blob: 361a087a57f7242753007682c1cc38ac5cabd0b8 [file] [log] [blame]
/*
* Copyright 2015 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <grpcpp/server.h>
#include <cstdlib>
#include <sstream>
#include <type_traits>
#include <utility>
#include <grpc/grpc.h>
#include <grpc/impl/codegen/grpc_types.h>
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpcpp/completion_queue.h>
#include <grpcpp/generic/async_generic_service.h>
#include <grpcpp/impl/codegen/async_unary_call.h>
#include <grpcpp/impl/codegen/byte_buffer.h>
#include <grpcpp/impl/codegen/call.h>
#include <grpcpp/impl/codegen/completion_queue_tag.h>
#include <grpcpp/impl/codegen/method_handler.h>
#include <grpcpp/impl/codegen/server_interceptor.h>
#include <grpcpp/impl/grpc_library.h>
#include <grpcpp/impl/rpc_service_method.h>
#include <grpcpp/impl/server_initializer.h>
#include <grpcpp/impl/service_type.h>
#include <grpcpp/security/server_credentials.h>
#include <grpcpp/server_context.h>
#include <grpcpp/support/time.h>
#include "src/core/ext/transport/inproc/inproc_transport.h"
#include "src/core/lib/iomgr/exec_ctx.h"
#include "src/core/lib/profiling/timers.h"
#include "src/core/lib/surface/call.h"
#include "src/core/lib/surface/completion_queue.h"
#include "src/core/lib/surface/server.h"
#include "src/cpp/client/create_channel_internal.h"
#include "src/cpp/server/external_connection_acceptor_impl.h"
#include "src/cpp/server/health/default_health_check_service.h"
#include "src/cpp/thread_manager/thread_manager.h"
namespace grpc {
namespace {
// The default value for maximum number of threads that can be created in the
// sync server. This value of INT_MAX is chosen to match the default behavior if
// no ResourceQuota is set. To modify the max number of threads in a sync
// server, pass a custom ResourceQuota object (with the desired number of
// max-threads set) to the server builder.
#define DEFAULT_MAX_SYNC_SERVER_THREADS INT_MAX
class DefaultGlobalCallbacks final : public Server::GlobalCallbacks {
public:
~DefaultGlobalCallbacks() override {}
void PreSynchronousRequest(ServerContext* /*context*/) override {}
void PostSynchronousRequest(ServerContext* /*context*/) override {}
};
std::shared_ptr<Server::GlobalCallbacks> g_callbacks = nullptr;
gpr_once g_once_init_callbacks = GPR_ONCE_INIT;
void InitGlobalCallbacks() {
if (!g_callbacks) {
g_callbacks.reset(new DefaultGlobalCallbacks());
}
}
class ShutdownTag : public internal::CompletionQueueTag {
public:
bool FinalizeResult(void** /*tag*/, bool* /*status*/) { return false; }
};
class DummyTag : public internal::CompletionQueueTag {
public:
bool FinalizeResult(void** /*tag*/, bool* /*status*/) { return true; }
};
class UnimplementedAsyncRequestContext {
protected:
UnimplementedAsyncRequestContext() : generic_stream_(&server_context_) {}
GenericServerContext server_context_;
GenericServerAsyncReaderWriter generic_stream_;
};
// TODO(vjpai): Just for this file, use some contents of the experimental
// namespace here to make the code easier to read below. Remove this when
// de-experimentalized fully.
#ifndef GRPC_CALLBACK_API_NONEXPERIMENTAL
using ::grpc::experimental::CallbackGenericService;
using ::grpc::experimental::CallbackServerContext;
using ::grpc::experimental::GenericCallbackServerContext;
#endif
} // namespace
ServerInterface::BaseAsyncRequest::BaseAsyncRequest(
ServerInterface* server, ServerContext* context,
internal::ServerAsyncStreamingInterface* stream, CompletionQueue* call_cq,
ServerCompletionQueue* notification_cq, void* tag, bool delete_on_finalize)
: server_(server),
context_(context),
stream_(stream),
call_cq_(call_cq),
notification_cq_(notification_cq),
tag_(tag),
delete_on_finalize_(delete_on_finalize),
call_(nullptr),
done_intercepting_(false) {
/* Set up interception state partially for the receive ops. call_wrapper_ is
* not filled at this point, but it will be filled before the interceptors are
* run. */
interceptor_methods_.SetCall(&call_wrapper_);
interceptor_methods_.SetReverse();
call_cq_->RegisterAvalanching(); // This op will trigger more ops
}
ServerInterface::BaseAsyncRequest::~BaseAsyncRequest() {
call_cq_->CompleteAvalanching();
}
bool ServerInterface::BaseAsyncRequest::FinalizeResult(void** tag,
bool* status) {
if (done_intercepting_) {
*tag = tag_;
if (delete_on_finalize_) {
delete this;
}
return true;
}
context_->set_call(call_);
context_->cq_ = call_cq_;
if (call_wrapper_.call() == nullptr) {
// Fill it since it is empty.
call_wrapper_ = internal::Call(
call_, server_, call_cq_, server_->max_receive_message_size(), nullptr);
}
// just the pointers inside call are copied here
stream_->BindCall(&call_wrapper_);
if (*status && call_ && call_wrapper_.server_rpc_info()) {
done_intercepting_ = true;
// Set interception point for RECV INITIAL METADATA
interceptor_methods_.AddInterceptionHookPoint(
experimental::InterceptionHookPoints::POST_RECV_INITIAL_METADATA);
interceptor_methods_.SetRecvInitialMetadata(&context_->client_metadata_);
if (interceptor_methods_.RunInterceptors(
[this]() { ContinueFinalizeResultAfterInterception(); })) {
// There are no interceptors to run. Continue
} else {
// There were interceptors to be run, so
// ContinueFinalizeResultAfterInterception will be run when interceptors
// are done.
return false;
}
}
if (*status && call_) {
context_->BeginCompletionOp(&call_wrapper_, nullptr, nullptr);
}
*tag = tag_;
if (delete_on_finalize_) {
delete this;
}
return true;
}
void ServerInterface::BaseAsyncRequest::
ContinueFinalizeResultAfterInterception() {
context_->BeginCompletionOp(&call_wrapper_, nullptr, nullptr);
// Queue a tag which will be returned immediately
grpc_core::ExecCtx exec_ctx;
grpc_cq_begin_op(notification_cq_->cq(), this);
grpc_cq_end_op(
notification_cq_->cq(), this, GRPC_ERROR_NONE,
[](void* /*arg*/, grpc_cq_completion* completion) { delete completion; },
nullptr, new grpc_cq_completion());
}
ServerInterface::RegisteredAsyncRequest::RegisteredAsyncRequest(
ServerInterface* server, ServerContext* context,
internal::ServerAsyncStreamingInterface* stream, CompletionQueue* call_cq,
ServerCompletionQueue* notification_cq, void* tag, const char* name,
internal::RpcMethod::RpcType type)
: BaseAsyncRequest(server, context, stream, call_cq, notification_cq, tag,
true),
name_(name),
type_(type) {}
void ServerInterface::RegisteredAsyncRequest::IssueRequest(
void* registered_method, grpc_byte_buffer** payload,
ServerCompletionQueue* notification_cq) {
// The following call_start_batch is internally-generated so no need for an
// explanatory log on failure.
GPR_ASSERT(grpc_server_request_registered_call(
server_->server(), registered_method, &call_,
&context_->deadline_, context_->client_metadata_.arr(),
payload, call_cq_->cq(), notification_cq->cq(),
this) == GRPC_CALL_OK);
}
ServerInterface::GenericAsyncRequest::GenericAsyncRequest(
ServerInterface* server, GenericServerContext* context,
internal::ServerAsyncStreamingInterface* stream, CompletionQueue* call_cq,
ServerCompletionQueue* notification_cq, void* tag, bool delete_on_finalize)
: BaseAsyncRequest(server, context, stream, call_cq, notification_cq, tag,
delete_on_finalize) {
grpc_call_details_init(&call_details_);
GPR_ASSERT(notification_cq);
GPR_ASSERT(call_cq);
// The following call_start_batch is internally-generated so no need for an
// explanatory log on failure.
GPR_ASSERT(grpc_server_request_call(server->server(), &call_, &call_details_,
context->client_metadata_.arr(),
call_cq->cq(), notification_cq->cq(),
this) == GRPC_CALL_OK);
}
bool ServerInterface::GenericAsyncRequest::FinalizeResult(void** tag,
bool* status) {
// If we are done intercepting, there is nothing more for us to do
if (done_intercepting_) {
return BaseAsyncRequest::FinalizeResult(tag, status);
}
// TODO(yangg) remove the copy here.
if (*status) {
static_cast<GenericServerContext*>(context_)->method_ =
StringFromCopiedSlice(call_details_.method);
static_cast<GenericServerContext*>(context_)->host_ =
StringFromCopiedSlice(call_details_.host);
context_->deadline_ = call_details_.deadline;
}
grpc_slice_unref(call_details_.method);
grpc_slice_unref(call_details_.host);
call_wrapper_ = internal::Call(
call_, server_, call_cq_, server_->max_receive_message_size(),
context_->set_server_rpc_info(
static_cast<GenericServerContext*>(context_)->method_.c_str(),
internal::RpcMethod::BIDI_STREAMING,
*server_->interceptor_creators()));
return BaseAsyncRequest::FinalizeResult(tag, status);
}
namespace {
class ShutdownCallback : public grpc_experimental_completion_queue_functor {
public:
ShutdownCallback() {
functor_run = &ShutdownCallback::Run;
// Set inlineable to true since this callback is trivial and thus does not
// need to be run from the executor (triggering a thread hop). This should
// only be used by internal callbacks like this and not by user application
// code.
inlineable = true;
}
// TakeCQ takes ownership of the cq into the shutdown callback
// so that the shutdown callback will be responsible for destroying it
void TakeCQ(CompletionQueue* cq) { cq_ = cq; }
// The Run function will get invoked by the completion queue library
// when the shutdown is actually complete
static void Run(grpc_experimental_completion_queue_functor* cb, int) {
auto* callback = static_cast<ShutdownCallback*>(cb);
delete callback->cq_;
delete callback;
}
private:
CompletionQueue* cq_ = nullptr;
};
} // namespace
/// Use private inheritance rather than composition only to establish order
/// of construction, since the public base class should be constructed after the
/// elements belonging to the private base class are constructed. This is not
/// possible using true composition.
class Server::UnimplementedAsyncRequest final
: private grpc::UnimplementedAsyncRequestContext,
public GenericAsyncRequest {
public:
UnimplementedAsyncRequest(ServerInterface* server,
grpc::ServerCompletionQueue* cq)
: GenericAsyncRequest(server, &server_context_, &generic_stream_, cq, cq,
nullptr, false) {}
bool FinalizeResult(void** tag, bool* status) override;
grpc::ServerContext* context() { return &server_context_; }
grpc::GenericServerAsyncReaderWriter* stream() { return &generic_stream_; }
};
/// UnimplementedAsyncResponse should not post user-visible completions to the
/// C++ completion queue, but is generated as a CQ event by the core
class Server::UnimplementedAsyncResponse final
: public grpc::internal::CallOpSet<
grpc::internal::CallOpSendInitialMetadata,
grpc::internal::CallOpServerSendStatus> {
public:
UnimplementedAsyncResponse(UnimplementedAsyncRequest* request);
~UnimplementedAsyncResponse() { delete request_; }
bool FinalizeResult(void** tag, bool* status) override {
if (grpc::internal::CallOpSet<
grpc::internal::CallOpSendInitialMetadata,
grpc::internal::CallOpServerSendStatus>::FinalizeResult(tag,
status)) {
delete this;
} else {
// The tag was swallowed due to interception. We will see it again.
}
return false;
}
private:
UnimplementedAsyncRequest* const request_;
};
class Server::SyncRequest final : public grpc::internal::CompletionQueueTag {
public:
SyncRequest(grpc::internal::RpcServiceMethod* method, void* method_tag)
: method_(method),
method_tag_(method_tag),
in_flight_(false),
has_request_payload_(method->method_type() ==
grpc::internal::RpcMethod::NORMAL_RPC ||
method->method_type() ==
grpc::internal::RpcMethod::SERVER_STREAMING),
call_details_(nullptr),
cq_(nullptr) {
grpc_metadata_array_init(&request_metadata_);
}
~SyncRequest() {
if (call_details_) {
delete call_details_;
}
grpc_metadata_array_destroy(&request_metadata_);
}
void SetupRequest() { cq_ = grpc_completion_queue_create_for_pluck(nullptr); }
void TeardownRequest() {
grpc_completion_queue_destroy(cq_);
cq_ = nullptr;
}
void Request(grpc_server* server, grpc_completion_queue* notify_cq) {
GPR_ASSERT(cq_ && !in_flight_);
in_flight_ = true;
if (method_tag_) {
if (grpc_server_request_registered_call(
server, method_tag_, &call_, &deadline_, &request_metadata_,
has_request_payload_ ? &request_payload_ : nullptr, cq_,
notify_cq, this) != GRPC_CALL_OK) {
TeardownRequest();
return;
}
} else {
if (!call_details_) {
call_details_ = new grpc_call_details;
grpc_call_details_init(call_details_);
}
if (grpc_server_request_call(server, &call_, call_details_,
&request_metadata_, cq_, notify_cq,
this) != GRPC_CALL_OK) {
TeardownRequest();
return;
}
}
}
void PostShutdownCleanup() {
if (call_) {
grpc_call_unref(call_);
call_ = nullptr;
}
if (cq_) {
grpc_completion_queue_destroy(cq_);
cq_ = nullptr;
}
}
bool FinalizeResult(void** /*tag*/, bool* status) override {
if (!*status) {
grpc_completion_queue_destroy(cq_);
cq_ = nullptr;
}
if (call_details_) {
deadline_ = call_details_->deadline;
grpc_call_details_destroy(call_details_);
grpc_call_details_init(call_details_);
}
return true;
}
// The CallData class represents a call that is "active" as opposed
// to just being requested. It wraps and takes ownership of the cq from
// the call request
class CallData final {
public:
explicit CallData(Server* server, SyncRequest* mrd)
: cq_(mrd->cq_),
ctx_(mrd->deadline_, &mrd->request_metadata_),
has_request_payload_(mrd->has_request_payload_),
request_payload_(has_request_payload_ ? mrd->request_payload_
: nullptr),
request_(nullptr),
method_(mrd->method_),
call_(
mrd->call_, server, &cq_, server->max_receive_message_size(),
ctx_.set_server_rpc_info(method_->name(), method_->method_type(),
server->interceptor_creators_)),
server_(server),
global_callbacks_(nullptr),
resources_(false) {
ctx_.set_call(mrd->call_);
ctx_.cq_ = &cq_;
GPR_ASSERT(mrd->in_flight_);
mrd->in_flight_ = false;
mrd->request_metadata_.count = 0;
}
~CallData() {
if (has_request_payload_ && request_payload_) {
grpc_byte_buffer_destroy(request_payload_);
}
}
void Run(const std::shared_ptr<GlobalCallbacks>& global_callbacks,
bool resources) {
global_callbacks_ = global_callbacks;
resources_ = resources;
interceptor_methods_.SetCall(&call_);
interceptor_methods_.SetReverse();
// Set interception point for RECV INITIAL METADATA
interceptor_methods_.AddInterceptionHookPoint(
grpc::experimental::InterceptionHookPoints::
POST_RECV_INITIAL_METADATA);
interceptor_methods_.SetRecvInitialMetadata(&ctx_.client_metadata_);
if (has_request_payload_) {
// Set interception point for RECV MESSAGE
auto* handler = resources_ ? method_->handler()
: server_->resource_exhausted_handler_.get();
request_ = handler->Deserialize(call_.call(), request_payload_,
&request_status_, nullptr);
request_payload_ = nullptr;
interceptor_methods_.AddInterceptionHookPoint(
grpc::experimental::InterceptionHookPoints::POST_RECV_MESSAGE);
interceptor_methods_.SetRecvMessage(request_, nullptr);
}
if (interceptor_methods_.RunInterceptors(
[this]() { ContinueRunAfterInterception(); })) {
ContinueRunAfterInterception();
} else {
// There were interceptors to be run, so ContinueRunAfterInterception
// will be run when interceptors are done.
}
}
void ContinueRunAfterInterception() {
{
ctx_.BeginCompletionOp(&call_, nullptr, nullptr);
global_callbacks_->PreSynchronousRequest(&ctx_);
auto* handler = resources_ ? method_->handler()
: server_->resource_exhausted_handler_.get();
handler->RunHandler(grpc::internal::MethodHandler::HandlerParameter(
&call_, &ctx_, request_, request_status_, nullptr, nullptr));
request_ = nullptr;
global_callbacks_->PostSynchronousRequest(&ctx_);
cq_.Shutdown();
grpc::internal::CompletionQueueTag* op_tag = ctx_.GetCompletionOpTag();
cq_.TryPluck(op_tag, gpr_inf_future(GPR_CLOCK_REALTIME));
/* Ensure the cq_ is shutdown */
grpc::DummyTag ignored_tag;
GPR_ASSERT(cq_.Pluck(&ignored_tag) == false);
}
delete this;
}
private:
grpc::CompletionQueue cq_;
grpc::ServerContext ctx_;
const bool has_request_payload_;
grpc_byte_buffer* request_payload_;
void* request_;
grpc::Status request_status_;
grpc::internal::RpcServiceMethod* const method_;
grpc::internal::Call call_;
Server* server_;
std::shared_ptr<GlobalCallbacks> global_callbacks_;
bool resources_;
grpc::internal::InterceptorBatchMethodsImpl interceptor_methods_;
};
private:
grpc::internal::RpcServiceMethod* const method_;
void* const method_tag_;
bool in_flight_;
const bool has_request_payload_;
grpc_call* call_;
grpc_call_details* call_details_;
gpr_timespec deadline_;
grpc_metadata_array request_metadata_;
grpc_byte_buffer* request_payload_;
grpc_completion_queue* cq_;
};
template <class ServerContextType>
class Server::CallbackRequest final
: public grpc::internal::CompletionQueueTag {
public:
static_assert(
std::is_base_of<grpc::CallbackServerContext, ServerContextType>::value,
"ServerContextType must be derived from CallbackServerContext");
// For codegen services, the value of method represents the defined
// characteristics of the method being requested. For generic services, method
// is nullptr since these services don't have pre-defined methods.
CallbackRequest(Server* server, grpc::internal::RpcServiceMethod* method,
grpc::CompletionQueue* cq,
grpc_core::Server::RegisteredCallAllocation* data)
: server_(server),
method_(method),
has_request_payload_(method->method_type() ==
grpc::internal::RpcMethod::NORMAL_RPC ||
method->method_type() ==
grpc::internal::RpcMethod::SERVER_STREAMING),
cq_(cq),
tag_(this) {
CommonSetup(server, data);
data->deadline = &deadline_;
data->optional_payload = has_request_payload_ ? &request_payload_ : nullptr;
}
// For generic services, method is nullptr since these services don't have
// pre-defined methods.
CallbackRequest(Server* server, grpc::CompletionQueue* cq,
grpc_core::Server::BatchCallAllocation* data)
: server_(server),
method_(nullptr),
has_request_payload_(false),
call_details_(new grpc_call_details),
cq_(cq),
tag_(this) {
CommonSetup(server, data);
grpc_call_details_init(call_details_);
data->details = call_details_;
}
~CallbackRequest() {
delete call_details_;
grpc_metadata_array_destroy(&request_metadata_);
if (has_request_payload_ && request_payload_) {
grpc_byte_buffer_destroy(request_payload_);
}
server_->UnrefWithPossibleNotify();
}
// Needs specialization to account for different processing of metadata
// in generic API
bool FinalizeResult(void** tag, bool* status) override;
private:
// method_name needs to be specialized between named method and generic
const char* method_name() const;
class CallbackCallTag : public grpc_experimental_completion_queue_functor {
public:
CallbackCallTag(Server::CallbackRequest<ServerContextType>* req)
: req_(req) {
functor_run = &CallbackCallTag::StaticRun;
// Set inlineable to true since this callback is internally-controlled
// without taking any locks, and thus does not need to be run from the
// executor (which triggers a thread hop). This should only be used by
// internal callbacks like this and not by user application code. The work
// here is actually non-trivial, but there is no chance of having user
// locks conflict with each other so it's ok to run inlined.
inlineable = true;
}
// force_run can not be performed on a tag if operations using this tag
// have been sent to PerformOpsOnCall. It is intended for error conditions
// that are detected before the operations are internally processed.
void force_run(bool ok) { Run(ok); }
private:
Server::CallbackRequest<ServerContextType>* req_;
grpc::internal::Call* call_;
static void StaticRun(grpc_experimental_completion_queue_functor* cb,
int ok) {
static_cast<CallbackCallTag*>(cb)->Run(static_cast<bool>(ok));
}
void Run(bool ok) {
void* ignored = req_;
bool new_ok = ok;
GPR_ASSERT(!req_->FinalizeResult(&ignored, &new_ok));
GPR_ASSERT(ignored == req_);
if (!ok) {
// The call has been shutdown.
// Delete its contents to free up the request.
delete req_;
return;
}
// Bind the call, deadline, and metadata from what we got
req_->ctx_.set_call(req_->call_);
req_->ctx_.cq_ = req_->cq_;
req_->ctx_.BindDeadlineAndMetadata(req_->deadline_,
&req_->request_metadata_);
req_->request_metadata_.count = 0;
// Create a C++ Call to control the underlying core call
call_ =
new (grpc_call_arena_alloc(req_->call_, sizeof(grpc::internal::Call)))
grpc::internal::Call(
req_->call_, req_->server_, req_->cq_,
req_->server_->max_receive_message_size(),
req_->ctx_.set_server_rpc_info(
req_->method_name(),
(req_->method_ != nullptr)
? req_->method_->method_type()
: grpc::internal::RpcMethod::BIDI_STREAMING,
req_->server_->interceptor_creators_));
req_->interceptor_methods_.SetCall(call_);
req_->interceptor_methods_.SetReverse();
// Set interception point for RECV INITIAL METADATA
req_->interceptor_methods_.AddInterceptionHookPoint(
grpc::experimental::InterceptionHookPoints::
POST_RECV_INITIAL_METADATA);
req_->interceptor_methods_.SetRecvInitialMetadata(
&req_->ctx_.client_metadata_);
if (req_->has_request_payload_) {
// Set interception point for RECV MESSAGE
req_->request_ = req_->method_->handler()->Deserialize(
req_->call_, req_->request_payload_, &req_->request_status_,
&req_->handler_data_);
req_->request_payload_ = nullptr;
req_->interceptor_methods_.AddInterceptionHookPoint(
grpc::experimental::InterceptionHookPoints::POST_RECV_MESSAGE);
req_->interceptor_methods_.SetRecvMessage(req_->request_, nullptr);
}
if (req_->interceptor_methods_.RunInterceptors(
[this] { ContinueRunAfterInterception(); })) {
ContinueRunAfterInterception();
} else {
// There were interceptors to be run, so ContinueRunAfterInterception
// will be run when interceptors are done.
}
}
void ContinueRunAfterInterception() {
auto* handler = (req_->method_ != nullptr)
? req_->method_->handler()
: req_->server_->generic_handler_.get();
handler->RunHandler(grpc::internal::MethodHandler::HandlerParameter(
call_, &req_->ctx_, req_->request_, req_->request_status_,
req_->handler_data_, [this] { delete req_; }));
}
};
template <class CallAllocation>
void CommonSetup(Server* server, CallAllocation* data) {
server->Ref();
grpc_metadata_array_init(&request_metadata_);
data->tag = &tag_;
data->call = &call_;
data->initial_metadata = &request_metadata_;
}
Server* const server_;
grpc::internal::RpcServiceMethod* const method_;
const bool has_request_payload_;
grpc_byte_buffer* request_payload_ = nullptr;
void* request_ = nullptr;
void* handler_data_ = nullptr;
grpc::Status request_status_;
grpc_call_details* const call_details_ = nullptr;
grpc_call* call_;
gpr_timespec deadline_;
grpc_metadata_array request_metadata_;
grpc::CompletionQueue* const cq_;
CallbackCallTag tag_;
ServerContextType ctx_;
grpc::internal::InterceptorBatchMethodsImpl interceptor_methods_;
};
template <>
bool Server::CallbackRequest<grpc::CallbackServerContext>::FinalizeResult(
void** /*tag*/, bool* /*status*/) {
return false;
}
template <>
bool Server::CallbackRequest<
grpc::GenericCallbackServerContext>::FinalizeResult(void** /*tag*/,
bool* status) {
if (*status) {
deadline_ = call_details_->deadline;
// TODO(yangg) remove the copy here
ctx_.method_ = grpc::StringFromCopiedSlice(call_details_->method);
ctx_.host_ = grpc::StringFromCopiedSlice(call_details_->host);
}
grpc_slice_unref(call_details_->method);
grpc_slice_unref(call_details_->host);
return false;
}
template <>
const char* Server::CallbackRequest<grpc::CallbackServerContext>::method_name()
const {
return method_->name();
}
template <>
const char* Server::CallbackRequest<
grpc::GenericCallbackServerContext>::method_name() const {
return ctx_.method().c_str();
}
// Implementation of ThreadManager. Each instance of SyncRequestThreadManager
// manages a pool of threads that poll for incoming Sync RPCs and call the
// appropriate RPC handlers
class Server::SyncRequestThreadManager : public grpc::ThreadManager {
public:
SyncRequestThreadManager(Server* server, grpc::CompletionQueue* server_cq,
std::shared_ptr<GlobalCallbacks> global_callbacks,
grpc_resource_quota* rq, int min_pollers,
int max_pollers, int cq_timeout_msec)
: ThreadManager("SyncServer", rq, min_pollers, max_pollers),
server_(server),
server_cq_(server_cq),
cq_timeout_msec_(cq_timeout_msec),
global_callbacks_(std::move(global_callbacks)) {}
WorkStatus PollForWork(void** tag, bool* ok) override {
*tag = nullptr;
// TODO(ctiller): workaround for GPR_TIMESPAN based deadlines not working
// right now
gpr_timespec deadline =
gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
gpr_time_from_millis(cq_timeout_msec_, GPR_TIMESPAN));
switch (server_cq_->AsyncNext(tag, ok, deadline)) {
case grpc::CompletionQueue::TIMEOUT:
return TIMEOUT;
case grpc::CompletionQueue::SHUTDOWN:
return SHUTDOWN;
case grpc::CompletionQueue::GOT_EVENT:
return WORK_FOUND;
}
GPR_UNREACHABLE_CODE(return TIMEOUT);
}
void DoWork(void* tag, bool ok, bool resources) override {
SyncRequest* sync_req = static_cast<SyncRequest*>(tag);
if (!sync_req) {
// No tag. Nothing to work on. This is an unlikley scenario and possibly a
// bug in RPC Manager implementation.
gpr_log(GPR_ERROR, "Sync server. DoWork() was called with NULL tag");
return;
}
if (ok) {
// Calldata takes ownership of the completion queue and interceptors
// inside sync_req
auto* cd = new SyncRequest::CallData(server_, sync_req);
// Prepare for the next request
if (!IsShutdown()) {
sync_req->SetupRequest(); // Create new completion queue for sync_req
sync_req->Request(server_->c_server(), server_cq_->cq());
}
GPR_TIMER_SCOPE("cd.Run()", 0);
cd->Run(global_callbacks_, resources);
}
// TODO (sreek) If ok is false here (which it isn't in case of
// grpc_request_registered_call), we should still re-queue the request
// object
}
void AddSyncMethod(grpc::internal::RpcServiceMethod* method, void* tag) {
sync_requests_.emplace_back(new SyncRequest(method, tag));
}
void AddUnknownSyncMethod() {
if (!sync_requests_.empty()) {
unknown_method_.reset(new grpc::internal::RpcServiceMethod(
"unknown", grpc::internal::RpcMethod::BIDI_STREAMING,
new grpc::internal::UnknownMethodHandler));
sync_requests_.emplace_back(
new SyncRequest(unknown_method_.get(), nullptr));
}
}
void Shutdown() override {
ThreadManager::Shutdown();
server_cq_->Shutdown();
}
void Wait() override {
ThreadManager::Wait();
// Drain any pending items from the queue
void* tag;
bool ok;
while (server_cq_->Next(&tag, &ok)) {
if (ok) {
// If a request was pulled off the queue, it means that the thread
// handling the request added it to the completion queue after shutdown
// was called - because the thread had already started and checked the
// shutdown flag before shutdown was called. In this case, we simply
// clean it up here, *after* calling wait on all the worker threads, at
// which point we are certain no in-flight requests will add more to the
// queue. This fixes an intermittent memory leak on shutdown.
SyncRequest* sync_req = static_cast<SyncRequest*>(tag);
sync_req->PostShutdownCleanup();
}
}
}
void Start() {
if (!sync_requests_.empty()) {
for (const auto& value : sync_requests_) {
value->SetupRequest();
value->Request(server_->c_server(), server_cq_->cq());
}
Initialize(); // ThreadManager's Initialize()
}
}
private:
Server* server_;
grpc::CompletionQueue* server_cq_;
int cq_timeout_msec_;
std::vector<std::unique_ptr<SyncRequest>> sync_requests_;
std::unique_ptr<grpc::internal::RpcServiceMethod> unknown_method_;
std::shared_ptr<Server::GlobalCallbacks> global_callbacks_;
};
static grpc::internal::GrpcLibraryInitializer g_gli_initializer;
Server::Server(
grpc::ChannelArguments* args,
std::shared_ptr<std::vector<std::unique_ptr<grpc::ServerCompletionQueue>>>
sync_server_cqs,
int min_pollers, int max_pollers, int sync_cq_timeout_msec,
std::vector<std::shared_ptr<grpc::internal::ExternalConnectionAcceptorImpl>>
acceptors,
grpc_resource_quota* server_rq,
std::vector<
std::unique_ptr<grpc::experimental::ServerInterceptorFactoryInterface>>
interceptor_creators)
: acceptors_(std::move(acceptors)),
interceptor_creators_(std::move(interceptor_creators)),
max_receive_message_size_(INT_MIN),
sync_server_cqs_(std::move(sync_server_cqs)),
started_(false),
shutdown_(false),
shutdown_notified_(false),
server_(nullptr),
server_initializer_(new ServerInitializer(this)),
health_check_service_disabled_(false) {
g_gli_initializer.summon();
gpr_once_init(&grpc::g_once_init_callbacks, grpc::InitGlobalCallbacks);
global_callbacks_ = grpc::g_callbacks;
global_callbacks_->UpdateArguments(args);
if (sync_server_cqs_ != nullptr) {
bool default_rq_created = false;
if (server_rq == nullptr) {
server_rq = grpc_resource_quota_create("SyncServer-default-rq");
grpc_resource_quota_set_max_threads(server_rq,
DEFAULT_MAX_SYNC_SERVER_THREADS);
default_rq_created = true;
}
for (const auto& it : *sync_server_cqs_) {
sync_req_mgrs_.emplace_back(new SyncRequestThreadManager(
this, it.get(), global_callbacks_, server_rq, min_pollers,
max_pollers, sync_cq_timeout_msec));
}
if (default_rq_created) {
grpc_resource_quota_unref(server_rq);
}
}
for (auto& acceptor : acceptors_) {
acceptor->SetToChannelArgs(args);
}
grpc_channel_args channel_args;
args->SetChannelArgs(&channel_args);
for (size_t i = 0; i < channel_args.num_args; i++) {
if (0 == strcmp(channel_args.args[i].key,
grpc::kHealthCheckServiceInterfaceArg)) {
if (channel_args.args[i].value.pointer.p == nullptr) {
health_check_service_disabled_ = true;
} else {
health_check_service_.reset(
static_cast<grpc::HealthCheckServiceInterface*>(
channel_args.args[i].value.pointer.p));
}
}
if (0 ==
strcmp(channel_args.args[i].key, GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH)) {
max_receive_message_size_ = channel_args.args[i].value.integer;
}
}
server_ = grpc_server_create(&channel_args, nullptr);
}
Server::~Server() {
{
grpc::internal::ReleasableMutexLock lock(&mu_);
if (started_ && !shutdown_) {
lock.Unlock();
Shutdown();
} else if (!started_) {
// Shutdown the completion queues
for (const auto& value : sync_req_mgrs_) {
value->Shutdown();
}
if (callback_cq_ != nullptr) {
callback_cq_->Shutdown();
callback_cq_ = nullptr;
}
}
}
// Destroy health check service before we destroy the C server so that
// it does not call grpc_server_request_registered_call() after the C
// server has been destroyed.
health_check_service_.reset();
grpc_server_destroy(server_);
}
void Server::SetGlobalCallbacks(GlobalCallbacks* callbacks) {
GPR_ASSERT(!grpc::g_callbacks);
GPR_ASSERT(callbacks);
grpc::g_callbacks.reset(callbacks);
}
grpc_server* Server::c_server() { return server_; }
std::shared_ptr<grpc::Channel> Server::InProcessChannel(
const grpc::ChannelArguments& args) {
grpc_channel_args channel_args = args.c_channel_args();
return grpc::CreateChannelInternal(
"inproc", grpc_inproc_channel_create(server_, &channel_args, nullptr),
std::vector<std::unique_ptr<
grpc::experimental::ClientInterceptorFactoryInterface>>());
}
std::shared_ptr<grpc::Channel>
Server::experimental_type::InProcessChannelWithInterceptors(
const grpc::ChannelArguments& args,
std::vector<
std::unique_ptr<grpc::experimental::ClientInterceptorFactoryInterface>>
interceptor_creators) {
grpc_channel_args channel_args = args.c_channel_args();
return grpc::CreateChannelInternal(
"inproc",
grpc_inproc_channel_create(server_->server_, &channel_args, nullptr),
std::move(interceptor_creators));
}
static grpc_server_register_method_payload_handling PayloadHandlingForMethod(
grpc::internal::RpcServiceMethod* method) {
switch (method->method_type()) {
case grpc::internal::RpcMethod::NORMAL_RPC:
case grpc::internal::RpcMethod::SERVER_STREAMING:
return GRPC_SRM_PAYLOAD_READ_INITIAL_BYTE_BUFFER;
case grpc::internal::RpcMethod::CLIENT_STREAMING:
case grpc::internal::RpcMethod::BIDI_STREAMING:
return GRPC_SRM_PAYLOAD_NONE;
}
GPR_UNREACHABLE_CODE(return GRPC_SRM_PAYLOAD_NONE;);
}
bool Server::RegisterService(const std::string* host, grpc::Service* service) {
bool has_async_methods = service->has_async_methods();
if (has_async_methods) {
GPR_ASSERT(service->server_ == nullptr &&
"Can only register an asynchronous service against one server.");
service->server_ = this;
}
const char* method_name = nullptr;
for (const auto& method : service->methods_) {
if (method.get() == nullptr) { // Handled by generic service if any.
continue;
}
void* method_registration_tag = grpc_server_register_method(
server_, method->name(), host ? host->c_str() : nullptr,
PayloadHandlingForMethod(method.get()), 0);
if (method_registration_tag == nullptr) {
gpr_log(GPR_DEBUG, "Attempt to register %s multiple times",
method->name());
return false;
}
if (method->handler() == nullptr) { // Async method without handler
method->set_server_tag(method_registration_tag);
} else if (method->api_type() ==
grpc::internal::RpcServiceMethod::ApiType::SYNC) {
for (const auto& value : sync_req_mgrs_) {
value->AddSyncMethod(method.get(), method_registration_tag);
}
} else {
has_callback_methods_ = true;
grpc::internal::RpcServiceMethod* method_value = method.get();
grpc::CompletionQueue* cq = CallbackCQ();
server_->core_server->SetRegisteredMethodAllocator(
cq->cq(), method_registration_tag, [this, cq, method_value] {
grpc_core::Server::RegisteredCallAllocation result;
new CallbackRequest<grpc::CallbackServerContext>(this, method_value,
cq, &result);
return result;
});
}
method_name = method->name();
}
// Parse service name.
if (method_name != nullptr) {
std::stringstream ss(method_name);
std::string service_name;
if (std::getline(ss, service_name, '/') &&
std::getline(ss, service_name, '/')) {
services_.push_back(service_name);
}
}
return true;
}
void Server::RegisterAsyncGenericService(grpc::AsyncGenericService* service) {
GPR_ASSERT(service->server_ == nullptr &&
"Can only register an async generic service against one server.");
service->server_ = this;
has_async_generic_service_ = true;
}
void Server::RegisterCallbackGenericService(
grpc::CallbackGenericService* service) {
GPR_ASSERT(
service->server_ == nullptr &&
"Can only register a callback generic service against one server.");
service->server_ = this;
has_callback_generic_service_ = true;
generic_handler_.reset(service->Handler());
grpc::CompletionQueue* cq = CallbackCQ();
server_->core_server->SetBatchMethodAllocator(cq->cq(), [this, cq] {
grpc_core::Server::BatchCallAllocation result;
new CallbackRequest<grpc::GenericCallbackServerContext>(this, cq, &result);
return result;
});
}
int Server::AddListeningPort(const std::string& addr,
grpc::ServerCredentials* creds) {
GPR_ASSERT(!started_);
int port = creds->AddPortToServer(addr, server_);
global_callbacks_->AddPort(this, addr, creds, port);
return port;
}
void Server::Ref() {
shutdown_refs_outstanding_.fetch_add(1, std::memory_order_relaxed);
}
void Server::UnrefWithPossibleNotify() {
if (GPR_UNLIKELY(shutdown_refs_outstanding_.fetch_sub(
1, std::memory_order_acq_rel) == 1)) {
// No refs outstanding means that shutdown has been initiated and no more
// callback requests are outstanding.
grpc::internal::MutexLock lock(&mu_);
GPR_ASSERT(shutdown_);
shutdown_done_ = true;
shutdown_done_cv_.Signal();
}
}
void Server::UnrefAndWaitLocked() {
if (GPR_UNLIKELY(shutdown_refs_outstanding_.fetch_sub(
1, std::memory_order_acq_rel) == 1)) {
shutdown_done_ = true;
return; // no need to wait on CV since done condition already set
}
shutdown_done_cv_.WaitUntil(&mu_, [this] { return shutdown_done_; });
}
void Server::Start(grpc::ServerCompletionQueue** cqs, size_t num_cqs) {
GPR_ASSERT(!started_);
global_callbacks_->PreServerStart(this);
started_ = true;
// Only create default health check service when user did not provide an
// explicit one.
grpc::ServerCompletionQueue* health_check_cq = nullptr;
grpc::DefaultHealthCheckService::HealthCheckServiceImpl*
default_health_check_service_impl = nullptr;
if (health_check_service_ == nullptr && !health_check_service_disabled_ &&
grpc::DefaultHealthCheckServiceEnabled()) {
auto* default_hc_service = new grpc::DefaultHealthCheckService;
health_check_service_.reset(default_hc_service);
// We create a non-polling CQ to avoid impacting application
// performance. This ensures that we don't introduce thread hops
// for application requests that wind up on this CQ, which is polled
// in its own thread.
health_check_cq = new grpc::ServerCompletionQueue(
GRPC_CQ_NEXT, GRPC_CQ_NON_POLLING, nullptr);
grpc_server_register_completion_queue(server_, health_check_cq->cq(),
nullptr);
default_health_check_service_impl =
default_hc_service->GetHealthCheckService(
std::unique_ptr<grpc::ServerCompletionQueue>(health_check_cq));
RegisterService(nullptr, default_health_check_service_impl);
}
for (auto& acceptor : acceptors_) {
acceptor->GetCredentials()->AddPortToServer(acceptor->name(), server_);
}
// If this server uses callback methods, then create a callback generic
// service to handle any unimplemented methods using the default reactor
// creator
if (has_callback_methods_ && !has_callback_generic_service_) {
unimplemented_service_.reset(new grpc::CallbackGenericService);
RegisterCallbackGenericService(unimplemented_service_.get());
}
#ifndef NDEBUG
for (size_t i = 0; i < num_cqs; i++) {
cq_list_.push_back(cqs[i]);
}
#endif
grpc_server_start(server_);
if (!has_async_generic_service_ && !has_callback_generic_service_) {
for (const auto& value : sync_req_mgrs_) {
value->AddUnknownSyncMethod();
}
for (size_t i = 0; i < num_cqs; i++) {
if (cqs[i]->IsFrequentlyPolled()) {
new UnimplementedAsyncRequest(this, cqs[i]);
}
}
if (health_check_cq != nullptr) {
new UnimplementedAsyncRequest(this, health_check_cq);
}
}
// If this server has any support for synchronous methods (has any sync
// server CQs), make sure that we have a ResourceExhausted handler
// to deal with the case of thread exhaustion
if (sync_server_cqs_ != nullptr && !sync_server_cqs_->empty()) {
resource_exhausted_handler_.reset(
new grpc::internal::ResourceExhaustedHandler);
}
for (const auto& value : sync_req_mgrs_) {
value->Start();
}
if (default_health_check_service_impl != nullptr) {
default_health_check_service_impl->StartServingThread();
}
for (auto& acceptor : acceptors_) {
acceptor->Start();
}
}
void Server::ShutdownInternal(gpr_timespec deadline) {
grpc::internal::MutexLock lock(&mu_);
if (shutdown_) {
return;
}
shutdown_ = true;
for (auto& acceptor : acceptors_) {
acceptor->Shutdown();
}
/// The completion queue to use for server shutdown completion notification
grpc::CompletionQueue shutdown_cq;
grpc::ShutdownTag shutdown_tag; // Dummy shutdown tag
grpc_server_shutdown_and_notify(server_, shutdown_cq.cq(), &shutdown_tag);
shutdown_cq.Shutdown();
void* tag;
bool ok;
grpc::CompletionQueue::NextStatus status =
shutdown_cq.AsyncNext(&tag, &ok, deadline);
// If this timed out, it means we are done with the grace period for a clean
// shutdown. We should force a shutdown now by cancelling all inflight calls
if (status == grpc::CompletionQueue::NextStatus::TIMEOUT) {
grpc_server_cancel_all_calls(server_);
}
// Else in case of SHUTDOWN or GOT_EVENT, it means that the server has
// successfully shutdown
// Shutdown all ThreadManagers. This will try to gracefully stop all the
// threads in the ThreadManagers (once they process any inflight requests)
for (const auto& value : sync_req_mgrs_) {
value->Shutdown(); // ThreadManager's Shutdown()
}
// Wait for threads in all ThreadManagers to terminate
for (const auto& value : sync_req_mgrs_) {
value->Wait();
}
// Drop the shutdown ref and wait for all other refs to drop as well.
UnrefAndWaitLocked();
// Shutdown the callback CQ. The CQ is owned by its own shutdown tag, so it
// will delete itself at true shutdown.
if (callback_cq_ != nullptr) {
callback_cq_->Shutdown();
callback_cq_ = nullptr;
}
// Drain the shutdown queue (if the previous call to AsyncNext() timed out
// and we didn't remove the tag from the queue yet)
while (shutdown_cq.Next(&tag, &ok)) {
// Nothing to be done here. Just ignore ok and tag values
}
shutdown_notified_ = true;
shutdown_cv_.Broadcast();
#ifndef NDEBUG
// Unregister this server with the CQs passed into it by the user so that
// those can be checked for properly-ordered shutdown.
for (auto* cq : cq_list_) {
cq->UnregisterServer(this);
}
cq_list_.clear();
#endif
}
void Server::Wait() {
grpc::internal::MutexLock lock(&mu_);
while (started_ && !shutdown_notified_) {
shutdown_cv_.Wait(&mu_);
}
}
void Server::PerformOpsOnCall(grpc::internal::CallOpSetInterface* ops,
grpc::internal::Call* call) {
ops->FillOps(call);
}
bool Server::UnimplementedAsyncRequest::FinalizeResult(void** tag,
bool* status) {
if (GenericAsyncRequest::FinalizeResult(tag, status)) {
// We either had no interceptors run or we are done intercepting
if (*status) {
// Create a new request/response pair using the server and CQ values
// stored in this object's base class.
new UnimplementedAsyncRequest(server_, notification_cq_);
new UnimplementedAsyncResponse(this);
} else {
delete this;
}
} else {
// The tag was swallowed due to interception. We will see it again.
}
return false;
}
Server::UnimplementedAsyncResponse::UnimplementedAsyncResponse(
UnimplementedAsyncRequest* request)
: request_(request) {
grpc::Status status(grpc::StatusCode::UNIMPLEMENTED, "");
grpc::internal::UnknownMethodHandler::FillOps(request_->context(), this);
request_->stream()->call_.PerformOps(this);
}
grpc::ServerInitializer* Server::initializer() {
return server_initializer_.get();
}
grpc::CompletionQueue* Server::CallbackCQ() {
// TODO(vjpai): Consider using a single global CQ for the default CQ
// if there is no explicit per-server CQ registered
grpc::internal::MutexLock l(&mu_);
if (callback_cq_ != nullptr) {
return callback_cq_;
}
auto* shutdown_callback = new grpc::ShutdownCallback;
callback_cq_ = new grpc::CompletionQueue(grpc_completion_queue_attributes{
GRPC_CQ_CURRENT_VERSION, GRPC_CQ_CALLBACK, GRPC_CQ_DEFAULT_POLLING,
shutdown_callback});
// Transfer ownership of the new cq to its own shutdown callback
shutdown_callback->TakeCQ(callback_cq_);
return callback_cq_;
}
} // namespace grpc