| use super::attr::AttrsHelper; | |
| use proc_macro2::{Span, TokenStream}; | |
| use quote::{format_ident, quote}; | |
| use syn::{ | |
| punctuated::Punctuated, | |
| token::{Colon, Comma, PathSep, Plus, Where}, | |
| Data, DataEnum, DataStruct, DeriveInput, Error, Fields, Generics, Ident, Path, PathArguments, | |
| PathSegment, PredicateType, Result, TraitBound, TraitBoundModifier, Type, TypeParam, | |
| TypeParamBound, TypePath, WhereClause, WherePredicate, | |
| }; | |
| use std::collections::HashMap; | |
| pub(crate) fn derive(input: &DeriveInput) -> Result<TokenStream> { | |
| let impls = match &input.data { | |
| Data::Struct(data) => impl_struct(input, data), | |
| Data::Enum(data) => impl_enum(input, data), | |
| Data::Union(_) => Err(Error::new_spanned(input, "Unions are not supported")), | |
| }?; | |
| let helpers = specialization(); | |
| let dummy_const = format_ident!("_DERIVE_Display_FOR_{}", input.ident); | |
| Ok(quote! { | |
| #[allow(non_upper_case_globals, unused_attributes, unused_qualifications)] | |
| const #dummy_const: () = { | |
| #helpers | |
| #impls | |
| }; | |
| }) | |
| } | |
| #[cfg(feature = "std")] | |
| fn specialization() -> TokenStream { | |
| quote! { | |
| trait DisplayToDisplayDoc { | |
| fn __displaydoc_display(&self) -> Self; | |
| } | |
| impl<T: core::fmt::Display> DisplayToDisplayDoc for &T { | |
| fn __displaydoc_display(&self) -> Self { | |
| self | |
| } | |
| } | |
| // If the `std` feature gets enabled we want to ensure that any crate | |
| // using displaydoc can still reference the std crate, which is already | |
| // being compiled in by whoever enabled the `std` feature in | |
| // `displaydoc`, even if the crates using displaydoc are no_std. | |
| extern crate std; | |
| trait PathToDisplayDoc { | |
| fn __displaydoc_display(&self) -> std::path::Display<'_>; | |
| } | |
| impl PathToDisplayDoc for std::path::Path { | |
| fn __displaydoc_display(&self) -> std::path::Display<'_> { | |
| self.display() | |
| } | |
| } | |
| impl PathToDisplayDoc for std::path::PathBuf { | |
| fn __displaydoc_display(&self) -> std::path::Display<'_> { | |
| self.display() | |
| } | |
| } | |
| } | |
| } | |
| #[cfg(not(feature = "std"))] | |
| fn specialization() -> TokenStream { | |
| quote! {} | |
| } | |
| fn impl_struct(input: &DeriveInput, data: &DataStruct) -> Result<TokenStream> { | |
| let ty = &input.ident; | |
| let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl(); | |
| let where_clause = generate_where_clause(&input.generics, where_clause); | |
| let helper = AttrsHelper::new(&input.attrs); | |
| let display = helper.display(&input.attrs)?.map(|display| { | |
| let pat = match &data.fields { | |
| Fields::Named(fields) => { | |
| let var = fields.named.iter().map(|field| &field.ident); | |
| quote!(Self { #(#var),* }) | |
| } | |
| Fields::Unnamed(fields) => { | |
| let var = (0..fields.unnamed.len()).map(|i| format_ident!("_{}", i)); | |
| quote!(Self(#(#var),*)) | |
| } | |
| Fields::Unit => quote!(_), | |
| }; | |
| quote! { | |
| impl #impl_generics core::fmt::Display for #ty #ty_generics #where_clause { | |
| fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { | |
| // NB: This destructures the fields of `self` into named variables (for unnamed | |
| // fields, it uses _0, _1, etc as above). The `#[allow(unused_variables)]` | |
| // section means it doesn't have to parse the individual field references out of | |
| // the docstring. | |
| #[allow(unused_variables)] | |
| let #pat = self; | |
| #display | |
| } | |
| } | |
| } | |
| }); | |
| Ok(quote! { #display }) | |
| } | |
| /// Create a `where` predicate for `ident`, without any [bound][TypeParamBound]s yet. | |
| fn new_empty_where_type_predicate(ident: Ident) -> PredicateType { | |
| let mut path_segments = Punctuated::<PathSegment, PathSep>::new(); | |
| path_segments.push_value(PathSegment { | |
| ident, | |
| arguments: PathArguments::None, | |
| }); | |
| PredicateType { | |
| lifetimes: None, | |
| bounded_ty: Type::Path(TypePath { | |
| qself: None, | |
| path: Path { | |
| leading_colon: None, | |
| segments: path_segments, | |
| }, | |
| }), | |
| colon_token: Colon { | |
| spans: [Span::call_site()], | |
| }, | |
| bounds: Punctuated::<TypeParamBound, Plus>::new(), | |
| } | |
| } | |
| /// Create a `where` clause that we can add [WherePredicate]s to. | |
| fn new_empty_where_clause() -> WhereClause { | |
| WhereClause { | |
| where_token: Where { | |
| span: Span::call_site(), | |
| }, | |
| predicates: Punctuated::<WherePredicate, Comma>::new(), | |
| } | |
| } | |
| enum UseGlobalPrefix { | |
| LeadingColon, | |
| #[allow(dead_code)] | |
| NoLeadingColon, | |
| } | |
| /// Create a path with segments composed of [Idents] *without* any [PathArguments]. | |
| fn join_paths(name_segments: &[&str], use_global_prefix: UseGlobalPrefix) -> Path { | |
| let mut segments = Punctuated::<PathSegment, PathSep>::new(); | |
| assert!(!name_segments.is_empty()); | |
| segments.push_value(PathSegment { | |
| ident: Ident::new(name_segments[0], Span::call_site()), | |
| arguments: PathArguments::None, | |
| }); | |
| for name in name_segments[1..].iter() { | |
| segments.push_punct(PathSep { | |
| spans: [Span::call_site(), Span::mixed_site()], | |
| }); | |
| segments.push_value(PathSegment { | |
| ident: Ident::new(name, Span::call_site()), | |
| arguments: PathArguments::None, | |
| }); | |
| } | |
| Path { | |
| leading_colon: match use_global_prefix { | |
| UseGlobalPrefix::LeadingColon => Some(PathSep { | |
| spans: [Span::call_site(), Span::mixed_site()], | |
| }), | |
| UseGlobalPrefix::NoLeadingColon => None, | |
| }, | |
| segments, | |
| } | |
| } | |
| /// Push `new_type_predicate` onto the end of `where_clause`. | |
| fn append_where_clause_type_predicate( | |
| where_clause: &mut WhereClause, | |
| new_type_predicate: PredicateType, | |
| ) { | |
| // Push a comma at the end if there are already any `where` predicates. | |
| if !where_clause.predicates.is_empty() { | |
| where_clause.predicates.push_punct(Comma { | |
| spans: [Span::call_site()], | |
| }); | |
| } | |
| where_clause | |
| .predicates | |
| .push_value(WherePredicate::Type(new_type_predicate)); | |
| } | |
| /// Add a requirement for [core::fmt::Display] to a `where` predicate for some type. | |
| fn add_display_constraint_to_type_predicate( | |
| predicate_that_needs_a_display_impl: &mut PredicateType, | |
| ) { | |
| // Create a `Path` of `::core::fmt::Display`. | |
| let display_path = join_paths(&["core", "fmt", "Display"], UseGlobalPrefix::LeadingColon); | |
| let display_bound = TypeParamBound::Trait(TraitBound { | |
| paren_token: None, | |
| modifier: TraitBoundModifier::None, | |
| lifetimes: None, | |
| path: display_path, | |
| }); | |
| if !predicate_that_needs_a_display_impl.bounds.is_empty() { | |
| predicate_that_needs_a_display_impl.bounds.push_punct(Plus { | |
| spans: [Span::call_site()], | |
| }); | |
| } | |
| predicate_that_needs_a_display_impl | |
| .bounds | |
| .push_value(display_bound); | |
| } | |
| /// Map each declared generic type parameter to the set of all trait boundaries declared on it. | |
| /// | |
| /// These boundaries may come from the declaration site: | |
| /// pub enum E<T: MyTrait> { ... } | |
| /// or a `where` clause after the parameter declarations: | |
| /// pub enum E<T> where T: MyTrait { ... } | |
| /// This method will return the boundaries from both of those cases. | |
| fn extract_trait_constraints_from_source( | |
| where_clause: &WhereClause, | |
| type_params: &[&TypeParam], | |
| ) -> HashMap<Ident, Vec<TraitBound>> { | |
| // Add trait bounds provided at the declaration site of type parameters for the struct/enum. | |
| let mut param_constraint_mapping: HashMap<Ident, Vec<TraitBound>> = type_params | |
| .iter() | |
| .map(|type_param| { | |
| let trait_bounds: Vec<TraitBound> = type_param | |
| .bounds | |
| .iter() | |
| .flat_map(|bound| match bound { | |
| TypeParamBound::Trait(trait_bound) => Some(trait_bound), | |
| _ => None, | |
| }) | |
| .cloned() | |
| .collect(); | |
| (type_param.ident.clone(), trait_bounds) | |
| }) | |
| .collect(); | |
| // Add trait bounds from `where` clauses, which may be type parameters or types containing | |
| // those parameters. | |
| for predicate in where_clause.predicates.iter() { | |
| // We only care about type and not lifetime constraints here. | |
| if let WherePredicate::Type(ref pred_ty) = predicate { | |
| let ident = match &pred_ty.bounded_ty { | |
| Type::Path(TypePath { path, qself: None }) => match path.get_ident() { | |
| None => continue, | |
| Some(ident) => ident, | |
| }, | |
| _ => continue, | |
| }; | |
| // We ignore any type constraints that aren't direct references to type | |
| // parameters of the current enum of struct definition. No types can be | |
| // constrained in a `where` clause unless they are a type parameter or a generic | |
| // type instantiated with one of the type parameters, so by only allowing single | |
| // identifiers, we can be sure that the constrained type is a type parameter | |
| // that is contained in `param_constraint_mapping`. | |
| if let Some((_, ref mut known_bounds)) = param_constraint_mapping | |
| .iter_mut() | |
| .find(|(id, _)| *id == ident) | |
| { | |
| for bound in pred_ty.bounds.iter() { | |
| // We only care about trait bounds here. | |
| if let TypeParamBound::Trait(ref bound) = bound { | |
| known_bounds.push(bound.clone()); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| param_constraint_mapping | |
| } | |
| /// Hygienically add `where _: Display` to the set of [TypeParamBound]s for `ident`, creating such | |
| /// a set if necessary. | |
| fn ensure_display_in_where_clause_for_type(where_clause: &mut WhereClause, ident: Ident) { | |
| for pred_ty in where_clause | |
| .predicates | |
| .iter_mut() | |
| // Find the `where` predicate constraining the current type param, if it exists. | |
| .flat_map(|predicate| match predicate { | |
| WherePredicate::Type(pred_ty) => Some(pred_ty), | |
| // We're looking through type constraints, not lifetime constraints. | |
| _ => None, | |
| }) | |
| { | |
| // Do a complicated destructuring in order to check if the type being constrained in this | |
| // `where` clause is the type we're looking for, so we can use the mutable reference to | |
| // `pred_ty` if so. | |
| let matches_desired_type = matches!( | |
| &pred_ty.bounded_ty, | |
| Type::Path(TypePath { path, .. }) if Some(&ident) == path.get_ident()); | |
| if matches_desired_type { | |
| add_display_constraint_to_type_predicate(pred_ty); | |
| return; | |
| } | |
| } | |
| // If there is no `where` predicate for the current type param, we will construct one. | |
| let mut new_type_predicate = new_empty_where_type_predicate(ident); | |
| add_display_constraint_to_type_predicate(&mut new_type_predicate); | |
| append_where_clause_type_predicate(where_clause, new_type_predicate); | |
| } | |
| /// For all declared type parameters, add a [core::fmt::Display] constraint, unless the type | |
| /// parameter already has any type constraint. | |
| fn ensure_where_clause_has_display_for_all_unconstrained_members( | |
| where_clause: &mut WhereClause, | |
| type_params: &[&TypeParam], | |
| ) { | |
| let param_constraint_mapping = extract_trait_constraints_from_source(where_clause, type_params); | |
| for (ident, known_bounds) in param_constraint_mapping.into_iter() { | |
| // If the type parameter has any constraints already, we don't want to touch it, to avoid | |
| // breaking use cases where a type parameter only needs to impl `Debug`, for example. | |
| if known_bounds.is_empty() { | |
| ensure_display_in_where_clause_for_type(where_clause, ident); | |
| } | |
| } | |
| } | |
| /// Generate a `where` clause that ensures all generic type parameters `impl` | |
| /// [core::fmt::Display] unless already constrained. | |
| /// | |
| /// This approach allows struct/enum definitions deriving [crate::Display] to avoid hardcoding | |
| /// a [core::fmt::Display] constraint into every type parameter. | |
| /// | |
| /// If the type parameter isn't already constrained, we add a `where _: Display` clause to our | |
| /// display implementation to expect to be able to format every enum case or struct member. | |
| /// | |
| /// In fact, we would preferably only require `where _: Display` or `where _: Debug` where the | |
| /// format string actually requires it. However, while [`std::fmt` defines a formal syntax for | |
| /// `format!()`][format syntax], it *doesn't* expose the actual logic to parse the format string, | |
| /// which appears to live in [`rustc_parse_format`]. While we use the [`syn`] crate to parse rust | |
| /// syntax, it also doesn't currently provide any method to introspect a `format!()` string. It | |
| /// would be nice to contribute this upstream in [`syn`]. | |
| /// | |
| /// [format syntax]: std::fmt#syntax | |
| /// [`rustc_parse_format`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse_format/index.html | |
| fn generate_where_clause(generics: &Generics, where_clause: Option<&WhereClause>) -> WhereClause { | |
| let mut where_clause = where_clause.cloned().unwrap_or_else(new_empty_where_clause); | |
| let type_params: Vec<&TypeParam> = generics.type_params().collect(); | |
| ensure_where_clause_has_display_for_all_unconstrained_members(&mut where_clause, &type_params); | |
| where_clause | |
| } | |
| fn impl_enum(input: &DeriveInput, data: &DataEnum) -> Result<TokenStream> { | |
| let ty = &input.ident; | |
| let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl(); | |
| let where_clause = generate_where_clause(&input.generics, where_clause); | |
| let helper = AttrsHelper::new(&input.attrs); | |
| let displays = data | |
| .variants | |
| .iter() | |
| .map(|variant| helper.display_with_input(&input.attrs, &variant.attrs)) | |
| .collect::<Result<Vec<_>>>()?; | |
| if data.variants.is_empty() { | |
| Ok(quote! { | |
| impl #impl_generics core::fmt::Display for #ty #ty_generics #where_clause { | |
| fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { | |
| unreachable!("empty enums cannot be instantiated and thus cannot be printed") | |
| } | |
| } | |
| }) | |
| } else if displays.iter().any(Option::is_some) { | |
| let arms = data | |
| .variants | |
| .iter() | |
| .zip(displays) | |
| .map(|(variant, display)| { | |
| let display = | |
| display.ok_or_else(|| Error::new_spanned(variant, "missing doc comment"))?; | |
| let ident = &variant.ident; | |
| Ok(match &variant.fields { | |
| Fields::Named(fields) => { | |
| let var = fields.named.iter().map(|field| &field.ident); | |
| quote!(Self::#ident { #(#var),* } => { #display }) | |
| } | |
| Fields::Unnamed(fields) => { | |
| let var = (0..fields.unnamed.len()).map(|i| format_ident!("_{}", i)); | |
| quote!(Self::#ident(#(#var),*) => { #display }) | |
| } | |
| Fields::Unit => quote!(Self::#ident => { #display }), | |
| }) | |
| }) | |
| .collect::<Result<Vec<_>>>()?; | |
| Ok(quote! { | |
| impl #impl_generics core::fmt::Display for #ty #ty_generics #where_clause { | |
| fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { | |
| #[allow(unused_variables)] | |
| match self { | |
| #(#arms,)* | |
| } | |
| } | |
| } | |
| }) | |
| } else { | |
| Err(Error::new_spanned(input, "Missing doc comments")) | |
| } | |
| } |