blob: 040b482f650cdc5d39940cf853315da655da836e [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{BVec3, UVec2, UVec4};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
/// Creates a 3-dimensional vector.
#[inline(always)]
pub const fn uvec3(x: u32, y: u32, z: u32) -> UVec3 {
UVec3::new(x, y, z)
}
/// A 3-dimensional vector.
#[cfg_attr(not(target_arch = "spirv"), derive(Hash))]
#[derive(Clone, Copy, PartialEq, Eq)]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct UVec3 {
pub x: u32,
pub y: u32,
pub z: u32,
}
impl UVec3 {
/// All zeroes.
pub const ZERO: Self = Self::splat(0);
/// All ones.
pub const ONE: Self = Self::splat(1);
/// A unit-length vector pointing along the positive X axis.
pub const X: Self = Self::new(1, 0, 0);
/// A unit-length vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0, 1, 0);
/// A unit-length vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0, 0, 1);
/// The unit axes.
pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
/// Creates a new vector.
#[inline(always)]
pub const fn new(x: u32, y: u32, z: u32) -> Self {
Self { x, y, z }
}
/// Creates a vector with all elements set to `v`.
#[inline]
pub const fn splat(v: u32) -> Self {
Self { x: v, y: v, z: v }
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.x { if_true.x } else { if_false.x },
y: if mask.y { if_true.y } else { if_false.y },
z: if mask.z { if_true.z } else { if_false.z },
}
}
/// Creates a new vector from an array.
#[inline]
pub const fn from_array(a: [u32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
/// `[x, y, z]`
#[inline]
pub const fn to_array(&self) -> [u32; 3] {
[self.x, self.y, self.z]
}
/// Creates a vector from the first 3 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
pub const fn from_slice(slice: &[u32]) -> Self {
Self::new(slice[0], slice[1], slice[2])
}
/// Writes the elements of `self` to the first 3 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [u32]) {
slice[0] = self.x;
slice[1] = self.y;
slice[2] = self.z;
}
/// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
#[allow(dead_code)]
#[inline]
pub(crate) fn from_vec4(v: UVec4) -> Self {
Self {
x: v.x,
y: v.y,
z: v.z,
}
}
/// Creates a 4D vector from `self` and the given `w` value.
#[inline]
pub fn extend(self, w: u32) -> UVec4 {
UVec4::new(self.x, self.y, self.z, w)
}
/// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
///
/// Truncation may also be performed by using `self.xy()` or `UVec2::from()`.
#[inline]
pub fn truncate(self) -> UVec2 {
use crate::swizzles::Vec3Swizzles;
self.xy()
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
pub fn dot(self, rhs: Self) -> u32 {
(self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
/// Computes the cross product of `self` and `rhs`.
#[inline]
pub fn cross(self, rhs: Self) -> Self {
Self {
x: self.y * rhs.z - rhs.y * self.z,
y: self.z * rhs.x - rhs.z * self.x,
z: self.x * rhs.y - rhs.x * self.y,
}
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
z: self.z.min(rhs.z),
}
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
z: self.z.max(rhs.z),
}
}
/// Component-wise clamping of values, similar to [`u32::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
pub fn min_element(self) -> u32 {
self.x.min(self.y.min(self.z))
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
pub fn max_element(self) -> u32 {
self.x.max(self.y.max(self.z))
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpeq(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpne(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpge(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpgt(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmple(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmplt(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
}
/// Casts all elements of `self` to `f32`.
#[inline]
pub fn as_vec3(&self) -> crate::Vec3 {
crate::Vec3::new(self.x as f32, self.y as f32, self.z as f32)
}
/// Casts all elements of `self` to `f32`.
#[inline]
pub fn as_vec3a(&self) -> crate::Vec3A {
crate::Vec3A::new(self.x as f32, self.y as f32, self.z as f32)
}
/// Casts all elements of `self` to `f64`.
#[inline]
pub fn as_dvec3(&self) -> crate::DVec3 {
crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
}
/// Casts all elements of `self` to `i32`.
#[inline]
pub fn as_ivec3(&self) -> crate::IVec3 {
crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
}
}
impl Default for UVec3 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<UVec3> for UVec3 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
z: self.z.div(rhs.z),
}
}
}
impl DivAssign<UVec3> for UVec3 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
self.z.div_assign(rhs.z);
}
}
impl Div<u32> for UVec3 {
type Output = Self;
#[inline]
fn div(self, rhs: u32) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
z: self.z.div(rhs),
}
}
}
impl DivAssign<u32> for UVec3 {
#[inline]
fn div_assign(&mut self, rhs: u32) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
self.z.div_assign(rhs);
}
}
impl Div<UVec3> for u32 {
type Output = UVec3;
#[inline]
fn div(self, rhs: UVec3) -> UVec3 {
UVec3 {
x: self.div(rhs.x),
y: self.div(rhs.y),
z: self.div(rhs.z),
}
}
}
impl Mul<UVec3> for UVec3 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
z: self.z.mul(rhs.z),
}
}
}
impl MulAssign<UVec3> for UVec3 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
self.z.mul_assign(rhs.z);
}
}
impl Mul<u32> for UVec3 {
type Output = Self;
#[inline]
fn mul(self, rhs: u32) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
z: self.z.mul(rhs),
}
}
}
impl MulAssign<u32> for UVec3 {
#[inline]
fn mul_assign(&mut self, rhs: u32) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
self.z.mul_assign(rhs);
}
}
impl Mul<UVec3> for u32 {
type Output = UVec3;
#[inline]
fn mul(self, rhs: UVec3) -> UVec3 {
UVec3 {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
z: self.mul(rhs.z),
}
}
}
impl Add<UVec3> for UVec3 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
z: self.z.add(rhs.z),
}
}
}
impl AddAssign<UVec3> for UVec3 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
self.z.add_assign(rhs.z);
}
}
impl Add<u32> for UVec3 {
type Output = Self;
#[inline]
fn add(self, rhs: u32) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
z: self.z.add(rhs),
}
}
}
impl AddAssign<u32> for UVec3 {
#[inline]
fn add_assign(&mut self, rhs: u32) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
self.z.add_assign(rhs);
}
}
impl Add<UVec3> for u32 {
type Output = UVec3;
#[inline]
fn add(self, rhs: UVec3) -> UVec3 {
UVec3 {
x: self.add(rhs.x),
y: self.add(rhs.y),
z: self.add(rhs.z),
}
}
}
impl Sub<UVec3> for UVec3 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
z: self.z.sub(rhs.z),
}
}
}
impl SubAssign<UVec3> for UVec3 {
#[inline]
fn sub_assign(&mut self, rhs: UVec3) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
self.z.sub_assign(rhs.z);
}
}
impl Sub<u32> for UVec3 {
type Output = Self;
#[inline]
fn sub(self, rhs: u32) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
z: self.z.sub(rhs),
}
}
}
impl SubAssign<u32> for UVec3 {
#[inline]
fn sub_assign(&mut self, rhs: u32) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
self.z.sub_assign(rhs);
}
}
impl Sub<UVec3> for u32 {
type Output = UVec3;
#[inline]
fn sub(self, rhs: UVec3) -> UVec3 {
UVec3 {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
z: self.sub(rhs.z),
}
}
}
impl Rem<UVec3> for UVec3 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
z: self.z.rem(rhs.z),
}
}
}
impl RemAssign<UVec3> for UVec3 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
self.z.rem_assign(rhs.z);
}
}
impl Rem<u32> for UVec3 {
type Output = Self;
#[inline]
fn rem(self, rhs: u32) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
z: self.z.rem(rhs),
}
}
}
impl RemAssign<u32> for UVec3 {
#[inline]
fn rem_assign(&mut self, rhs: u32) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
self.z.rem_assign(rhs);
}
}
impl Rem<UVec3> for u32 {
type Output = UVec3;
#[inline]
fn rem(self, rhs: UVec3) -> UVec3 {
UVec3 {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
z: self.rem(rhs.z),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[u32; 3]> for UVec3 {
#[inline]
fn as_ref(&self) -> &[u32; 3] {
unsafe { &*(self as *const UVec3 as *const [u32; 3]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[u32; 3]> for UVec3 {
#[inline]
fn as_mut(&mut self) -> &mut [u32; 3] {
unsafe { &mut *(self as *mut UVec3 as *mut [u32; 3]) }
}
}
impl Sum for UVec3 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for UVec3 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for UVec3 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for UVec3 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Not for UVec3 {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
Self {
x: self.x.not(),
y: self.y.not(),
z: self.z.not(),
}
}
}
impl BitAnd for UVec3 {
type Output = Self;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitand(rhs.x),
y: self.y.bitand(rhs.y),
z: self.z.bitand(rhs.z),
}
}
}
impl BitOr for UVec3 {
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitor(rhs.x),
y: self.y.bitor(rhs.y),
z: self.z.bitor(rhs.z),
}
}
}
impl BitXor for UVec3 {
type Output = Self;
#[inline]
fn bitxor(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitxor(rhs.x),
y: self.y.bitxor(rhs.y),
z: self.z.bitxor(rhs.z),
}
}
}
impl BitAnd<u32> for UVec3 {
type Output = Self;
#[inline]
fn bitand(self, rhs: u32) -> Self::Output {
Self {
x: self.x.bitand(rhs),
y: self.y.bitand(rhs),
z: self.z.bitand(rhs),
}
}
}
impl BitOr<u32> for UVec3 {
type Output = Self;
#[inline]
fn bitor(self, rhs: u32) -> Self::Output {
Self {
x: self.x.bitor(rhs),
y: self.y.bitor(rhs),
z: self.z.bitor(rhs),
}
}
}
impl BitXor<u32> for UVec3 {
type Output = Self;
#[inline]
fn bitxor(self, rhs: u32) -> Self::Output {
Self {
x: self.x.bitxor(rhs),
y: self.y.bitxor(rhs),
z: self.z.bitxor(rhs),
}
}
}
impl Shl<i8> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: i8) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
z: self.z.shl(rhs),
}
}
}
impl Shr<i8> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: i8) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
z: self.z.shr(rhs),
}
}
}
impl Shl<i16> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: i16) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
z: self.z.shl(rhs),
}
}
}
impl Shr<i16> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: i16) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
z: self.z.shr(rhs),
}
}
}
impl Shl<i32> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: i32) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
z: self.z.shl(rhs),
}
}
}
impl Shr<i32> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: i32) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
z: self.z.shr(rhs),
}
}
}
impl Shl<u8> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: u8) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
z: self.z.shl(rhs),
}
}
}
impl Shr<u8> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: u8) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
z: self.z.shr(rhs),
}
}
}
impl Shl<u16> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: u16) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
z: self.z.shl(rhs),
}
}
}
impl Shr<u16> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: u16) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
z: self.z.shr(rhs),
}
}
}
impl Shl<u32> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: u32) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
z: self.z.shl(rhs),
}
}
}
impl Shr<u32> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: u32) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
z: self.z.shr(rhs),
}
}
}
impl Shl<crate::IVec3> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: crate::IVec3) -> Self::Output {
Self {
x: self.x.shl(rhs.x),
y: self.y.shl(rhs.y),
z: self.z.shl(rhs.z),
}
}
}
impl Shr<crate::IVec3> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: crate::IVec3) -> Self::Output {
Self {
x: self.x.shr(rhs.x),
y: self.y.shr(rhs.y),
z: self.z.shr(rhs.z),
}
}
}
impl Shl<crate::UVec3> for UVec3 {
type Output = Self;
#[inline]
fn shl(self, rhs: crate::UVec3) -> Self::Output {
Self {
x: self.x.shl(rhs.x),
y: self.y.shl(rhs.y),
z: self.z.shl(rhs.z),
}
}
}
impl Shr<crate::UVec3> for UVec3 {
type Output = Self;
#[inline]
fn shr(self, rhs: crate::UVec3) -> Self::Output {
Self {
x: self.x.shr(rhs.x),
y: self.y.shr(rhs.y),
z: self.z.shr(rhs.z),
}
}
}
impl Index<usize> for UVec3 {
type Output = u32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for UVec3 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => panic!("index out of bounds"),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for UVec3 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for UVec3 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(UVec3))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.finish()
}
}
impl From<[u32; 3]> for UVec3 {
#[inline]
fn from(a: [u32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
}
impl From<UVec3> for [u32; 3] {
#[inline]
fn from(v: UVec3) -> Self {
[v.x, v.y, v.z]
}
}
impl From<(u32, u32, u32)> for UVec3 {
#[inline]
fn from(t: (u32, u32, u32)) -> Self {
Self::new(t.0, t.1, t.2)
}
}
impl From<UVec3> for (u32, u32, u32) {
#[inline]
fn from(v: UVec3) -> Self {
(v.x, v.y, v.z)
}
}
impl From<(UVec2, u32)> for UVec3 {
#[inline]
fn from((v, z): (UVec2, u32)) -> Self {
Self::new(v.x, v.y, z)
}
}