blob: 87b5122537db27efe03fd3c4b9b0347bffae57ac [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{BVec2, IVec3};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
/// Creates a 2-dimensional vector.
#[inline(always)]
pub const fn ivec2(x: i32, y: i32) -> IVec2 {
IVec2::new(x, y)
}
/// A 2-dimensional vector.
#[cfg_attr(not(target_arch = "spirv"), derive(Hash))]
#[derive(Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "cuda", repr(align(8)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct IVec2 {
pub x: i32,
pub y: i32,
}
impl IVec2 {
/// All zeroes.
pub const ZERO: Self = Self::splat(0);
/// All ones.
pub const ONE: Self = Self::splat(1);
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1);
/// A unit-length vector pointing along the positive X axis.
pub const X: Self = Self::new(1, 0);
/// A unit-length vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0, 1);
/// A unit-length vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1, 0);
/// A unit-length vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0, -1);
/// The unit axes.
pub const AXES: [Self; 2] = [Self::X, Self::Y];
/// Creates a new vector.
#[inline(always)]
pub const fn new(x: i32, y: i32) -> Self {
Self { x, y }
}
/// Creates a vector with all elements set to `v`.
#[inline]
pub const fn splat(v: i32) -> Self {
Self { x: v, y: v }
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.x { if_true.x } else { if_false.x },
y: if mask.y { if_true.y } else { if_false.y },
}
}
/// Creates a new vector from an array.
#[inline]
pub const fn from_array(a: [i32; 2]) -> Self {
Self::new(a[0], a[1])
}
/// `[x, y]`
#[inline]
pub const fn to_array(&self) -> [i32; 2] {
[self.x, self.y]
}
/// Creates a vector from the first 2 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
pub const fn from_slice(slice: &[i32]) -> Self {
Self::new(slice[0], slice[1])
}
/// Writes the elements of `self` to the first 2 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [i32]) {
slice[0] = self.x;
slice[1] = self.y;
}
/// Creates a 3D vector from `self` and the given `z` value.
#[inline]
pub const fn extend(self, z: i32) -> IVec3 {
IVec3::new(self.x, self.y, z)
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
pub fn dot(self, rhs: Self) -> i32 {
(self.x * rhs.x) + (self.y * rhs.y)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
}
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
}
}
/// Component-wise clamping of values, similar to [`i32::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
pub fn min_element(self) -> i32 {
self.x.min(self.y)
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
pub fn max_element(self) -> i32 {
self.x.max(self.y)
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpeq(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y))
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpne(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y))
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpge(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y))
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmpgt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y))
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmple(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y))
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
pub fn cmplt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
pub fn abs(self) -> Self {
Self {
x: self.x.abs(),
y: self.y.abs(),
}
}
/// Returns a vector with elements representing the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
pub fn signum(self) -> Self {
Self {
x: self.x.signum(),
y: self.y.signum(),
}
}
/// Returns a bitmask with the lowest 2 bits set to the sign bits from the elements of `self`.
///
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
pub fn is_negative_bitmask(self) -> u32 {
(self.x.is_negative() as u32) | (self.y.is_negative() as u32) << 1
}
/// Returns a vector that is equal to `self` rotated by 90 degrees.
#[inline]
pub fn perp(self) -> Self {
Self {
x: -self.y,
y: self.x,
}
}
/// The perpendicular dot product of `self` and `rhs`.
/// Also known as the wedge product, 2D cross product, and determinant.
#[doc(alias = "wedge")]
#[doc(alias = "cross")]
#[doc(alias = "determinant")]
#[inline]
pub fn perp_dot(self, rhs: Self) -> i32 {
(self.x * rhs.y) - (self.y * rhs.x)
}
/// Returns `rhs` rotated by the angle of `self`. If `self` is normalized,
/// then this just rotation. This is what you usually want. Otherwise,
/// it will be like a rotation with a multiplication by `self`'s length.
#[must_use]
#[inline]
pub fn rotate(self, rhs: Self) -> Self {
Self {
x: self.x * rhs.x - self.y * rhs.y,
y: self.y * rhs.x + self.x * rhs.y,
}
}
/// Casts all elements of `self` to `f32`.
#[inline]
pub fn as_vec2(&self) -> crate::Vec2 {
crate::Vec2::new(self.x as f32, self.y as f32)
}
/// Casts all elements of `self` to `f64`.
#[inline]
pub fn as_dvec2(&self) -> crate::DVec2 {
crate::DVec2::new(self.x as f64, self.y as f64)
}
/// Casts all elements of `self` to `u32`.
#[inline]
pub fn as_uvec2(&self) -> crate::UVec2 {
crate::UVec2::new(self.x as u32, self.y as u32)
}
}
impl Default for IVec2 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<IVec2> for IVec2 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
}
}
}
impl DivAssign<IVec2> for IVec2 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
}
}
impl Div<i32> for IVec2 {
type Output = Self;
#[inline]
fn div(self, rhs: i32) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
}
}
}
impl DivAssign<i32> for IVec2 {
#[inline]
fn div_assign(&mut self, rhs: i32) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
}
}
impl Div<IVec2> for i32 {
type Output = IVec2;
#[inline]
fn div(self, rhs: IVec2) -> IVec2 {
IVec2 {
x: self.div(rhs.x),
y: self.div(rhs.y),
}
}
}
impl Mul<IVec2> for IVec2 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
}
}
}
impl MulAssign<IVec2> for IVec2 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
}
}
impl Mul<i32> for IVec2 {
type Output = Self;
#[inline]
fn mul(self, rhs: i32) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
}
}
}
impl MulAssign<i32> for IVec2 {
#[inline]
fn mul_assign(&mut self, rhs: i32) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
}
}
impl Mul<IVec2> for i32 {
type Output = IVec2;
#[inline]
fn mul(self, rhs: IVec2) -> IVec2 {
IVec2 {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
}
}
}
impl Add<IVec2> for IVec2 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
}
}
}
impl AddAssign<IVec2> for IVec2 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
}
}
impl Add<i32> for IVec2 {
type Output = Self;
#[inline]
fn add(self, rhs: i32) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
}
}
}
impl AddAssign<i32> for IVec2 {
#[inline]
fn add_assign(&mut self, rhs: i32) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
}
}
impl Add<IVec2> for i32 {
type Output = IVec2;
#[inline]
fn add(self, rhs: IVec2) -> IVec2 {
IVec2 {
x: self.add(rhs.x),
y: self.add(rhs.y),
}
}
}
impl Sub<IVec2> for IVec2 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
}
}
}
impl SubAssign<IVec2> for IVec2 {
#[inline]
fn sub_assign(&mut self, rhs: IVec2) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
}
}
impl Sub<i32> for IVec2 {
type Output = Self;
#[inline]
fn sub(self, rhs: i32) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
}
}
}
impl SubAssign<i32> for IVec2 {
#[inline]
fn sub_assign(&mut self, rhs: i32) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
}
}
impl Sub<IVec2> for i32 {
type Output = IVec2;
#[inline]
fn sub(self, rhs: IVec2) -> IVec2 {
IVec2 {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
}
}
}
impl Rem<IVec2> for IVec2 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
}
}
}
impl RemAssign<IVec2> for IVec2 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
}
}
impl Rem<i32> for IVec2 {
type Output = Self;
#[inline]
fn rem(self, rhs: i32) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
}
}
}
impl RemAssign<i32> for IVec2 {
#[inline]
fn rem_assign(&mut self, rhs: i32) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
}
}
impl Rem<IVec2> for i32 {
type Output = IVec2;
#[inline]
fn rem(self, rhs: IVec2) -> IVec2 {
IVec2 {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[i32; 2]> for IVec2 {
#[inline]
fn as_ref(&self) -> &[i32; 2] {
unsafe { &*(self as *const IVec2 as *const [i32; 2]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[i32; 2]> for IVec2 {
#[inline]
fn as_mut(&mut self) -> &mut [i32; 2] {
unsafe { &mut *(self as *mut IVec2 as *mut [i32; 2]) }
}
}
impl Sum for IVec2 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for IVec2 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for IVec2 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for IVec2 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for IVec2 {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self {
x: self.x.neg(),
y: self.y.neg(),
}
}
}
impl Not for IVec2 {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
Self {
x: self.x.not(),
y: self.y.not(),
}
}
}
impl BitAnd for IVec2 {
type Output = Self;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitand(rhs.x),
y: self.y.bitand(rhs.y),
}
}
}
impl BitOr for IVec2 {
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitor(rhs.x),
y: self.y.bitor(rhs.y),
}
}
}
impl BitXor for IVec2 {
type Output = Self;
#[inline]
fn bitxor(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitxor(rhs.x),
y: self.y.bitxor(rhs.y),
}
}
}
impl BitAnd<i32> for IVec2 {
type Output = Self;
#[inline]
fn bitand(self, rhs: i32) -> Self::Output {
Self {
x: self.x.bitand(rhs),
y: self.y.bitand(rhs),
}
}
}
impl BitOr<i32> for IVec2 {
type Output = Self;
#[inline]
fn bitor(self, rhs: i32) -> Self::Output {
Self {
x: self.x.bitor(rhs),
y: self.y.bitor(rhs),
}
}
}
impl BitXor<i32> for IVec2 {
type Output = Self;
#[inline]
fn bitxor(self, rhs: i32) -> Self::Output {
Self {
x: self.x.bitxor(rhs),
y: self.y.bitxor(rhs),
}
}
}
impl Shl<i8> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i8) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i8> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i8) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<i16> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i16) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i16> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i16) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<i32> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i32) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i32> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i32) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u8> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u8) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u8> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u8) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u16> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u16) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u16> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u16) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u32> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u32) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u32> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u32) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<crate::IVec2> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: crate::IVec2) -> Self::Output {
Self {
x: self.x.shl(rhs.x),
y: self.y.shl(rhs.y),
}
}
}
impl Shr<crate::IVec2> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: crate::IVec2) -> Self::Output {
Self {
x: self.x.shr(rhs.x),
y: self.y.shr(rhs.y),
}
}
}
impl Shl<crate::UVec2> for IVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: crate::UVec2) -> Self::Output {
Self {
x: self.x.shl(rhs.x),
y: self.y.shl(rhs.y),
}
}
}
impl Shr<crate::UVec2> for IVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: crate::UVec2) -> Self::Output {
Self {
x: self.x.shr(rhs.x),
y: self.y.shr(rhs.y),
}
}
}
impl Index<usize> for IVec2 {
type Output = i32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for IVec2 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("index out of bounds"),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for IVec2 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}, {}]", self.x, self.y)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for IVec2 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(IVec2))
.field(&self.x)
.field(&self.y)
.finish()
}
}
impl From<[i32; 2]> for IVec2 {
#[inline]
fn from(a: [i32; 2]) -> Self {
Self::new(a[0], a[1])
}
}
impl From<IVec2> for [i32; 2] {
#[inline]
fn from(v: IVec2) -> Self {
[v.x, v.y]
}
}
impl From<(i32, i32)> for IVec2 {
#[inline]
fn from(t: (i32, i32)) -> Self {
Self::new(t.0, t.1)
}
}
impl From<IVec2> for (i32, i32) {
#[inline]
fn from(v: IVec2) -> Self {
(v.x, v.y)
}
}