blob: 14f4b5ef6553723cf9cb4efd671f2372b7d403d3 [file] [log] [blame]
use super::*;
use crate::AxisScale;
use itertools::Itertools;
use plotters::coord::{
ranged1d::{AsRangedCoord, ValueFormatter as PlottersValueFormatter},
Shift,
};
use std::cmp::Ordering;
use std::path::Path;
const NUM_COLORS: usize = 8;
static COMPARISON_COLORS: [RGBColor; NUM_COLORS] = [
RGBColor(178, 34, 34),
RGBColor(46, 139, 87),
RGBColor(0, 139, 139),
RGBColor(255, 215, 0),
RGBColor(0, 0, 139),
RGBColor(220, 20, 60),
RGBColor(139, 0, 139),
RGBColor(0, 255, 127),
];
pub fn line_comparison(
formatter: &dyn ValueFormatter,
title: &str,
all_curves: &[&(&BenchmarkId, Vec<f64>)],
path: &Path,
value_type: ValueType,
axis_scale: AxisScale,
) {
let (unit, series_data) = line_comparison_series_data(formatter, all_curves);
let x_range =
plotters::data::fitting_range(series_data.iter().map(|(_, xs, _)| xs.iter()).flatten());
let y_range =
plotters::data::fitting_range(series_data.iter().map(|(_, _, ys)| ys.iter()).flatten());
let root_area = SVGBackend::new(&path, SIZE)
.into_drawing_area()
.titled(&format!("{}: Comparison", title), (DEFAULT_FONT, 20))
.unwrap();
match axis_scale {
AxisScale::Linear => {
draw_line_comarision_figure(root_area, unit, x_range, y_range, value_type, series_data)
}
AxisScale::Logarithmic => draw_line_comarision_figure(
root_area,
unit,
LogRange(x_range),
LogRange(y_range),
value_type,
series_data,
),
}
}
fn draw_line_comarision_figure<XR: AsRangedCoord<Value = f64>, YR: AsRangedCoord<Value = f64>>(
root_area: DrawingArea<SVGBackend, Shift>,
y_unit: &str,
x_range: XR,
y_range: YR,
value_type: ValueType,
data: Vec<(Option<&String>, Vec<f64>, Vec<f64>)>,
) where
XR::CoordDescType: PlottersValueFormatter<f64>,
YR::CoordDescType: PlottersValueFormatter<f64>,
{
let input_suffix = match value_type {
ValueType::Bytes => " Size (Bytes)",
ValueType::Elements => " Size (Elements)",
ValueType::Value => "",
};
let mut chart = ChartBuilder::on(&root_area)
.margin((5).percent())
.set_label_area_size(LabelAreaPosition::Left, (5).percent_width().min(60))
.set_label_area_size(LabelAreaPosition::Bottom, (5).percent_height().min(40))
.build_cartesian_2d(x_range, y_range)
.unwrap();
chart
.configure_mesh()
.disable_mesh()
.x_desc(format!("Input{}", input_suffix))
.y_desc(format!("Average time ({})", y_unit))
.draw()
.unwrap();
for (id, (name, xs, ys)) in (0..).zip(data.into_iter()) {
let series = chart
.draw_series(
LineSeries::new(
xs.into_iter().zip(ys.into_iter()),
COMPARISON_COLORS[id % NUM_COLORS].filled(),
)
.point_size(POINT_SIZE),
)
.unwrap();
if let Some(name) = name {
let name: &str = &*name;
series.label(name).legend(move |(x, y)| {
Rectangle::new(
[(x, y - 5), (x + 20, y + 5)],
COMPARISON_COLORS[id % NUM_COLORS].filled(),
)
});
}
}
chart
.configure_series_labels()
.position(SeriesLabelPosition::UpperLeft)
.draw()
.unwrap();
}
#[allow(clippy::type_complexity)]
fn line_comparison_series_data<'a>(
formatter: &dyn ValueFormatter,
all_curves: &[&(&'a BenchmarkId, Vec<f64>)],
) -> (&'static str, Vec<(Option<&'a String>, Vec<f64>, Vec<f64>)>) {
let max = all_curves
.iter()
.map(|&&(_, ref data)| Sample::new(data).mean())
.fold(::std::f64::NAN, f64::max);
let mut dummy = [1.0];
let unit = formatter.scale_values(max, &mut dummy);
let mut series_data = vec![];
// This assumes the curves are sorted. It also assumes that the benchmark IDs all have numeric
// values or throughputs and that value is sensible (ie. not a mix of bytes and elements
// or whatnot)
for (key, group) in &all_curves.iter().group_by(|&&&(ref id, _)| &id.function_id) {
let mut tuples: Vec<_> = group
.map(|&&(ref id, ref sample)| {
// Unwrap is fine here because it will only fail if the assumptions above are not true
// ie. programmer error.
let x = id.as_number().unwrap();
let y = Sample::new(sample).mean();
(x, y)
})
.collect();
tuples.sort_by(|&(ax, _), &(bx, _)| (ax.partial_cmp(&bx).unwrap_or(Ordering::Less)));
let function_name = key.as_ref();
let (xs, mut ys): (Vec<_>, Vec<_>) = tuples.into_iter().unzip();
formatter.scale_values(max, &mut ys);
series_data.push((function_name, xs, ys));
}
(unit, series_data)
}
pub fn violin(
formatter: &dyn ValueFormatter,
title: &str,
all_curves: &[&(&BenchmarkId, Vec<f64>)],
path: &Path,
axis_scale: AxisScale,
) {
let all_curves_vec = all_curves.iter().rev().cloned().collect::<Vec<_>>();
let all_curves: &[&(&BenchmarkId, Vec<f64>)] = &*all_curves_vec;
let mut kdes = all_curves
.iter()
.map(|&&(ref id, ref sample)| {
let (x, mut y) = kde::sweep(Sample::new(sample), KDE_POINTS, None);
let y_max = Sample::new(&y).max();
for y in y.iter_mut() {
*y /= y_max;
}
(id.as_title(), x, y)
})
.collect::<Vec<_>>();
let mut xs = kdes
.iter()
.flat_map(|&(_, ref x, _)| x.iter())
.filter(|&&x| x > 0.);
let (mut min, mut max) = {
let &first = xs.next().unwrap();
(first, first)
};
for &e in xs {
if e < min {
min = e;
} else if e > max {
max = e;
}
}
let mut dummy = [1.0];
let unit = formatter.scale_values(max, &mut dummy);
kdes.iter_mut().for_each(|&mut (_, ref mut xs, _)| {
formatter.scale_values(max, xs);
});
let mut x_range =
plotters::data::fitting_range(kdes.iter().map(|(_, xs, _)| xs.iter()).flatten());
x_range.start = 0.0;
let y_range = -0.5..all_curves.len() as f64 - 0.5;
let size = (960, 150 + (18 * all_curves.len() as u32));
let root_area = SVGBackend::new(&path, size)
.into_drawing_area()
.titled(&format!("{}: Violin plot", title), (DEFAULT_FONT, 20))
.unwrap();
match axis_scale {
AxisScale::Linear => draw_violin_figure(root_area, unit, x_range, y_range, kdes),
AxisScale::Logarithmic => {
draw_violin_figure(root_area, unit, LogRange(x_range), y_range, kdes)
}
}
}
#[allow(clippy::type_complexity)]
fn draw_violin_figure<XR: AsRangedCoord<Value = f64>, YR: AsRangedCoord<Value = f64>>(
root_area: DrawingArea<SVGBackend, Shift>,
unit: &'static str,
x_range: XR,
y_range: YR,
data: Vec<(&str, Box<[f64]>, Box<[f64]>)>,
) where
XR::CoordDescType: PlottersValueFormatter<f64>,
YR::CoordDescType: PlottersValueFormatter<f64>,
{
let mut chart = ChartBuilder::on(&root_area)
.margin((5).percent())
.set_label_area_size(LabelAreaPosition::Left, (10).percent_width().min(60))
.set_label_area_size(LabelAreaPosition::Bottom, (5).percent_width().min(40))
.build_cartesian_2d(x_range, y_range)
.unwrap();
chart
.configure_mesh()
.disable_mesh()
.y_desc("Input")
.x_desc(format!("Average time ({})", unit))
.y_label_style((DEFAULT_FONT, 10))
.y_label_formatter(&|v: &f64| data[v.round() as usize].0.to_string())
.y_labels(data.len())
.draw()
.unwrap();
for (i, (_, x, y)) in data.into_iter().enumerate() {
let base = i as f64;
chart
.draw_series(AreaSeries::new(
x.iter().zip(y.iter()).map(|(x, y)| (*x, base + *y / 2.0)),
base,
&DARK_BLUE,
))
.unwrap();
chart
.draw_series(AreaSeries::new(
x.iter().zip(y.iter()).map(|(x, y)| (*x, base - *y / 2.0)),
base,
&DARK_BLUE,
))
.unwrap();
}
}