blob: ffdc6f27006d48e83d55ce54000c8bfb574cd343 [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{BVec3, DVec2, DVec4};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
#[cfg(feature = "libm")]
#[allow(unused_imports)]
use num_traits::Float;
/// Creates a 3-dimensional vector.
#[inline(always)]
pub const fn dvec3(x: f64, y: f64, z: f64) -> DVec3 {
DVec3::new(x, y, z)
}
/// A 3-dimensional vector.
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct DVec3 {
pub x: f64,
pub y: f64,
pub z: f64,
}
impl DVec3 {
/// All zeroes.
pub const ZERO: Self = Self::splat(0.0);
/// All ones.
pub const ONE: Self = Self::splat(1.0);
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
/// All NAN.
pub const NAN: Self = Self::splat(f64::NAN);
/// A unit-length vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0, 0.0);
/// A unit-length vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0, 0.0);
/// A unit-length vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0.0, 0.0, 1.0);
/// A unit-length vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
/// A unit-length vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
/// A unit-length vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
/// The unit axes.
pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
/// Creates a new vector.
#[inline(always)]
pub const fn new(x: f64, y: f64, z: f64) -> Self {
Self { x, y, z }
}
/// Creates a vector with all elements set to `v`.
#[inline]
pub const fn splat(v: f64) -> Self {
Self { x: v, y: v, z: v }
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.x { if_true.x } else { if_false.x },
y: if mask.y { if_true.y } else { if_false.y },
z: if mask.z { if_true.z } else { if_false.z },
}
}
/// Creates a new vector from an array.
#[inline]
pub const fn from_array(a: [f64; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
/// `[x, y, z]`
#[inline]
pub const fn to_array(&self) -> [f64; 3] {
[self.x, self.y, self.z]
}
/// Creates a vector from the first 3 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
pub const fn from_slice(slice: &[f64]) -> Self {
Self::new(slice[0], slice[1], slice[2])
}
/// Writes the elements of `self` to the first 3 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [f64]) {
slice[0] = self.x;
slice[1] = self.y;
slice[2] = self.z;
}
/// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
#[allow(dead_code)]
#[inline]
pub(crate) fn from_vec4(v: DVec4) -> Self {
Self {
x: v.x,
y: v.y,
z: v.z,
}
}
/// Creates a 4D vector from `self` and the given `w` value.
#[inline]
pub fn extend(self, w: f64) -> DVec4 {
DVec4::new(self.x, self.y, self.z, w)
}
/// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
///
/// Truncation may also be performed by using `self.xy()` or `DVec2::from()`.
#[inline]
pub fn truncate(self) -> DVec2 {
use crate::swizzles::Vec3Swizzles;
self.xy()
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
pub fn dot(self, rhs: Self) -> f64 {
(self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
/// Computes the cross product of `self` and `rhs`.
#[inline]
pub fn cross(self, rhs: Self) -> Self {
Self {
x: self.y * rhs.z - rhs.y * self.z,
y: self.z * rhs.x - rhs.z * self.x,
z: self.x * rhs.y - rhs.x * self.y,
}
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
z: self.z.min(rhs.z),
}
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
z: self.z.max(rhs.z),
}
}
/// Component-wise clamping of values, similar to [`f64::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
pub fn min_element(self) -> f64 {
self.x.min(self.y.min(self.z))
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
pub fn max_element(self) -> f64 {
self.x.max(self.y.max(self.z))
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpeq(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpne(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpge(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpgt(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmple(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmplt(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
pub fn abs(self) -> Self {
Self {
x: self.x.abs(),
y: self.y.abs(),
z: self.z.abs(),
}
}
/// Returns a vector with elements representing the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
pub fn signum(self) -> Self {
Self {
x: self.x.signum(),
y: self.y.signum(),
z: self.z.signum(),
}
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
pub fn copysign(self, rhs: Self) -> Self {
Self {
x: self.x.copysign(rhs.x),
y: self.y.copysign(rhs.y),
z: self.z.copysign(rhs.z),
}
}
/// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`.
///
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
pub fn is_negative_bitmask(self) -> u32 {
(self.x.is_sign_negative() as u32)
| (self.y.is_sign_negative() as u32) << 1
| (self.z.is_sign_negative() as u32) << 2
}
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
pub fn is_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
}
/// Performs `is_nan` on each element of self, returning a vector mask of the results.
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
#[inline]
pub fn is_nan_mask(self) -> BVec3 {
BVec3::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
}
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
pub fn length(self) -> f64 {
self.dot(self).sqrt()
}
/// Computes the squared length of `self`.
///
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
pub fn length_squared(self) -> f64 {
self.dot(self)
}
/// Computes `1.0 / length()`.
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
pub fn length_recip(self) -> f64 {
self.length().recip()
}
/// Computes the Euclidean distance between two points in space.
#[inline]
pub fn distance(self, rhs: Self) -> f64 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
pub fn distance_squared(self, rhs: Self) -> f64 {
(self - rhs).length_squared()
}
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero, nor very close to zero.
///
/// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
glam_assert!(normalized.is_finite());
normalized
}
/// Returns `self` normalized to length 1.0 if possible, else returns `None`.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
/// See also [`Self::normalize_or_zero`].
#[must_use]
#[inline]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
Some(self * rcp)
} else {
None
}
}
/// Returns `self` normalized to length 1.0 if possible, else returns zero.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
/// See also [`Self::try_normalize`].
#[must_use]
#[inline]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
self * rcp
} else {
Self::ZERO
}
}
/// Returns whether `self` is length `1.0` or not.
///
/// Uses a precision threshold of `1e-6`.
#[inline]
pub fn is_normalized(self) -> bool {
// TODO: do something with epsilon
(self.length_squared() - 1.0).abs() <= 1e-4
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
rhs * self.dot(rhs) * other_len_sq_rcp
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
pub fn round(self) -> Self {
Self {
x: self.x.round(),
y: self.y.round(),
z: self.z.round(),
}
}
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
pub fn floor(self) -> Self {
Self {
x: self.x.floor(),
y: self.y.floor(),
z: self.z.floor(),
}
}
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
pub fn ceil(self) -> Self {
Self {
x: self.x.ceil(),
y: self.y.ceil(),
z: self.z.ceil(),
}
}
/// Returns a vector containing the fractional part of the vector, e.g. `self -
/// self.floor()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
pub fn fract(self) -> Self {
self - self.floor()
}
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
pub fn exp(self) -> Self {
Self::new(self.x.exp(), self.y.exp(), self.z.exp())
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
pub fn powf(self, n: f64) -> Self {
Self::new(self.x.powf(n), self.y.powf(n), self.z.powf(n))
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
pub fn recip(self) -> Self {
Self {
x: self.x.recip(),
y: self.y.recip(),
z: self.z.recip(),
}
}
/// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result
/// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
pub fn lerp(self, rhs: Self, s: f64) -> Self {
self + ((rhs - self) * s)
}
/// Returns true if the absolute difference of all elements between `self` and `rhs` is
/// less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two vectors contain similar elements. It works best when
/// comparing with a known value. The `max_abs_diff` that should be used used depends on
/// the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
/// Returns a vector with a length no less than `min` and no more than `max`
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
pub fn clamp_length(self, min: f64, max: f64) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
self * (length_sq.sqrt().recip() * min)
} else if length_sq > max * max {
self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
/// Returns a vector with a length no more than `max`
pub fn clamp_length_max(self, max: f64) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
/// Returns a vector with a length no less than `min`
pub fn clamp_length_min(self, min: f64) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
self * (length_sq.sqrt().recip() * min)
} else {
self
}
}
/// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
/// architecture has a dedicated fma CPU instruction. However, this is not always true,
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self::new(
self.x.mul_add(a.x, b.x),
self.y.mul_add(a.y, b.y),
self.z.mul_add(a.z, b.z),
)
}
/// Returns the angle (in radians) between two vectors.
///
/// The input vectors do not need to be unit length however they must be non-zero.
#[inline]
pub fn angle_between(self, rhs: Self) -> f64 {
use crate::FloatEx;
self.dot(rhs)
.div(self.length_squared().mul(rhs.length_squared()).sqrt())
.acos_approx()
}
/// Returns some vector that is orthogonal to the given one.
///
/// The input vector must be finite and non-zero.
///
/// The output vector is not necessarily unit-length.
/// For that use [`Self::any_orthonormal_vector`] instead.
#[inline]
pub fn any_orthogonal_vector(&self) -> Self {
// This can probably be optimized
if self.x.abs() > self.y.abs() {
Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
} else {
Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
}
}
/// Returns any unit-length vector that is orthogonal to the given one.
/// The input vector must be finite and non-zero.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
pub fn any_orthonormal_vector(&self) -> Self {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
#[cfg(feature = "std")]
let sign = (1.0_f64).copysign(self.z);
#[cfg(not(feature = "std"))]
let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
Self::new(b, sign + self.y * self.y * a, -self.y)
}
/// Given a unit-length vector return two other vectors that together form an orthonormal
/// basis. That is, all three vectors are orthogonal to each other and are normalized.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
pub fn any_orthonormal_pair(&self) -> (Self, Self) {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
#[cfg(feature = "std")]
let sign = (1.0_f64).copysign(self.z);
#[cfg(not(feature = "std"))]
let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
(
Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
Self::new(b, sign + self.y * self.y * a, -self.y),
)
}
/// Casts all elements of `self` to `f32`.
#[inline]
pub fn as_vec3(&self) -> crate::Vec3 {
crate::Vec3::new(self.x as f32, self.y as f32, self.z as f32)
}
/// Casts all elements of `self` to `f32`.
#[inline]
pub fn as_vec3a(&self) -> crate::Vec3A {
crate::Vec3A::new(self.x as f32, self.y as f32, self.z as f32)
}
/// Casts all elements of `self` to `i32`.
#[inline]
pub fn as_ivec3(&self) -> crate::IVec3 {
crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
pub fn as_uvec3(&self) -> crate::UVec3 {
crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
}
}
impl Default for DVec3 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<DVec3> for DVec3 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
z: self.z.div(rhs.z),
}
}
}
impl DivAssign<DVec3> for DVec3 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
self.z.div_assign(rhs.z);
}
}
impl Div<f64> for DVec3 {
type Output = Self;
#[inline]
fn div(self, rhs: f64) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
z: self.z.div(rhs),
}
}
}
impl DivAssign<f64> for DVec3 {
#[inline]
fn div_assign(&mut self, rhs: f64) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
self.z.div_assign(rhs);
}
}
impl Div<DVec3> for f64 {
type Output = DVec3;
#[inline]
fn div(self, rhs: DVec3) -> DVec3 {
DVec3 {
x: self.div(rhs.x),
y: self.div(rhs.y),
z: self.div(rhs.z),
}
}
}
impl Mul<DVec3> for DVec3 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
z: self.z.mul(rhs.z),
}
}
}
impl MulAssign<DVec3> for DVec3 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
self.z.mul_assign(rhs.z);
}
}
impl Mul<f64> for DVec3 {
type Output = Self;
#[inline]
fn mul(self, rhs: f64) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
z: self.z.mul(rhs),
}
}
}
impl MulAssign<f64> for DVec3 {
#[inline]
fn mul_assign(&mut self, rhs: f64) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
self.z.mul_assign(rhs);
}
}
impl Mul<DVec3> for f64 {
type Output = DVec3;
#[inline]
fn mul(self, rhs: DVec3) -> DVec3 {
DVec3 {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
z: self.mul(rhs.z),
}
}
}
impl Add<DVec3> for DVec3 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
z: self.z.add(rhs.z),
}
}
}
impl AddAssign<DVec3> for DVec3 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
self.z.add_assign(rhs.z);
}
}
impl Add<f64> for DVec3 {
type Output = Self;
#[inline]
fn add(self, rhs: f64) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
z: self.z.add(rhs),
}
}
}
impl AddAssign<f64> for DVec3 {
#[inline]
fn add_assign(&mut self, rhs: f64) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
self.z.add_assign(rhs);
}
}
impl Add<DVec3> for f64 {
type Output = DVec3;
#[inline]
fn add(self, rhs: DVec3) -> DVec3 {
DVec3 {
x: self.add(rhs.x),
y: self.add(rhs.y),
z: self.add(rhs.z),
}
}
}
impl Sub<DVec3> for DVec3 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
z: self.z.sub(rhs.z),
}
}
}
impl SubAssign<DVec3> for DVec3 {
#[inline]
fn sub_assign(&mut self, rhs: DVec3) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
self.z.sub_assign(rhs.z);
}
}
impl Sub<f64> for DVec3 {
type Output = Self;
#[inline]
fn sub(self, rhs: f64) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
z: self.z.sub(rhs),
}
}
}
impl SubAssign<f64> for DVec3 {
#[inline]
fn sub_assign(&mut self, rhs: f64) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
self.z.sub_assign(rhs);
}
}
impl Sub<DVec3> for f64 {
type Output = DVec3;
#[inline]
fn sub(self, rhs: DVec3) -> DVec3 {
DVec3 {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
z: self.sub(rhs.z),
}
}
}
impl Rem<DVec3> for DVec3 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
z: self.z.rem(rhs.z),
}
}
}
impl RemAssign<DVec3> for DVec3 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
self.z.rem_assign(rhs.z);
}
}
impl Rem<f64> for DVec3 {
type Output = Self;
#[inline]
fn rem(self, rhs: f64) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
z: self.z.rem(rhs),
}
}
}
impl RemAssign<f64> for DVec3 {
#[inline]
fn rem_assign(&mut self, rhs: f64) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
self.z.rem_assign(rhs);
}
}
impl Rem<DVec3> for f64 {
type Output = DVec3;
#[inline]
fn rem(self, rhs: DVec3) -> DVec3 {
DVec3 {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
z: self.rem(rhs.z),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f64; 3]> for DVec3 {
#[inline]
fn as_ref(&self) -> &[f64; 3] {
unsafe { &*(self as *const DVec3 as *const [f64; 3]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f64; 3]> for DVec3 {
#[inline]
fn as_mut(&mut self) -> &mut [f64; 3] {
unsafe { &mut *(self as *mut DVec3 as *mut [f64; 3]) }
}
}
impl Sum for DVec3 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for DVec3 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for DVec3 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for DVec3 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for DVec3 {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self {
x: self.x.neg(),
y: self.y.neg(),
z: self.z.neg(),
}
}
}
impl Index<usize> for DVec3 {
type Output = f64;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for DVec3 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => panic!("index out of bounds"),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for DVec3 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for DVec3 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(DVec3))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.finish()
}
}
impl From<[f64; 3]> for DVec3 {
#[inline]
fn from(a: [f64; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
}
impl From<DVec3> for [f64; 3] {
#[inline]
fn from(v: DVec3) -> Self {
[v.x, v.y, v.z]
}
}
impl From<(f64, f64, f64)> for DVec3 {
#[inline]
fn from(t: (f64, f64, f64)) -> Self {
Self::new(t.0, t.1, t.2)
}
}
impl From<DVec3> for (f64, f64, f64) {
#[inline]
fn from(v: DVec3) -> Self {
(v.x, v.y, v.z)
}
}
impl From<(DVec2, f64)> for DVec3 {
#[inline]
fn from((v, z): (DVec2, f64)) -> Self {
Self::new(v.x, v.y, z)
}
}