blob: 3728947426c9910557f1380e73a908eeb67df4b1 [file] [log] [blame]
//! A hash set implemented using `IndexMap`
#[cfg(feature = "rayon")]
pub use crate::rayon::set as rayon;
#[cfg(has_std)]
use std::collections::hash_map::RandomState;
use crate::vec::{self, Vec};
use core::cmp::Ordering;
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::iter::{Chain, FusedIterator};
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
use core::slice;
use super::{Entries, Equivalent, IndexMap};
type Bucket<T> = super::Bucket<T, ()>;
/// A hash set where the iteration order of the values is independent of their
/// hash values.
///
/// The interface is closely compatible with the standard `HashSet`, but also
/// has additional features.
///
/// # Order
///
/// The values have a consistent order that is determined by the sequence of
/// insertion and removal calls on the set. The order does not depend on the
/// values or the hash function at all. Note that insertion order and value
/// are not affected if a re-insertion is attempted once an element is
/// already present.
///
/// All iterators traverse the set *in order*. Set operation iterators like
/// `union` produce a concatenated order, as do their matching "bitwise"
/// operators. See their documentation for specifics.
///
/// The insertion order is preserved, with **notable exceptions** like the
/// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of
/// course result in a new order, depending on the sorting order.
///
/// # Indices
///
/// The values are indexed in a compact range without holes in the range
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
/// a value, and the method `.get_index` looks up the value by index.
///
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// // Collects which letters appear in a sentence.
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
///
/// assert!(letters.contains(&'s'));
/// assert!(letters.contains(&'t'));
/// assert!(letters.contains(&'u'));
/// assert!(!letters.contains(&'y'));
/// ```
#[cfg(has_std)]
pub struct IndexSet<T, S = RandomState> {
pub(crate) map: IndexMap<T, (), S>,
}
#[cfg(not(has_std))]
pub struct IndexSet<T, S> {
pub(crate) map: IndexMap<T, (), S>,
}
impl<T, S> Clone for IndexSet<T, S>
where
T: Clone,
S: Clone,
{
fn clone(&self) -> Self {
IndexSet {
map: self.map.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.map.clone_from(&other.map);
}
}
impl<T, S> Entries for IndexSet<T, S> {
type Entry = Bucket<T>;
#[inline]
fn into_entries(self) -> Vec<Self::Entry> {
self.map.into_entries()
}
#[inline]
fn as_entries(&self) -> &[Self::Entry] {
self.map.as_entries()
}
#[inline]
fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
self.map.as_entries_mut()
}
fn with_entries<F>(&mut self, f: F)
where
F: FnOnce(&mut [Self::Entry]),
{
self.map.with_entries(f);
}
}
impl<T, S> fmt::Debug for IndexSet<T, S>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if cfg!(not(feature = "test_debug")) {
f.debug_set().entries(self.iter()).finish()
} else {
// Let the inner `IndexMap` print all of its details
f.debug_struct("IndexSet").field("map", &self.map).finish()
}
}
}
#[cfg(has_std)]
impl<T> IndexSet<T> {
/// Create a new set. (Does not allocate.)
pub fn new() -> Self {
IndexSet {
map: IndexMap::new(),
}
}
/// Create a new set with capacity for `n` elements.
/// (Does not allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
pub fn with_capacity(n: usize) -> Self {
IndexSet {
map: IndexMap::with_capacity(n),
}
}
}
impl<T, S> IndexSet<T, S> {
/// Create a new set with capacity for `n` elements.
/// (Does not allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
IndexSet {
map: IndexMap::with_capacity_and_hasher(n, hash_builder),
}
}
/// Create a new set with `hash_builder`.
///
/// This function is `const`, so it
/// can be called in `static` contexts.
pub const fn with_hasher(hash_builder: S) -> Self {
IndexSet {
map: IndexMap::with_hasher(hash_builder),
}
}
/// Computes in **O(1)** time.
pub fn capacity(&self) -> usize {
self.map.capacity()
}
/// Return a reference to the set's `BuildHasher`.
pub fn hasher(&self) -> &S {
self.map.hasher()
}
/// Return the number of elements in the set.
///
/// Computes in **O(1)** time.
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns true if the set contains no elements.
///
/// Computes in **O(1)** time.
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
/// Return an iterator over the values of the set, in their order
pub fn iter(&self) -> Iter<'_, T> {
Iter {
iter: self.map.as_entries().iter(),
}
}
/// Remove all elements in the set, while preserving its capacity.
///
/// Computes in **O(n)** time.
pub fn clear(&mut self) {
self.map.clear();
}
/// Shortens the set, keeping the first `len` elements and dropping the rest.
///
/// If `len` is greater than the set's current length, this has no effect.
pub fn truncate(&mut self, len: usize) {
self.map.truncate(len);
}
/// Clears the `IndexSet` in the given index range, returning those values
/// as a drain iterator.
///
/// The range may be any type that implements `RangeBounds<usize>`,
/// including all of the `std::ops::Range*` types, or even a tuple pair of
/// `Bound` start and end values. To drain the set entirely, use `RangeFull`
/// like `set.drain(..)`.
///
/// This shifts down all entries following the drained range to fill the
/// gap, and keeps the allocated memory for reuse.
///
/// ***Panics*** if the starting point is greater than the end point or if
/// the end point is greater than the length of the set.
pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
where
R: RangeBounds<usize>,
{
Drain {
iter: self.map.drain(range).iter,
}
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated set containing the elements in the range
/// `[at, len)`. After the call, the original set will be left containing
/// the elements `[0, at)` with its previous capacity unchanged.
///
/// ***Panics*** if `at > len`.
pub fn split_off(&mut self, at: usize) -> Self
where
S: Clone,
{
Self {
map: self.map.split_off(at),
}
}
}
impl<T, S> IndexSet<T, S>
where
T: Hash + Eq,
S: BuildHasher,
{
/// Reserve capacity for `additional` more values.
///
/// Computes in **O(n)** time.
pub fn reserve(&mut self, additional: usize) {
self.map.reserve(additional);
}
/// Shrink the capacity of the set as much as possible.
///
/// Computes in **O(n)** time.
pub fn shrink_to_fit(&mut self) {
self.map.shrink_to_fit();
}
/// Shrink the capacity of the set with a lower limit.
///
/// Computes in **O(n)** time.
pub fn shrink_to(&mut self, min_capacity: usize) {
self.map.shrink_to(min_capacity);
}
/// Insert the value into the set.
///
/// If an equivalent item already exists in the set, it returns
/// `false` leaving the original value in the set and without
/// altering its insertion order. Otherwise, it inserts the new
/// item and returns `true`.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert(&mut self, value: T) -> bool {
self.map.insert(value, ()).is_none()
}
/// Insert the value into the set, and get its index.
///
/// If an equivalent item already exists in the set, it returns
/// the index of the existing item and `false`, leaving the
/// original value in the set and without altering its insertion
/// order. Otherwise, it inserts the new item and returns the index
/// of the inserted item and `true`.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert_full(&mut self, value: T) -> (usize, bool) {
use super::map::Entry::*;
match self.map.entry(value) {
Occupied(e) => (e.index(), false),
Vacant(e) => {
let index = e.index();
e.insert(());
(index, true)
}
}
}
/// Return an iterator over the values that are in `self` but not `other`.
///
/// Values are produced in the same order that they appear in `self`.
pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
where
S2: BuildHasher,
{
Difference {
iter: self.iter(),
other,
}
}
/// Return an iterator over the values that are in `self` or `other`,
/// but not in both.
///
/// Values from `self` are produced in their original order, followed by
/// values from `other` in their original order.
pub fn symmetric_difference<'a, S2>(
&'a self,
other: &'a IndexSet<T, S2>,
) -> SymmetricDifference<'a, T, S, S2>
where
S2: BuildHasher,
{
SymmetricDifference {
iter: self.difference(other).chain(other.difference(self)),
}
}
/// Return an iterator over the values that are in both `self` and `other`.
///
/// Values are produced in the same order that they appear in `self`.
pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
where
S2: BuildHasher,
{
Intersection {
iter: self.iter(),
other,
}
}
/// Return an iterator over all values that are in `self` or `other`.
///
/// Values from `self` are produced in their original order, followed by
/// values that are unique to `other` in their original order.
pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
where
S2: BuildHasher,
{
Union {
iter: self.iter().chain(other.difference(self)),
}
}
/// Return `true` if an equivalent to `value` exists in the set.
///
/// Computes in **O(1)** time (average).
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.map.contains_key(value)
}
/// Return a reference to the value stored in the set, if it is present,
/// else `None`.
///
/// Computes in **O(1)** time (average).
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
where
Q: Hash + Equivalent<T>,
{
self.map.get_key_value(value).map(|(x, &())| x)
}
/// Return item index and value
pub fn get_full<Q: ?Sized>(&self, value: &Q) -> Option<(usize, &T)>
where
Q: Hash + Equivalent<T>,
{
self.map.get_full(value).map(|(i, x, &())| (i, x))
}
/// Return item index, if it exists in the set
pub fn get_index_of<Q: ?Sized>(&self, value: &Q) -> Option<usize>
where
Q: Hash + Equivalent<T>,
{
self.map.get_index_of(value)
}
/// Adds a value to the set, replacing the existing value, if any, that is
/// equal to the given one, without altering its insertion order. Returns
/// the replaced value.
///
/// Computes in **O(1)** time (average).
pub fn replace(&mut self, value: T) -> Option<T> {
self.replace_full(value).1
}
/// Adds a value to the set, replacing the existing value, if any, that is
/// equal to the given one, without altering its insertion order. Returns
/// the index of the item and its replaced value.
///
/// Computes in **O(1)** time (average).
pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
use super::map::Entry::*;
match self.map.entry(value) {
Vacant(e) => {
let index = e.index();
e.insert(());
(index, None)
}
Occupied(e) => (e.index(), Some(e.replace_key())),
}
}
/// Remove the value from the set, and return `true` if it was present.
///
/// **NOTE:** This is equivalent to `.swap_remove(value)`, if you want
/// to preserve the order of the values in the set, use `.shift_remove(value)`.
///
/// Computes in **O(1)** time (average).
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.swap_remove(value)
}
/// Remove the value from the set, and return `true` if it was present.
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `false` if `value` was not in the set.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.map.swap_remove(value).is_some()
}
/// Remove the value from the set, and return `true` if it was present.
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `false` if `value` was not in the set.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.map.shift_remove(value).is_some()
}
/// Removes and returns the value in the set, if any, that is equal to the
/// given one.
///
/// **NOTE:** This is equivalent to `.swap_take(value)`, if you need to
/// preserve the order of the values in the set, use `.shift_take(value)`
/// instead.
///
/// Computes in **O(1)** time (average).
pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
Q: Hash + Equivalent<T>,
{
self.swap_take(value)
}
/// Removes and returns the value in the set, if any, that is equal to the
/// given one.
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `value` was not in the set.
///
/// Computes in **O(1)** time (average).
pub fn swap_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
Q: Hash + Equivalent<T>,
{
self.map.swap_remove_entry(value).map(|(x, ())| x)
}
/// Removes and returns the value in the set, if any, that is equal to the
/// given one.
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `value` was not in the set.
///
/// Computes in **O(n)** time (average).
pub fn shift_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
Q: Hash + Equivalent<T>,
{
self.map.shift_remove_entry(value).map(|(x, ())| x)
}
/// Remove the value from the set return it and the index it had.
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `value` was not in the set.
pub fn swap_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
where
Q: Hash + Equivalent<T>,
{
self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
}
/// Remove the value from the set return it and the index it had.
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `value` was not in the set.
pub fn shift_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
where
Q: Hash + Equivalent<T>,
{
self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
}
/// Remove the last value
///
/// This preserves the order of the remaining elements.
///
/// Computes in **O(1)** time (average).
pub fn pop(&mut self) -> Option<T> {
self.map.pop().map(|(x, ())| x)
}
/// Scan through each value in the set and keep those where the
/// closure `keep` returns `true`.
///
/// The elements are visited in order, and remaining elements keep their
/// order.
///
/// Computes in **O(n)** time (average).
pub fn retain<F>(&mut self, mut keep: F)
where
F: FnMut(&T) -> bool,
{
self.map.retain(move |x, &mut ()| keep(x))
}
/// Sort the set’s values by their default ordering.
///
/// See [`sort_by`](Self::sort_by) for details.
pub fn sort(&mut self)
where
T: Ord,
{
self.map.sort_keys()
}
/// Sort the set’s values in place using the comparison function `cmp`.
///
/// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
pub fn sort_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&T, &T) -> Ordering,
{
self.map.sort_by(move |a, _, b, _| cmp(a, b));
}
/// Sort the values of the set and return a by-value iterator of
/// the values with the result.
///
/// The sort is stable.
pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
where
F: FnMut(&T, &T) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_by(move |a, b| cmp(&a.key, &b.key));
IntoIter {
iter: entries.into_iter(),
}
}
/// Sort the set's values by their default ordering.
///
/// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
pub fn sort_unstable(&mut self)
where
T: Ord,
{
self.map.sort_unstable_keys()
}
/// Sort the set's values in place using the comparison funtion `cmp`.
///
/// Computes in **O(n log n)** time. The sort is unstable.
pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&T, &T) -> Ordering,
{
self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
}
/// Sort the values of the set and return a by-value iterator of
/// the values with the result.
pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
where
F: FnMut(&T, &T) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
IntoIter {
iter: entries.into_iter(),
}
}
/// Reverses the order of the set’s values in place.
///
/// Computes in **O(n)** time and **O(1)** space.
pub fn reverse(&mut self) {
self.map.reverse()
}
}
impl<T, S> IndexSet<T, S> {
/// Get a value by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index(&self, index: usize) -> Option<&T> {
self.as_entries().get(index).map(Bucket::key_ref)
}
/// Get the first value
///
/// Computes in **O(1)** time.
pub fn first(&self) -> Option<&T> {
self.as_entries().first().map(Bucket::key_ref)
}
/// Get the last value
///
/// Computes in **O(1)** time.
pub fn last(&self) -> Option<&T> {
self.as_entries().last().map(Bucket::key_ref)
}
/// Remove the value by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
self.map.swap_remove_index(index).map(|(x, ())| x)
}
/// Remove the value by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
self.map.shift_remove_index(index).map(|(x, ())| x)
}
/// Moves the position of a value from one index to another
/// by shifting all other values in-between.
///
/// * If `from < to`, the other values will shift down while the targeted value moves up.
/// * If `from > to`, the other values will shift up while the targeted value moves down.
///
/// ***Panics*** if `from` or `to` are out of bounds.
///
/// Computes in **O(n)** time (average).
pub fn move_index(&mut self, from: usize, to: usize) {
self.map.move_index(from, to)
}
/// Swaps the position of two values in the set.
///
/// ***Panics*** if `a` or `b` are out of bounds.
pub fn swap_indices(&mut self, a: usize, b: usize) {
self.map.swap_indices(a, b)
}
}
/// Access `IndexSet` values at indexed positions.
///
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// let mut set = IndexSet::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// set.insert(word.to_string());
/// }
/// assert_eq!(set[0], "Lorem");
/// assert_eq!(set[1], "ipsum");
/// set.reverse();
/// assert_eq!(set[0], "amet");
/// assert_eq!(set[1], "sit");
/// set.sort();
/// assert_eq!(set[0], "Lorem");
/// assert_eq!(set[1], "amet");
/// ```
///
/// ```should_panic
/// use indexmap::IndexSet;
///
/// let mut set = IndexSet::new();
/// set.insert("foo");
/// println!("{:?}", set[10]); // panics!
/// ```
impl<T, S> Index<usize> for IndexSet<T, S> {
type Output = T;
/// Returns a reference to the value at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index(&self, index: usize) -> &T {
self.get_index(index)
.expect("IndexSet: index out of bounds")
}
}
/// An owning iterator over the items of a `IndexSet`.
///
/// This `struct` is created by the [`into_iter`] method on [`IndexSet`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`into_iter`]: struct.IndexSet.html#method.into_iter
pub struct IntoIter<T> {
iter: vec::IntoIter<Bucket<T>>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
iterator_methods!(Bucket::key);
}
impl<T> DoubleEndedIterator for IntoIter<T> {
double_ended_iterator_methods!(Bucket::key);
}
impl<T> ExactSizeIterator for IntoIter<T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for IntoIter<T> {}
impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
/// An iterator over the items of a `IndexSet`.
///
/// This `struct` is created by the [`iter`] method on [`IndexSet`].
/// See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`iter`]: struct.IndexSet.html#method.iter
pub struct Iter<'a, T> {
iter: slice::Iter<'a, Bucket<T>>,
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
iterator_methods!(Bucket::key_ref);
}
impl<T> DoubleEndedIterator for Iter<'_, T> {
double_ended_iterator_methods!(Bucket::key_ref);
}
impl<T> ExactSizeIterator for Iter<'_, T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for Iter<'_, T> {}
impl<T> Clone for Iter<'_, T> {
fn clone(&self) -> Self {
Iter {
iter: self.iter.clone(),
}
}
}
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A draining iterator over the items of a `IndexSet`.
///
/// This `struct` is created by the [`drain`] method on [`IndexSet`].
/// See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`drain`]: struct.IndexSet.html#method.drain
pub struct Drain<'a, T> {
iter: vec::Drain<'a, Bucket<T>>,
}
impl<T> Iterator for Drain<'_, T> {
type Item = T;
iterator_methods!(Bucket::key);
}
impl<T> DoubleEndedIterator for Drain<'_, T> {
double_ended_iterator_methods!(Bucket::key);
}
impl<T> ExactSizeIterator for Drain<'_, T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for Drain<'_, T> {}
impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
impl<'a, T, S> IntoIterator for &'a IndexSet<T, S> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<T, S> IntoIterator for IndexSet<T, S> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
iter: self.into_entries().into_iter(),
}
}
}
impl<T, S> FromIterator<T> for IndexSet<T, S>
where
T: Hash + Eq,
S: BuildHasher + Default,
{
fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
let iter = iterable.into_iter().map(|x| (x, ()));
IndexSet {
map: IndexMap::from_iter(iter),
}
}
}
#[cfg(has_std)]
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
where
T: Eq + Hash,
{
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// let set1 = IndexSet::from([1, 2, 3, 4]);
/// let set2: IndexSet<_> = [1, 2, 3, 4].into();
/// assert_eq!(set1, set2);
/// ```
fn from(arr: [T; N]) -> Self {
Self::from_iter(arr)
}
}
impl<T, S> Extend<T> for IndexSet<T, S>
where
T: Hash + Eq,
S: BuildHasher,
{
fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
let iter = iterable.into_iter().map(|x| (x, ()));
self.map.extend(iter);
}
}
impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
where
T: Hash + Eq + Copy + 'a,
S: BuildHasher,
{
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
let iter = iterable.into_iter().copied();
self.extend(iter);
}
}
impl<T, S> Default for IndexSet<T, S>
where
S: Default,
{
/// Return an empty `IndexSet`
fn default() -> Self {
IndexSet {
map: IndexMap::default(),
}
}
}
impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
where
T: Hash + Eq,
S1: BuildHasher,
S2: BuildHasher,
{
fn eq(&self, other: &IndexSet<T, S2>) -> bool {
self.len() == other.len() && self.is_subset(other)
}
}
impl<T, S> Eq for IndexSet<T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> IndexSet<T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
/// Returns `true` if `self` has no elements in common with `other`.
pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher,
{
if self.len() <= other.len() {
self.iter().all(move |value| !other.contains(value))
} else {
other.iter().all(move |value| !self.contains(value))
}
}
/// Returns `true` if all elements of `self` are contained in `other`.
pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher,
{
self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
}
/// Returns `true` if all elements of `other` are contained in `self`.
pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher,
{
other.is_subset(self)
}
}
/// A lazy iterator producing elements in the difference of `IndexSet`s.
///
/// This `struct` is created by the [`difference`] method on [`IndexSet`].
/// See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`difference`]: struct.IndexSet.html#method.difference
pub struct Difference<'a, T, S> {
iter: Iter<'a, T>,
other: &'a IndexSet<T, S>,
}
impl<'a, T, S> Iterator for Difference<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next() {
if !self.other.contains(item) {
return Some(item);
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
}
impl<T, S> DoubleEndedIterator for Difference<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next_back() {
if !self.other.contains(item) {
return Some(item);
}
}
None
}
}
impl<T, S> FusedIterator for Difference<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> Clone for Difference<'_, T, S> {
fn clone(&self) -> Self {
Difference {
iter: self.iter.clone(),
..*self
}
}
}
impl<T, S> fmt::Debug for Difference<'_, T, S>
where
T: fmt::Debug + Eq + Hash,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A lazy iterator producing elements in the intersection of `IndexSet`s.
///
/// This `struct` is created by the [`intersection`] method on [`IndexSet`].
/// See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`intersection`]: struct.IndexSet.html#method.intersection
pub struct Intersection<'a, T, S> {
iter: Iter<'a, T>,
other: &'a IndexSet<T, S>,
}
impl<'a, T, S> Iterator for Intersection<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next() {
if self.other.contains(item) {
return Some(item);
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
}
impl<T, S> DoubleEndedIterator for Intersection<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next_back() {
if self.other.contains(item) {
return Some(item);
}
}
None
}
}
impl<T, S> FusedIterator for Intersection<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> Clone for Intersection<'_, T, S> {
fn clone(&self) -> Self {
Intersection {
iter: self.iter.clone(),
..*self
}
}
}
impl<T, S> fmt::Debug for Intersection<'_, T, S>
where
T: fmt::Debug + Eq + Hash,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A lazy iterator producing elements in the symmetric difference of `IndexSet`s.
///
/// This `struct` is created by the [`symmetric_difference`] method on
/// [`IndexSet`]. See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`symmetric_difference`]: struct.IndexSet.html#method.symmetric_difference
pub struct SymmetricDifference<'a, T, S1, S2> {
iter: Chain<Difference<'a, T, S2>, Difference<'a, T, S1>>,
}
impl<'a, T, S1, S2> Iterator for SymmetricDifference<'a, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.fold(init, f)
}
}
impl<T, S1, S2> DoubleEndedIterator for SymmetricDifference<'_, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back()
}
fn rfold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.rfold(init, f)
}
}
impl<T, S1, S2> FusedIterator for SymmetricDifference<'_, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
}
impl<T, S1, S2> Clone for SymmetricDifference<'_, T, S1, S2> {
fn clone(&self) -> Self {
SymmetricDifference {
iter: self.iter.clone(),
}
}
}
impl<T, S1, S2> fmt::Debug for SymmetricDifference<'_, T, S1, S2>
where
T: fmt::Debug + Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A lazy iterator producing elements in the union of `IndexSet`s.
///
/// This `struct` is created by the [`union`] method on [`IndexSet`].
/// See its documentation for more.
///
/// [`IndexSet`]: struct.IndexSet.html
/// [`union`]: struct.IndexSet.html#method.union
pub struct Union<'a, T, S> {
iter: Chain<Iter<'a, T>, Difference<'a, T, S>>,
}
impl<'a, T, S> Iterator for Union<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.fold(init, f)
}
}
impl<T, S> DoubleEndedIterator for Union<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back()
}
fn rfold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.rfold(init, f)
}
}
impl<T, S> FusedIterator for Union<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> Clone for Union<'_, T, S> {
fn clone(&self) -> Self {
Union {
iter: self.iter.clone(),
}
}
}
impl<T, S> fmt::Debug for Union<'_, T, S>
where
T: fmt::Debug + Eq + Hash,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set intersection, cloned into a new set.
///
/// Values are collected in the same order that they appear in `self`.
fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
self.intersection(other).cloned().collect()
}
}
impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set union, cloned into a new set.
///
/// Values from `self` are collected in their original order, followed by
/// values that are unique to `other` in their original order.
fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
self.union(other).cloned().collect()
}
}
impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set symmetric-difference, cloned into a new set.
///
/// Values from `self` are collected in their original order, followed by
/// values from `other` in their original order.
fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
self.symmetric_difference(other).cloned().collect()
}
}
impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set difference, cloned into a new set.
///
/// Values are collected in the same order that they appear in `self`.
fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
self.difference(other).cloned().collect()
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::string::String;
#[test]
fn it_works() {
let mut set = IndexSet::new();
assert_eq!(set.is_empty(), true);
set.insert(1);
set.insert(1);
assert_eq!(set.len(), 1);
assert!(set.get(&1).is_some());
assert_eq!(set.is_empty(), false);
}
#[test]
fn new() {
let set = IndexSet::<String>::new();
println!("{:?}", set);
assert_eq!(set.capacity(), 0);
assert_eq!(set.len(), 0);
assert_eq!(set.is_empty(), true);
}
#[test]
fn insert() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5];
let not_present = [1, 3, 6, 9, 10];
let mut set = IndexSet::with_capacity(insert.len());
for (i, &elt) in insert.iter().enumerate() {
assert_eq!(set.len(), i);
set.insert(elt);
assert_eq!(set.len(), i + 1);
assert_eq!(set.get(&elt), Some(&elt));
}
println!("{:?}", set);
for &elt in &not_present {
assert!(set.get(&elt).is_none());
}
}
#[test]
fn insert_full() {
let insert = vec![9, 2, 7, 1, 4, 6, 13];
let present = vec![1, 6, 2];
let mut set = IndexSet::with_capacity(insert.len());
for (i, &elt) in insert.iter().enumerate() {
assert_eq!(set.len(), i);
let (index, success) = set.insert_full(elt);
assert!(success);
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
assert_eq!(set.len(), i + 1);
}
let len = set.len();
for &elt in &present {
let (index, success) = set.insert_full(elt);
assert!(!success);
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
assert_eq!(set.len(), len);
}
}
#[test]
fn insert_2() {
let mut set = IndexSet::with_capacity(16);
let mut values = vec![];
values.extend(0..16);
values.extend(if cfg!(miri) { 32..64 } else { 128..267 });
for &i in &values {
let old_set = set.clone();
set.insert(i);
for value in old_set.iter() {
if set.get(value).is_none() {
println!("old_set: {:?}", old_set);
println!("set: {:?}", set);
panic!("did not find {} in set", value);
}
}
}
for &i in &values {
assert!(set.get(&i).is_some(), "did not find {}", i);
}
}
#[test]
fn insert_dup() {
let mut elements = vec![0, 2, 4, 6, 8];
let mut set: IndexSet<u8> = elements.drain(..).collect();
{
let (i, v) = set.get_full(&0).unwrap();
assert_eq!(set.len(), 5);
assert_eq!(i, 0);
assert_eq!(*v, 0);
}
{
let inserted = set.insert(0);
let (i, v) = set.get_full(&0).unwrap();
assert_eq!(set.len(), 5);
assert_eq!(inserted, false);
assert_eq!(i, 0);
assert_eq!(*v, 0);
}
}
#[test]
fn insert_order() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut set = IndexSet::new();
for &elt in &insert {
set.insert(elt);
}
assert_eq!(set.iter().count(), set.len());
assert_eq!(set.iter().count(), insert.len());
for (a, b) in insert.iter().zip(set.iter()) {
assert_eq!(a, b);
}
for (i, v) in (0..insert.len()).zip(set.iter()) {
assert_eq!(set.get_index(i).unwrap(), v);
}
}
#[test]
fn replace() {
let replace = [0, 4, 2, 12, 8, 7, 11, 5];
let not_present = [1, 3, 6, 9, 10];
let mut set = IndexSet::with_capacity(replace.len());
for (i, &elt) in replace.iter().enumerate() {
assert_eq!(set.len(), i);
set.replace(elt);
assert_eq!(set.len(), i + 1);
assert_eq!(set.get(&elt), Some(&elt));
}
println!("{:?}", set);
for &elt in &not_present {
assert!(set.get(&elt).is_none());
}
}
#[test]
fn replace_full() {
let replace = vec![9, 2, 7, 1, 4, 6, 13];
let present = vec![1, 6, 2];
let mut set = IndexSet::with_capacity(replace.len());
for (i, &elt) in replace.iter().enumerate() {
assert_eq!(set.len(), i);
let (index, replaced) = set.replace_full(elt);
assert!(replaced.is_none());
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
assert_eq!(set.len(), i + 1);
}
let len = set.len();
for &elt in &present {
let (index, replaced) = set.replace_full(elt);
assert_eq!(Some(elt), replaced);
assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0));
assert_eq!(set.len(), len);
}
}
#[test]
fn replace_2() {
let mut set = IndexSet::with_capacity(16);
let mut values = vec![];
values.extend(0..16);
values.extend(if cfg!(miri) { 32..64 } else { 128..267 });
for &i in &values {
let old_set = set.clone();
set.replace(i);
for value in old_set.iter() {
if set.get(value).is_none() {
println!("old_set: {:?}", old_set);
println!("set: {:?}", set);
panic!("did not find {} in set", value);
}
}
}
for &i in &values {
assert!(set.get(&i).is_some(), "did not find {}", i);
}
}
#[test]
fn replace_dup() {
let mut elements = vec![0, 2, 4, 6, 8];
let mut set: IndexSet<u8> = elements.drain(..).collect();
{
let (i, v) = set.get_full(&0).unwrap();
assert_eq!(set.len(), 5);
assert_eq!(i, 0);
assert_eq!(*v, 0);
}
{
let replaced = set.replace(0);
let (i, v) = set.get_full(&0).unwrap();
assert_eq!(set.len(), 5);
assert_eq!(replaced, Some(0));
assert_eq!(i, 0);
assert_eq!(*v, 0);
}
}
#[test]
fn replace_order() {
let replace = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut set = IndexSet::new();
for &elt in &replace {
set.replace(elt);
}
assert_eq!(set.iter().count(), set.len());
assert_eq!(set.iter().count(), replace.len());
for (a, b) in replace.iter().zip(set.iter()) {
assert_eq!(a, b);
}
for (i, v) in (0..replace.len()).zip(set.iter()) {
assert_eq!(set.get_index(i).unwrap(), v);
}
}
#[test]
fn grow() {
let insert = [0, 4, 2, 12, 8, 7, 11];
let not_present = [1, 3, 6, 9, 10];
let mut set = IndexSet::with_capacity(insert.len());
for (i, &elt) in insert.iter().enumerate() {
assert_eq!(set.len(), i);
set.insert(elt);
assert_eq!(set.len(), i + 1);
assert_eq!(set.get(&elt), Some(&elt));
}
println!("{:?}", set);
for &elt in &insert {
set.insert(elt * 10);
}
for &elt in &insert {
set.insert(elt * 100);
}
for (i, &elt) in insert.iter().cycle().enumerate().take(100) {
set.insert(elt * 100 + i as i32);
}
println!("{:?}", set);
for &elt in &not_present {
assert!(set.get(&elt).is_none());
}
}
#[test]
fn reserve() {
let mut set = IndexSet::<usize>::new();
assert_eq!(set.capacity(), 0);
set.reserve(100);
let capacity = set.capacity();
assert!(capacity >= 100);
for i in 0..capacity {
assert_eq!(set.len(), i);
set.insert(i);
assert_eq!(set.len(), i + 1);
assert_eq!(set.capacity(), capacity);
assert_eq!(set.get(&i), Some(&i));
}
set.insert(capacity);
assert_eq!(set.len(), capacity + 1);
assert!(set.capacity() > capacity);
assert_eq!(set.get(&capacity), Some(&capacity));
}
#[test]
fn shrink_to_fit() {
let mut set = IndexSet::<usize>::new();
assert_eq!(set.capacity(), 0);
for i in 0..100 {
assert_eq!(set.len(), i);
set.insert(i);
assert_eq!(set.len(), i + 1);
assert!(set.capacity() >= i + 1);
assert_eq!(set.get(&i), Some(&i));
set.shrink_to_fit();
assert_eq!(set.len(), i + 1);
assert_eq!(set.capacity(), i + 1);
assert_eq!(set.get(&i), Some(&i));
}
}
#[test]
fn remove() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut set = IndexSet::new();
for &elt in &insert {
set.insert(elt);
}
assert_eq!(set.iter().count(), set.len());
assert_eq!(set.iter().count(), insert.len());
for (a, b) in insert.iter().zip(set.iter()) {
assert_eq!(a, b);
}
let remove_fail = [99, 77];
let remove = [4, 12, 8, 7];
for &value in &remove_fail {
assert!(set.swap_remove_full(&value).is_none());
}
println!("{:?}", set);
for &value in &remove {
//println!("{:?}", set);
let index = set.get_full(&value).unwrap().0;
assert_eq!(set.swap_remove_full(&value), Some((index, value)));
}
println!("{:?}", set);
for value in &insert {
assert_eq!(set.get(value).is_some(), !remove.contains(value));
}
assert_eq!(set.len(), insert.len() - remove.len());
assert_eq!(set.iter().count(), insert.len() - remove.len());
}
#[test]
fn swap_remove_index() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut set = IndexSet::new();
for &elt in &insert {
set.insert(elt);
}
let mut vector = insert.to_vec();
let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1];
// check that the same swap remove sequence on vec and set
// have the same result.
for &rm in remove_sequence {
let out_vec = vector.swap_remove(rm);
let out_set = set.swap_remove_index(rm).unwrap();
assert_eq!(out_vec, out_set);
}
assert_eq!(vector.len(), set.len());
for (a, b) in vector.iter().zip(set.iter()) {
assert_eq!(a, b);
}
}
#[test]
fn partial_eq_and_eq() {
let mut set_a = IndexSet::new();
set_a.insert(1);
set_a.insert(2);
let mut set_b = set_a.clone();
assert_eq!(set_a, set_b);
set_b.swap_remove(&1);
assert_ne!(set_a, set_b);
let set_c: IndexSet<_> = set_b.into_iter().collect();
assert_ne!(set_a, set_c);
assert_ne!(set_c, set_a);
}
#[test]
fn extend() {
let mut set = IndexSet::new();
set.extend(vec![&1, &2, &3, &4]);
set.extend(vec![5, 6]);
assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![1, 2, 3, 4, 5, 6]);
}
#[test]
fn comparisons() {
let set_a: IndexSet<_> = (0..3).collect();
let set_b: IndexSet<_> = (3..6).collect();
let set_c: IndexSet<_> = (0..6).collect();
let set_d: IndexSet<_> = (3..9).collect();
assert!(!set_a.is_disjoint(&set_a));
assert!(set_a.is_subset(&set_a));
assert!(set_a.is_superset(&set_a));
assert!(set_a.is_disjoint(&set_b));
assert!(set_b.is_disjoint(&set_a));
assert!(!set_a.is_subset(&set_b));
assert!(!set_b.is_subset(&set_a));
assert!(!set_a.is_superset(&set_b));
assert!(!set_b.is_superset(&set_a));
assert!(!set_a.is_disjoint(&set_c));
assert!(!set_c.is_disjoint(&set_a));
assert!(set_a.is_subset(&set_c));
assert!(!set_c.is_subset(&set_a));
assert!(!set_a.is_superset(&set_c));
assert!(set_c.is_superset(&set_a));
assert!(!set_c.is_disjoint(&set_d));
assert!(!set_d.is_disjoint(&set_c));
assert!(!set_c.is_subset(&set_d));
assert!(!set_d.is_subset(&set_c));
assert!(!set_c.is_superset(&set_d));
assert!(!set_d.is_superset(&set_c));
}
#[test]
fn iter_comparisons() {
use std::iter::empty;
fn check<'a, I1, I2>(iter1: I1, iter2: I2)
where
I1: Iterator<Item = &'a i32>,
I2: Iterator<Item = i32>,
{
assert!(iter1.copied().eq(iter2));
}
let set_a: IndexSet<_> = (0..3).collect();
let set_b: IndexSet<_> = (3..6).collect();
let set_c: IndexSet<_> = (0..6).collect();
let set_d: IndexSet<_> = (3..9).rev().collect();
check(set_a.difference(&set_a), empty());
check(set_a.symmetric_difference(&set_a), empty());
check(set_a.intersection(&set_a), 0..3);
check(set_a.union(&set_a), 0..3);
check(set_a.difference(&set_b), 0..3);
check(set_b.difference(&set_a), 3..6);
check(set_a.symmetric_difference(&set_b), 0..6);
check(set_b.symmetric_difference(&set_a), (3..6).chain(0..3));
check(set_a.intersection(&set_b), empty());
check(set_b.intersection(&set_a), empty());
check(set_a.union(&set_b), 0..6);
check(set_b.union(&set_a), (3..6).chain(0..3));
check(set_a.difference(&set_c), empty());
check(set_c.difference(&set_a), 3..6);
check(set_a.symmetric_difference(&set_c), 3..6);
check(set_c.symmetric_difference(&set_a), 3..6);
check(set_a.intersection(&set_c), 0..3);
check(set_c.intersection(&set_a), 0..3);
check(set_a.union(&set_c), 0..6);
check(set_c.union(&set_a), 0..6);
check(set_c.difference(&set_d), 0..3);
check(set_d.difference(&set_c), (6..9).rev());
check(
set_c.symmetric_difference(&set_d),
(0..3).chain((6..9).rev()),
);
check(set_d.symmetric_difference(&set_c), (6..9).rev().chain(0..3));
check(set_c.intersection(&set_d), 3..6);
check(set_d.intersection(&set_c), (3..6).rev());
check(set_c.union(&set_d), (0..6).chain((6..9).rev()));
check(set_d.union(&set_c), (3..9).rev().chain(0..3));
}
#[test]
fn ops() {
let empty = IndexSet::<i32>::new();
let set_a: IndexSet<_> = (0..3).collect();
let set_b: IndexSet<_> = (3..6).collect();
let set_c: IndexSet<_> = (0..6).collect();
let set_d: IndexSet<_> = (3..9).rev().collect();
#[allow(clippy::eq_op)]
{
assert_eq!(&set_a & &set_a, set_a);
assert_eq!(&set_a | &set_a, set_a);
assert_eq!(&set_a ^ &set_a, empty);
assert_eq!(&set_a - &set_a, empty);
}
assert_eq!(&set_a & &set_b, empty);
assert_eq!(&set_b & &set_a, empty);
assert_eq!(&set_a | &set_b, set_c);
assert_eq!(&set_b | &set_a, set_c);
assert_eq!(&set_a ^ &set_b, set_c);
assert_eq!(&set_b ^ &set_a, set_c);
assert_eq!(&set_a - &set_b, set_a);
assert_eq!(&set_b - &set_a, set_b);
assert_eq!(&set_a & &set_c, set_a);
assert_eq!(&set_c & &set_a, set_a);
assert_eq!(&set_a | &set_c, set_c);
assert_eq!(&set_c | &set_a, set_c);
assert_eq!(&set_a ^ &set_c, set_b);
assert_eq!(&set_c ^ &set_a, set_b);
assert_eq!(&set_a - &set_c, empty);
assert_eq!(&set_c - &set_a, set_b);
assert_eq!(&set_c & &set_d, set_b);
assert_eq!(&set_d & &set_c, set_b);
assert_eq!(&set_c | &set_d, &set_a | &set_d);
assert_eq!(&set_d | &set_c, &set_a | &set_d);
assert_eq!(&set_c ^ &set_d, &set_a | &(&set_d - &set_b));
assert_eq!(&set_d ^ &set_c, &set_a | &(&set_d - &set_b));
assert_eq!(&set_c - &set_d, set_a);
assert_eq!(&set_d - &set_c, &set_d - &set_b);
}
#[test]
#[cfg(has_std)]
fn from_array() {
let set1 = IndexSet::from([1, 2, 3, 4]);
let set2: IndexSet<_> = [1, 2, 3, 4].into();
assert_eq!(set1, set2);
}
}