let result = with_dlerror(|desc| crate::Error::DlClose { desc }, || {
if unsafe { dlclose(self.handle) } == 0 {
Some(())
} else {
None
}
}).map_err(|e| e.unwrap_or(crate::Error::DlCloseUnknown));
std::mem::forget(self);
result
}
}
impl Drop for Library {
fn drop(&mut self) {
unsafe {
dlclose(self.handle);
}
}
}
impl fmt::Debug for Library {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&format!("Library@{:p}", self.handle))
}
}
/// Symbol from a library.
///
/// A major difference compared to the cross-platform `Symbol` is that this does not ensure the
/// `Symbol` does not outlive `Library` it comes from.
pub struct Symbol<T> {
pointer: *mut raw::c_void,
pd: marker::PhantomData<T>
}
impl<T> Symbol<T> {
/// Convert the loaded Symbol into a raw pointer.
pub fn into_raw(self) -> *mut raw::c_void {
let pointer = self.pointer;
mem::forget(self);
pointer
}
}
impl<T> Symbol<Option<T>> {
/// Lift Option out of the symbol.
pub fn lift_option(self) -> Option<Symbol<T>> {
if self.pointer.is_null() {
None
} else {
Some(Symbol {
pointer: self.pointer,
pd: marker::PhantomData,
})
}
}
}
unsafe impl<T: Send> Send for Symbol<T> {}
unsafe impl<T: Sync> Sync for Symbol<T> {}
impl<T> Clone for Symbol<T> {
fn clone(&self) -> Symbol<T> {
Symbol { ..*self }
}
}
impl<T> ::std::ops::Deref for Symbol<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe {
// Additional reference level for a dereference on `deref` return value.
mem::transmute(&self.pointer)
}
}
}
impl<T> fmt::Debug for Symbol<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
unsafe {
let mut info = mem::MaybeUninit::<DlInfo>::uninit();
if dladdr(self.pointer, info.as_mut_ptr()) != 0 {
let info = info.assume_init();
if info.dli_sname.is_null() {
f.write_str(&format!("Symbol@{:p} from {:?}",
self.pointer,
CStr::from_ptr(info.dli_fname)))
} else {
f.write_str(&format!("Symbol {:?}@{:p} from {:?}",
CStr::from_ptr(info.dli_sname), self.pointer,
CStr::from_ptr(info.dli_fname)))
}
} else {
f.write_str(&format!("Symbol@{:p}", self.pointer))
}
}
}
}
// Platform specific things
extern {
fn dlopen(filename: *const raw::c_char, flags: raw::c_int) -> *mut raw::c_void;
fn dlclose(handle: *mut raw::c_void) -> raw::c_int;
fn dlsym(handle: *mut raw::c_void, symbol: *const raw::c_char) -> *mut raw::c_void;
fn dlerror() -> *mut raw::c_char;
fn dladdr(addr: *mut raw::c_void, info: *mut DlInfo) -> raw::c_int;
}
#[cfg(not(target_os="android"))]
const RTLD_NOW: raw::c_int = 2;
#[cfg(target_os="android")]
const RTLD_NOW: raw::c_int = 0;
#[repr(C)]
struct DlInfo {
dli_fname: *const raw::c_char,
dli_fbase: *mut raw::c_void,
dli_sname: *const raw::c_char,
dli_saddr: *mut raw::c_void
}
#[cfg(test)]
mod tests {
#[test]
fn this() {
super::Library::this();
}
}