blob: d39448d06d1afc5cb055f6bf717b5df84cd35935 [file] [log] [blame]
//! `IndexMap` is a hash table where the iteration order of the key-value
//! pairs is independent of the hash values of the keys.
mod core;
pub use crate::mutable_keys::MutableKeys;
#[cfg(feature = "rayon")]
pub use crate::rayon::map as rayon;
use crate::vec::{self, Vec};
use ::core::cmp::Ordering;
use ::core::fmt;
use ::core::hash::{BuildHasher, Hash, Hasher};
use ::core::iter::FusedIterator;
use ::core::ops::{Index, IndexMut, RangeBounds};
use ::core::slice::{Iter as SliceIter, IterMut as SliceIterMut};
#[cfg(has_std)]
use std::collections::hash_map::RandomState;
use self::core::IndexMapCore;
use crate::equivalent::Equivalent;
use crate::util::third;
use crate::{Bucket, Entries, HashValue};
pub use self::core::{Entry, OccupiedEntry, VacantEntry};
/// A hash table where the iteration order of the key-value pairs is independent
/// of the hash values of the keys.
///
/// The interface is closely compatible with the standard `HashMap`, but also
/// has additional features.
///
/// # Order
///
/// The key-value pairs have a consistent order that is determined by
/// the sequence of insertion and removal calls on the map. The order does
/// not depend on the keys or the hash function at all.
///
/// All iterators traverse the map in *the order*.
///
/// The insertion order is preserved, with **notable exceptions** like the
/// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of
/// course result in a new order, depending on the sorting order.
///
/// # Indices
///
/// The key-value pairs are indexed in a compact range without holes in the
/// range `0..self.len()`. For example, the method `.get_full` looks up the
/// index for a key, and the method `.get_index` looks up the key-value pair by
/// index.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// // count the frequency of each letter in a sentence.
/// let mut letters = IndexMap::new();
/// for ch in "a short treatise on fungi".chars() {
/// *letters.entry(ch).or_insert(0) += 1;
/// }
///
/// assert_eq!(letters[&'s'], 2);
/// assert_eq!(letters[&'t'], 3);
/// assert_eq!(letters[&'u'], 1);
/// assert_eq!(letters.get(&'y'), None);
/// ```
#[cfg(has_std)]
pub struct IndexMap<K, V, S = RandomState> {
pub(crate) core: IndexMapCore<K, V>,
hash_builder: S,
}
#[cfg(not(has_std))]
pub struct IndexMap<K, V, S> {
pub(crate) core: IndexMapCore<K, V>,
hash_builder: S,
}
impl<K, V, S> Clone for IndexMap<K, V, S>
where
K: Clone,
V: Clone,
S: Clone,
{
fn clone(&self) -> Self {
IndexMap {
core: self.core.clone(),
hash_builder: self.hash_builder.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.core.clone_from(&other.core);
self.hash_builder.clone_from(&other.hash_builder);
}
}
impl<K, V, S> Entries for IndexMap<K, V, S> {
type Entry = Bucket<K, V>;
#[inline]
fn into_entries(self) -> Vec<Self::Entry> {
self.core.into_entries()
}
#[inline]
fn as_entries(&self) -> &[Self::Entry] {
self.core.as_entries()
}
#[inline]
fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
self.core.as_entries_mut()
}
fn with_entries<F>(&mut self, f: F)
where
F: FnOnce(&mut [Self::Entry]),
{
self.core.with_entries(f);
}
}
impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
where
K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if cfg!(not(feature = "test_debug")) {
f.debug_map().entries(self.iter()).finish()
} else {
// Let the inner `IndexMapCore` print all of its details
f.debug_struct("IndexMap")
.field("core", &self.core)
.finish()
}
}
}
#[cfg(has_std)]
impl<K, V> IndexMap<K, V> {
/// Create a new map. (Does not allocate.)
#[inline]
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Create a new map with capacity for `n` key-value pairs. (Does not
/// allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
#[inline]
pub fn with_capacity(n: usize) -> Self {
Self::with_capacity_and_hasher(n, <_>::default())
}
}
impl<K, V, S> IndexMap<K, V, S> {
/// Create a new map with capacity for `n` key-value pairs. (Does not
/// allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
#[inline]
pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
if n == 0 {
Self::with_hasher(hash_builder)
} else {
IndexMap {
core: IndexMapCore::with_capacity(n),
hash_builder,
}
}
}
/// Create a new map with `hash_builder`.
///
/// This function is `const`, so it
/// can be called in `static` contexts.
pub const fn with_hasher(hash_builder: S) -> Self {
IndexMap {
core: IndexMapCore::new(),
hash_builder,
}
}
/// Computes in **O(1)** time.
pub fn capacity(&self) -> usize {
self.core.capacity()
}
/// Return a reference to the map's `BuildHasher`.
pub fn hasher(&self) -> &S {
&self.hash_builder
}
/// Return the number of key-value pairs in the map.
///
/// Computes in **O(1)** time.
#[inline]
pub fn len(&self) -> usize {
self.core.len()
}
/// Returns true if the map contains no elements.
///
/// Computes in **O(1)** time.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return an iterator over the key-value pairs of the map, in their order
pub fn iter(&self) -> Iter<'_, K, V> {
Iter {
iter: self.as_entries().iter(),
}
}
/// Return an iterator over the key-value pairs of the map, in their order
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
IterMut {
iter: self.as_entries_mut().iter_mut(),
}
}
/// Return an iterator over the keys of the map, in their order
pub fn keys(&self) -> Keys<'_, K, V> {
Keys {
iter: self.as_entries().iter(),
}
}
/// Return an owning iterator over the keys of the map, in their order
pub fn into_keys(self) -> IntoKeys<K, V> {
IntoKeys {
iter: self.into_entries().into_iter(),
}
}
/// Return an iterator over the values of the map, in their order
pub fn values(&self) -> Values<'_, K, V> {
Values {
iter: self.as_entries().iter(),
}
}
/// Return an iterator over mutable references to the values of the map,
/// in their order
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
ValuesMut {
iter: self.as_entries_mut().iter_mut(),
}
}
/// Return an owning iterator over the values of the map, in their order
pub fn into_values(self) -> IntoValues<K, V> {
IntoValues {
iter: self.into_entries().into_iter(),
}
}
/// Remove all key-value pairs in the map, while preserving its capacity.
///
/// Computes in **O(n)** time.
pub fn clear(&mut self) {
self.core.clear();
}
/// Shortens the map, keeping the first `len` elements and dropping the rest.
///
/// If `len` is greater than the map's current length, this has no effect.
pub fn truncate(&mut self, len: usize) {
self.core.truncate(len);
}
/// Clears the `IndexMap` in the given index range, returning those
/// key-value pairs as a drain iterator.
///
/// The range may be any type that implements `RangeBounds<usize>`,
/// including all of the `std::ops::Range*` types, or even a tuple pair of
/// `Bound` start and end values. To drain the map entirely, use `RangeFull`
/// like `map.drain(..)`.
///
/// This shifts down all entries following the drained range to fill the
/// gap, and keeps the allocated memory for reuse.
///
/// ***Panics*** if the starting point is greater than the end point or if
/// the end point is greater than the length of the map.
pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
where
R: RangeBounds<usize>,
{
Drain {
iter: self.core.drain(range),
}
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated map containing the elements in the range
/// `[at, len)`. After the call, the original map will be left containing
/// the elements `[0, at)` with its previous capacity unchanged.
///
/// ***Panics*** if `at > len`.
pub fn split_off(&mut self, at: usize) -> Self
where
S: Clone,
{
Self {
core: self.core.split_off(at),
hash_builder: self.hash_builder.clone(),
}
}
}
impl<K, V, S> IndexMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher,
{
/// Reserve capacity for `additional` more key-value pairs.
///
/// Computes in **O(n)** time.
pub fn reserve(&mut self, additional: usize) {
self.core.reserve(additional);
}
/// Shrink the capacity of the map as much as possible.
///
/// Computes in **O(n)** time.
pub fn shrink_to_fit(&mut self) {
self.core.shrink_to(0);
}
/// Shrink the capacity of the map with a lower limit.
///
/// Computes in **O(n)** time.
pub fn shrink_to(&mut self, min_capacity: usize) {
self.core.shrink_to(min_capacity);
}
fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
let mut h = self.hash_builder.build_hasher();
key.hash(&mut h);
HashValue(h.finish() as usize)
}
/// Insert a key-value pair in the map.
///
/// If an equivalent key already exists in the map: the key remains and
/// retains in its place in the order, its corresponding value is updated
/// with `value` and the older value is returned inside `Some(_)`.
///
/// If no equivalent key existed in the map: the new key-value pair is
/// inserted, last in order, and `None` is returned.
///
/// Computes in **O(1)** time (amortized average).
///
/// See also [`entry`](#method.entry) if you you want to insert *or* modify
/// or if you need to get the index of the corresponding key-value pair.
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert_full(key, value).1
}
/// Insert a key-value pair in the map, and get their index.
///
/// If an equivalent key already exists in the map: the key remains and
/// retains in its place in the order, its corresponding value is updated
/// with `value` and the older value is returned inside `(index, Some(_))`.
///
/// If no equivalent key existed in the map: the new key-value pair is
/// inserted, last in order, and `(index, None)` is returned.
///
/// Computes in **O(1)** time (amortized average).
///
/// See also [`entry`](#method.entry) if you you want to insert *or* modify
/// or if you need to get the index of the corresponding key-value pair.
pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
let hash = self.hash(&key);
self.core.insert_full(hash, key, value)
}
/// Get the given key’s corresponding entry in the map for insertion and/or
/// in-place manipulation.
///
/// Computes in **O(1)** time (amortized average).
pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
let hash = self.hash(&key);
self.core.entry(hash, key)
}
/// Return `true` if an equivalent to `key` exists in the map.
///
/// Computes in **O(1)** time (average).
pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
where
Q: Hash + Equivalent<K>,
{
self.get_index_of(key).is_some()
}
/// Return a reference to the value stored for `key`, if it is present,
/// else `None`.
///
/// Computes in **O(1)** time (average).
pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
where
Q: Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &self.as_entries()[i];
Some(&entry.value)
} else {
None
}
}
/// Return references to the key-value pair stored for `key`,
/// if it is present, else `None`.
///
/// Computes in **O(1)** time (average).
pub fn get_key_value<Q: ?Sized>(&self, key: &Q) -> Option<(&K, &V)>
where
Q: Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &self.as_entries()[i];
Some((&entry.key, &entry.value))
} else {
None
}
}
/// Return item index, key and value
pub fn get_full<Q: ?Sized>(&self, key: &Q) -> Option<(usize, &K, &V)>
where
Q: Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &self.as_entries()[i];
Some((i, &entry.key, &entry.value))
} else {
None
}
}
/// Return item index, if it exists in the map
///
/// Computes in **O(1)** time (average).
pub fn get_index_of<Q: ?Sized>(&self, key: &Q) -> Option<usize>
where
Q: Hash + Equivalent<K>,
{
if self.is_empty() {
None
} else {
let hash = self.hash(key);
self.core.get_index_of(hash, key)
}
}
pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
where
Q: Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &mut self.as_entries_mut()[i];
Some(&mut entry.value)
} else {
None
}
}
pub fn get_full_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
where
Q: Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &mut self.as_entries_mut()[i];
Some((i, &entry.key, &mut entry.value))
} else {
None
}
}
pub(crate) fn get_full_mut2_impl<Q: ?Sized>(
&mut self,
key: &Q,
) -> Option<(usize, &mut K, &mut V)>
where
Q: Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &mut self.as_entries_mut()[i];
Some((i, &mut entry.key, &mut entry.value))
} else {
None
}
}
/// Remove the key-value pair equivalent to `key` and return
/// its value.
///
/// **NOTE:** This is equivalent to `.swap_remove(key)`, if you need to
/// preserve the order of the keys in the map, use `.shift_remove(key)`
/// instead.
///
/// Computes in **O(1)** time (average).
pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
Q: Hash + Equivalent<K>,
{
self.swap_remove(key)
}
/// Remove and return the key-value pair equivalent to `key`.
///
/// **NOTE:** This is equivalent to `.swap_remove_entry(key)`, if you need to
/// preserve the order of the keys in the map, use `.shift_remove_entry(key)`
/// instead.
///
/// Computes in **O(1)** time (average).
pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
where
Q: Hash + Equivalent<K>,
{
self.swap_remove_entry(key)
}
/// Remove the key-value pair equivalent to `key` and return
/// its value.
///
/// Like `Vec::swap_remove`, the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
Q: Hash + Equivalent<K>,
{
self.swap_remove_full(key).map(third)
}
/// Remove and return the key-value pair equivalent to `key`.
///
/// Like `Vec::swap_remove`, the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
where
Q: Hash + Equivalent<K>,
{
match self.swap_remove_full(key) {
Some((_, key, value)) => Some((key, value)),
None => None,
}
}
/// Remove the key-value pair equivalent to `key` and return it and
/// the index it had.
///
/// Like `Vec::swap_remove`, the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_full<Q: ?Sized>(&mut self, key: &Q) -> Option<(usize, K, V)>
where
Q: Hash + Equivalent<K>,
{
if self.is_empty() {
return None;
}
let hash = self.hash(key);
self.core.swap_remove_full(hash, key)
}
/// Remove the key-value pair equivalent to `key` and return
/// its value.
///
/// Like `Vec::remove`, the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
Q: Hash + Equivalent<K>,
{
self.shift_remove_full(key).map(third)
}
/// Remove and return the key-value pair equivalent to `key`.
///
/// Like `Vec::remove`, the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
where
Q: Hash + Equivalent<K>,
{
match self.shift_remove_full(key) {
Some((_, key, value)) => Some((key, value)),
None => None,
}
}
/// Remove the key-value pair equivalent to `key` and return it and
/// the index it had.
///
/// Like `Vec::remove`, the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `key` is not in map.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_full<Q: ?Sized>(&mut self, key: &Q) -> Option<(usize, K, V)>
where
Q: Hash + Equivalent<K>,
{
if self.is_empty() {
return None;
}
let hash = self.hash(key);
self.core.shift_remove_full(hash, key)
}
/// Remove the last key-value pair
///
/// This preserves the order of the remaining elements.
///
/// Computes in **O(1)** time (average).
pub fn pop(&mut self) -> Option<(K, V)> {
self.core.pop()
}
/// Scan through each key-value pair in the map and keep those where the
/// closure `keep` returns `true`.
///
/// The elements are visited in order, and remaining elements keep their
/// order.
///
/// Computes in **O(n)** time (average).
pub fn retain<F>(&mut self, mut keep: F)
where
F: FnMut(&K, &mut V) -> bool,
{
self.core.retain_in_order(move |k, v| keep(k, v));
}
pub(crate) fn retain_mut<F>(&mut self, keep: F)
where
F: FnMut(&mut K, &mut V) -> bool,
{
self.core.retain_in_order(keep);
}
/// Sort the map’s key-value pairs by the default ordering of the keys.
///
/// See [`sort_by`](Self::sort_by) for details.
pub fn sort_keys(&mut self)
where
K: Ord,
{
self.with_entries(move |entries| {
entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
});
}
/// Sort the map’s key-value pairs in place using the comparison
/// function `cmp`.
///
/// The comparison function receives two key and value pairs to compare (you
/// can sort by keys or values or their combination as needed).
///
/// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
/// the length of the map and *c* the capacity. The sort is stable.
pub fn sort_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
self.with_entries(move |entries| {
entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
});
}
/// Sort the key-value pairs of the map and return a by-value iterator of
/// the key-value pairs with the result.
///
/// The sort is stable.
pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
IntoIter {
iter: entries.into_iter(),
}
}
/// Sort the map's key-value pairs by the default ordering of the keys, but
/// may not preserve the order of equal elements.
///
/// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
pub fn sort_unstable_keys(&mut self)
where
K: Ord,
{
self.with_entries(move |entries| {
entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
});
}
/// Sort the map's key-value pairs in place using the comparison function `cmp`, but
/// may not preserve the order of equal elements.
///
/// The comparison function receives two key and value pairs to compare (you
/// can sort by keys or values or their combination as needed).
///
/// Computes in **O(n log n + c)** time where *n* is
/// the length of the map and *c* is the capacity. The sort is unstable.
pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
self.with_entries(move |entries| {
entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
});
}
/// Sort the key-value pairs of the map and return a by-value iterator of
/// the key-value pairs with the result.
///
/// The sort is unstable.
#[inline]
pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
IntoIter {
iter: entries.into_iter(),
}
}
/// Reverses the order of the map’s key-value pairs in place.
///
/// Computes in **O(n)** time and **O(1)** space.
pub fn reverse(&mut self) {
self.core.reverse()
}
}
impl<K, V, S> IndexMap<K, V, S> {
/// Get a key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
self.as_entries().get(index).map(Bucket::refs)
}
/// Get a key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index_mut(&mut self, index: usize) -> Option<(&mut K, &mut V)> {
self.as_entries_mut().get_mut(index).map(Bucket::muts)
}
/// Get the first key-value pair
///
/// Computes in **O(1)** time.
pub fn first(&self) -> Option<(&K, &V)> {
self.as_entries().first().map(Bucket::refs)
}
/// Get the first key-value pair, with mutable access to the value
///
/// Computes in **O(1)** time.
pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
self.as_entries_mut().first_mut().map(Bucket::ref_mut)
}
/// Get the last key-value pair
///
/// Computes in **O(1)** time.
pub fn last(&self) -> Option<(&K, &V)> {
self.as_entries().last().map(Bucket::refs)
}
/// Get the last key-value pair, with mutable access to the value
///
/// Computes in **O(1)** time.
pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
self.as_entries_mut().last_mut().map(Bucket::ref_mut)
}
/// Remove the key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like `Vec::swap_remove`, the pair is removed by swapping it with the
/// last element of the map and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
self.core.swap_remove_index(index)
}
/// Remove the key-value pair by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like `Vec::remove`, the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
self.core.shift_remove_index(index)
}
/// Moves the position of a key-value pair from one index to another
/// by shifting all other pairs in-between.
///
/// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
/// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
///
/// ***Panics*** if `from` or `to` are out of bounds.
///
/// Computes in **O(n)** time (average).
pub fn move_index(&mut self, from: usize, to: usize) {
self.core.move_index(from, to)
}
/// Swaps the position of two key-value pairs in the map.
///
/// ***Panics*** if `a` or `b` are out of bounds.
pub fn swap_indices(&mut self, a: usize, b: usize) {
self.core.swap_indices(a, b)
}
}
/// An iterator over the keys of a `IndexMap`.
///
/// This `struct` is created by the [`keys`] method on [`IndexMap`]. See its
/// documentation for more.
///
/// [`keys`]: struct.IndexMap.html#method.keys
/// [`IndexMap`]: struct.IndexMap.html
pub struct Keys<'a, K, V> {
iter: SliceIter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
iterator_methods!(Bucket::key_ref);
}
impl<K, V> DoubleEndedIterator for Keys<'_, K, V> {
double_ended_iterator_methods!(Bucket::key_ref);
}
impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Keys<'_, K, V> {}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Keys<'_, K, V> {
fn clone(&self) -> Self {
Keys {
iter: self.iter.clone(),
}
}
}
impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// An owning iterator over the keys of a `IndexMap`.
///
/// This `struct` is created by the [`into_keys`] method on [`IndexMap`].
/// See its documentation for more.
///
/// [`IndexMap`]: struct.IndexMap.html
/// [`into_keys`]: struct.IndexMap.html#method.into_keys
pub struct IntoKeys<K, V> {
iter: vec::IntoIter<Bucket<K, V>>,
}
impl<K, V> Iterator for IntoKeys<K, V> {
type Item = K;
iterator_methods!(Bucket::key);
}
impl<K, V> DoubleEndedIterator for IntoKeys<K, V> {
double_ended_iterator_methods!(Bucket::key);
}
impl<K, V> ExactSizeIterator for IntoKeys<K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IntoKeys<K, V> {}
impl<K: fmt::Debug, V> fmt::Debug for IntoKeys<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
/// An iterator over the values of a `IndexMap`.
///
/// This `struct` is created by the [`values`] method on [`IndexMap`]. See its
/// documentation for more.
///
/// [`values`]: struct.IndexMap.html#method.values
/// [`IndexMap`]: struct.IndexMap.html
pub struct Values<'a, K, V> {
iter: SliceIter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
iterator_methods!(Bucket::value_ref);
}
impl<K, V> DoubleEndedIterator for Values<'_, K, V> {
double_ended_iterator_methods!(Bucket::value_ref);
}
impl<K, V> ExactSizeIterator for Values<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Values<'_, K, V> {}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Values<'_, K, V> {
fn clone(&self) -> Self {
Values {
iter: self.iter.clone(),
}
}
}
impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A mutable iterator over the values of a `IndexMap`.
///
/// This `struct` is created by the [`values_mut`] method on [`IndexMap`]. See its
/// documentation for more.
///
/// [`values_mut`]: struct.IndexMap.html#method.values_mut
/// [`IndexMap`]: struct.IndexMap.html
pub struct ValuesMut<'a, K, V> {
iter: SliceIterMut<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
type Item = &'a mut V;
iterator_methods!(Bucket::value_mut);
}
impl<K, V> DoubleEndedIterator for ValuesMut<'_, K, V> {
double_ended_iterator_methods!(Bucket::value_mut);
}
impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::value_ref);
f.debug_list().entries(iter).finish()
}
}
/// An owning iterator over the values of a `IndexMap`.
///
/// This `struct` is created by the [`into_values`] method on [`IndexMap`].
/// See its documentation for more.
///
/// [`IndexMap`]: struct.IndexMap.html
/// [`into_values`]: struct.IndexMap.html#method.into_values
pub struct IntoValues<K, V> {
iter: vec::IntoIter<Bucket<K, V>>,
}
impl<K, V> Iterator for IntoValues<K, V> {
type Item = V;
iterator_methods!(Bucket::value);
}
impl<K, V> DoubleEndedIterator for IntoValues<K, V> {
double_ended_iterator_methods!(Bucket::value);
}
impl<K, V> ExactSizeIterator for IntoValues<K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IntoValues<K, V> {}
impl<K, V: fmt::Debug> fmt::Debug for IntoValues<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::value_ref);
f.debug_list().entries(iter).finish()
}
}
/// An iterator over the entries of a `IndexMap`.
///
/// This `struct` is created by the [`iter`] method on [`IndexMap`]. See its
/// documentation for more.
///
/// [`iter`]: struct.IndexMap.html#method.iter
/// [`IndexMap`]: struct.IndexMap.html
pub struct Iter<'a, K, V> {
iter: SliceIter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
iterator_methods!(Bucket::refs);
}
impl<K, V> DoubleEndedIterator for Iter<'_, K, V> {
double_ended_iterator_methods!(Bucket::refs);
}
impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Iter<'_, K, V> {}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Iter<'_, K, V> {
fn clone(&self) -> Self {
Iter {
iter: self.iter.clone(),
}
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A mutable iterator over the entries of a `IndexMap`.
///
/// This `struct` is created by the [`iter_mut`] method on [`IndexMap`]. See its
/// documentation for more.
///
/// [`iter_mut`]: struct.IndexMap.html#method.iter_mut
/// [`IndexMap`]: struct.IndexMap.html
pub struct IterMut<'a, K, V> {
iter: SliceIterMut<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
iterator_methods!(Bucket::ref_mut);
}
impl<K, V> DoubleEndedIterator for IterMut<'_, K, V> {
double_ended_iterator_methods!(Bucket::ref_mut);
}
impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IterMut<'_, K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
/// An owning iterator over the entries of a `IndexMap`.
///
/// This `struct` is created by the [`into_iter`] method on [`IndexMap`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: struct.IndexMap.html#method.into_iter
/// [`IndexMap`]: struct.IndexMap.html
pub struct IntoIter<K, V> {
iter: vec::IntoIter<Bucket<K, V>>,
}
impl<K, V> Iterator for IntoIter<K, V> {
type Item = (K, V);
iterator_methods!(Bucket::key_value);
}
impl<K, V> DoubleEndedIterator for IntoIter<K, V> {
double_ended_iterator_methods!(Bucket::key_value);
}
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IntoIter<K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
/// A draining iterator over the entries of a `IndexMap`.
///
/// This `struct` is created by the [`drain`] method on [`IndexMap`]. See its
/// documentation for more.
///
/// [`drain`]: struct.IndexMap.html#method.drain
/// [`IndexMap`]: struct.IndexMap.html
pub struct Drain<'a, K, V> {
pub(crate) iter: vec::Drain<'a, Bucket<K, V>>,
}
impl<K, V> Iterator for Drain<'_, K, V> {
type Item = (K, V);
iterator_methods!(Bucket::key_value);
}
impl<K, V> DoubleEndedIterator for Drain<'_, K, V> {
double_ended_iterator_methods!(Bucket::key_value);
}
impl<K, V> ExactSizeIterator for Drain<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Drain<'_, K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Drain<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<'a, K, V, S> IntoIterator for &'a IndexMap<K, V, S> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a mut IndexMap<K, V, S> {
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<K, V, S> IntoIterator for IndexMap<K, V, S> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
iter: self.into_entries().into_iter(),
}
}
}
/// Access `IndexMap` values corresponding to a key.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_uppercase());
/// }
/// assert_eq!(map["lorem"], "LOREM");
/// assert_eq!(map["ipsum"], "IPSUM");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// println!("{:?}", map["bar"]); // panics!
/// ```
impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
where
Q: Hash + Equivalent<K>,
K: Hash + Eq,
S: BuildHasher,
{
type Output = V;
/// Returns a reference to the value corresponding to the supplied `key`.
///
/// ***Panics*** if `key` is not present in the map.
fn index(&self, key: &Q) -> &V {
self.get(key).expect("IndexMap: key not found")
}
}
/// Access `IndexMap` values corresponding to a key.
///
/// Mutable indexing allows changing / updating values of key-value
/// pairs that are already present.
///
/// You can **not** insert new pairs with index syntax, use `.insert()`.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_string());
/// }
/// let lorem = &mut map["lorem"];
/// assert_eq!(lorem, "Lorem");
/// lorem.retain(char::is_lowercase);
/// assert_eq!(map["lorem"], "orem");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// map["bar"] = 1; // panics!
/// ```
impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
where
Q: Hash + Equivalent<K>,
K: Hash + Eq,
S: BuildHasher,
{
/// Returns a mutable reference to the value corresponding to the supplied `key`.
///
/// ***Panics*** if `key` is not present in the map.
fn index_mut(&mut self, key: &Q) -> &mut V {
self.get_mut(key).expect("IndexMap: key not found")
}
}
/// Access `IndexMap` values at indexed positions.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_uppercase());
/// }
/// assert_eq!(map[0], "LOREM");
/// assert_eq!(map[1], "IPSUM");
/// map.reverse();
/// assert_eq!(map[0], "AMET");
/// assert_eq!(map[1], "SIT");
/// map.sort_keys();
/// assert_eq!(map[0], "AMET");
/// assert_eq!(map[1], "DOLOR");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// println!("{:?}", map[10]); // panics!
/// ```
impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
type Output = V;
/// Returns a reference to the value at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index(&self, index: usize) -> &V {
self.get_index(index)
.expect("IndexMap: index out of bounds")
.1
}
}
/// Access `IndexMap` values at indexed positions.
///
/// Mutable indexing allows changing / updating indexed values
/// that are already present.
///
/// You can **not** insert new values with index syntax, use `.insert()`.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_string());
/// }
/// let lorem = &mut map[0];
/// assert_eq!(lorem, "Lorem");
/// lorem.retain(char::is_lowercase);
/// assert_eq!(map["lorem"], "orem");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// map[10] = 1; // panics!
/// ```
impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
/// Returns a mutable reference to the value at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index_mut(&mut self, index: usize) -> &mut V {
self.get_index_mut(index)
.expect("IndexMap: index out of bounds")
.1
}
}
impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher + Default,
{
/// Create an `IndexMap` from the sequence of key-value pairs in the
/// iterable.
///
/// `from_iter` uses the same logic as `extend`. See
/// [`extend`](#method.extend) for more details.
fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
let mut map = Self::with_capacity_and_hasher(low, <_>::default());
map.extend(iter);
map
}
}
#[cfg(has_std)]
impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
where
K: Hash + Eq,
{
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let map1 = IndexMap::from([(1, 2), (3, 4)]);
/// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
/// assert_eq!(map1, map2);
/// ```
fn from(arr: [(K, V); N]) -> Self {
Self::from_iter(arr)
}
}
impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher,
{
/// Extend the map with all key-value pairs in the iterable.
///
/// This is equivalent to calling [`insert`](#method.insert) for each of
/// them in order, which means that for keys that already existed
/// in the map, their value is updated but it keeps the existing order.
///
/// New keys are inserted in the order they appear in the sequence. If
/// equivalents of a key occur more than once, the last corresponding value
/// prevails.
fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
// (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
// Keys may be already present or show multiple times in the iterator.
// Reserve the entire hint lower bound if the map is empty.
// Otherwise reserve half the hint (rounded up), so the map
// will only resize twice in the worst case.
let iter = iterable.into_iter();
let reserve = if self.is_empty() {
iter.size_hint().0
} else {
(iter.size_hint().0 + 1) / 2
};
self.reserve(reserve);
iter.for_each(move |(k, v)| {
self.insert(k, v);
});
}
}
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
where
K: Hash + Eq + Copy,
V: Copy,
S: BuildHasher,
{
/// Extend the map with all key-value pairs in the iterable.
///
/// See the first extend method for more details.
fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
}
}
impl<K, V, S> Default for IndexMap<K, V, S>
where
S: Default,
{
/// Return an empty `IndexMap`
fn default() -> Self {
Self::with_capacity_and_hasher(0, S::default())
}
}
impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
where
K: Hash + Eq,
V1: PartialEq<V2>,
S1: BuildHasher,
S2: BuildHasher,
{
fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
if self.len() != other.len() {
return false;
}
self.iter()
.all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
}
}
impl<K, V, S> Eq for IndexMap<K, V, S>
where
K: Eq + Hash,
V: Eq,
S: BuildHasher,
{
}
#[cfg(test)]
mod tests {
use super::*;
use std::string::String;
#[test]
fn it_works() {
let mut map = IndexMap::new();
assert_eq!(map.is_empty(), true);
map.insert(1, ());
map.insert(1, ());
assert_eq!(map.len(), 1);
assert!(map.get(&1).is_some());
assert_eq!(map.is_empty(), false);
}
#[test]
fn new() {
let map = IndexMap::<String, String>::new();
println!("{:?}", map);
assert_eq!(map.capacity(), 0);
assert_eq!(map.len(), 0);
assert_eq!(map.is_empty(), true);
}
#[test]
fn insert() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5];
let not_present = [1, 3, 6, 9, 10];
let mut map = IndexMap::with_capacity(insert.len());
for (i, &elt) in insert.iter().enumerate() {
assert_eq!(map.len(), i);
map.insert(elt, elt);
assert_eq!(map.len(), i + 1);
assert_eq!(map.get(&elt), Some(&elt));
assert_eq!(map[&elt], elt);
}
println!("{:?}", map);
for &elt in &not_present {
assert!(map.get(&elt).is_none());
}
}
#[test]
fn insert_full() {
let insert = vec![9, 2, 7, 1, 4, 6, 13];
let present = vec![1, 6, 2];
let mut map = IndexMap::with_capacity(insert.len());
for (i, &elt) in insert.iter().enumerate() {
assert_eq!(map.len(), i);
let (index, existing) = map.insert_full(elt, elt);
assert_eq!(existing, None);
assert_eq!(Some(index), map.get_full(&elt).map(|x| x.0));
assert_eq!(map.len(), i + 1);
}
let len = map.len();
for &elt in &present {
let (index, existing) = map.insert_full(elt, elt);
assert_eq!(existing, Some(elt));
assert_eq!(Some(index), map.get_full(&elt).map(|x| x.0));
assert_eq!(map.len(), len);
}
}
#[test]
fn insert_2() {
let mut map = IndexMap::with_capacity(16);
let mut keys = vec![];
keys.extend(0..16);
keys.extend(if cfg!(miri) { 32..64 } else { 128..267 });
for &i in &keys {
let old_map = map.clone();
map.insert(i, ());
for key in old_map.keys() {
if map.get(key).is_none() {
println!("old_map: {:?}", old_map);
println!("map: {:?}", map);
panic!("did not find {} in map", key);
}
}
}
for &i in &keys {
assert!(map.get(&i).is_some(), "did not find {}", i);
}
}
#[test]
fn insert_order() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut map = IndexMap::new();
for &elt in &insert {
map.insert(elt, ());
}
assert_eq!(map.keys().count(), map.len());
assert_eq!(map.keys().count(), insert.len());
for (a, b) in insert.iter().zip(map.keys()) {
assert_eq!(a, b);
}
for (i, k) in (0..insert.len()).zip(map.keys()) {
assert_eq!(map.get_index(i).unwrap().0, k);
}
}
#[test]
fn grow() {
let insert = [0, 4, 2, 12, 8, 7, 11];
let not_present = [1, 3, 6, 9, 10];
let mut map = IndexMap::with_capacity(insert.len());
for (i, &elt) in insert.iter().enumerate() {
assert_eq!(map.len(), i);
map.insert(elt, elt);
assert_eq!(map.len(), i + 1);
assert_eq!(map.get(&elt), Some(&elt));
assert_eq!(map[&elt], elt);
}
println!("{:?}", map);
for &elt in &insert {
map.insert(elt * 10, elt);
}
for &elt in &insert {
map.insert(elt * 100, elt);
}
for (i, &elt) in insert.iter().cycle().enumerate().take(100) {
map.insert(elt * 100 + i as i32, elt);
}
println!("{:?}", map);
for &elt in &not_present {
assert!(map.get(&elt).is_none());
}
}
#[test]
fn reserve() {
let mut map = IndexMap::<usize, usize>::new();
assert_eq!(map.capacity(), 0);
map.reserve(100);
let capacity = map.capacity();
assert!(capacity >= 100);
for i in 0..capacity {
assert_eq!(map.len(), i);
map.insert(i, i * i);
assert_eq!(map.len(), i + 1);
assert_eq!(map.capacity(), capacity);
assert_eq!(map.get(&i), Some(&(i * i)));
}
map.insert(capacity, std::usize::MAX);
assert_eq!(map.len(), capacity + 1);
assert!(map.capacity() > capacity);
assert_eq!(map.get(&capacity), Some(&std::usize::MAX));
}
#[test]
fn shrink_to_fit() {
let mut map = IndexMap::<usize, usize>::new();
assert_eq!(map.capacity(), 0);
for i in 0..100 {
assert_eq!(map.len(), i);
map.insert(i, i * i);
assert_eq!(map.len(), i + 1);
assert!(map.capacity() >= i + 1);
assert_eq!(map.get(&i), Some(&(i * i)));
map.shrink_to_fit();
assert_eq!(map.len(), i + 1);
assert_eq!(map.capacity(), i + 1);
assert_eq!(map.get(&i), Some(&(i * i)));
}
}
#[test]
fn remove() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut map = IndexMap::new();
for &elt in &insert {
map.insert(elt, elt);
}
assert_eq!(map.keys().count(), map.len());
assert_eq!(map.keys().count(), insert.len());
for (a, b) in insert.iter().zip(map.keys()) {
assert_eq!(a, b);
}
let remove_fail = [99, 77];
let remove = [4, 12, 8, 7];
for &key in &remove_fail {
assert!(map.swap_remove_full(&key).is_none());
}
println!("{:?}", map);
for &key in &remove {
//println!("{:?}", map);
let index = map.get_full(&key).unwrap().0;
assert_eq!(map.swap_remove_full(&key), Some((index, key, key)));
}
println!("{:?}", map);
for key in &insert {
assert_eq!(map.get(key).is_some(), !remove.contains(key));
}
assert_eq!(map.len(), insert.len() - remove.len());
assert_eq!(map.keys().count(), insert.len() - remove.len());
}
#[test]
fn remove_to_empty() {
let mut map = indexmap! { 0 => 0, 4 => 4, 5 => 5 };
map.swap_remove(&5).unwrap();
map.swap_remove(&4).unwrap();
map.swap_remove(&0).unwrap();
assert!(map.is_empty());
}
#[test]
fn swap_remove_index() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut map = IndexMap::new();
for &elt in &insert {
map.insert(elt, elt * 2);
}
let mut vector = insert.to_vec();
let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1];
// check that the same swap remove sequence on vec and map
// have the same result.
for &rm in remove_sequence {
let out_vec = vector.swap_remove(rm);
let (out_map, _) = map.swap_remove_index(rm).unwrap();
assert_eq!(out_vec, out_map);
}
assert_eq!(vector.len(), map.len());
for (a, b) in vector.iter().zip(map.keys()) {
assert_eq!(a, b);
}
}
#[test]
fn partial_eq_and_eq() {
let mut map_a = IndexMap::new();
map_a.insert(1, "1");
map_a.insert(2, "2");
let mut map_b = map_a.clone();
assert_eq!(map_a, map_b);
map_b.swap_remove(&1);
assert_ne!(map_a, map_b);
let map_c: IndexMap<_, String> = map_b.into_iter().map(|(k, v)| (k, v.into())).collect();
assert_ne!(map_a, map_c);
assert_ne!(map_c, map_a);
}
#[test]
fn extend() {
let mut map = IndexMap::new();
map.extend(vec![(&1, &2), (&3, &4)]);
map.extend(vec![(5, 6)]);
assert_eq!(
map.into_iter().collect::<Vec<_>>(),
vec![(1, 2), (3, 4), (5, 6)]
);
}
#[test]
fn entry() {
let mut map = IndexMap::new();
map.insert(1, "1");
map.insert(2, "2");
{
let e = map.entry(3);
assert_eq!(e.index(), 2);
let e = e.or_insert("3");
assert_eq!(e, &"3");
}
let e = map.entry(2);
assert_eq!(e.index(), 1);
assert_eq!(e.key(), &2);
match e {
Entry::Occupied(ref e) => assert_eq!(e.get(), &"2"),
Entry::Vacant(_) => panic!(),
}
assert_eq!(e.or_insert("4"), &"2");
}
#[test]
fn entry_and_modify() {
let mut map = IndexMap::new();
map.insert(1, "1");
map.entry(1).and_modify(|x| *x = "2");
assert_eq!(Some(&"2"), map.get(&1));
map.entry(2).and_modify(|x| *x = "doesn't exist");
assert_eq!(None, map.get(&2));
}
#[test]
fn entry_or_default() {
let mut map = IndexMap::new();
#[derive(Debug, PartialEq)]
enum TestEnum {
DefaultValue,
NonDefaultValue,
}
impl Default for TestEnum {
fn default() -> Self {
TestEnum::DefaultValue
}
}
map.insert(1, TestEnum::NonDefaultValue);
assert_eq!(&mut TestEnum::NonDefaultValue, map.entry(1).or_default());
assert_eq!(&mut TestEnum::DefaultValue, map.entry(2).or_default());
}
#[test]
fn occupied_entry_key() {
// These keys match hash and equality, but their addresses are distinct.
let (k1, k2) = (&mut 1, &mut 1);
let k1_ptr = k1 as *const i32;
let k2_ptr = k2 as *const i32;
assert_ne!(k1_ptr, k2_ptr);
let mut map = IndexMap::new();
map.insert(k1, "value");
match map.entry(k2) {
Entry::Occupied(ref e) => {
// `OccupiedEntry::key` should reference the key in the map,
// not the key that was used to find the entry.
let ptr = *e.key() as *const i32;
assert_eq!(ptr, k1_ptr);
assert_ne!(ptr, k2_ptr);
}
Entry::Vacant(_) => panic!(),
}
}
#[test]
fn keys() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: IndexMap<_, _> = vec.into_iter().collect();
let keys: Vec<_> = map.keys().copied().collect();
assert_eq!(keys.len(), 3);
assert!(keys.contains(&1));
assert!(keys.contains(&2));
assert!(keys.contains(&3));
}
#[test]
fn into_keys() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: IndexMap<_, _> = vec.into_iter().collect();
let keys: Vec<i32> = map.into_keys().collect();
assert_eq!(keys.len(), 3);
assert!(keys.contains(&1));
assert!(keys.contains(&2));
assert!(keys.contains(&3));
}
#[test]
fn values() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: IndexMap<_, _> = vec.into_iter().collect();
let values: Vec<_> = map.values().copied().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&'a'));
assert!(values.contains(&'b'));
assert!(values.contains(&'c'));
}
#[test]
fn values_mut() {
let vec = vec![(1, 1), (2, 2), (3, 3)];
let mut map: IndexMap<_, _> = vec.into_iter().collect();
for value in map.values_mut() {
*value *= 2
}
let values: Vec<_> = map.values().copied().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&2));
assert!(values.contains(&4));
assert!(values.contains(&6));
}
#[test]
fn into_values() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: IndexMap<_, _> = vec.into_iter().collect();
let values: Vec<char> = map.into_values().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&'a'));
assert!(values.contains(&'b'));
assert!(values.contains(&'c'));
}
#[test]
#[cfg(has_std)]
fn from_array() {
let map = IndexMap::from([(1, 2), (3, 4)]);
let mut expected = IndexMap::new();
expected.insert(1, 2);
expected.insert(3, 4);
assert_eq!(map, expected)
}
}