| /*! |
| This crate provides convenience methods for encoding and decoding numbers |
| in either big-endian or little-endian order. |
| |
| The organization of the crate is pretty simple. A trait, `ByteOrder`, specifies |
| byte conversion methods for each type of number in Rust (sans numbers that have |
| a platform dependent size like `usize` and `isize`). Two types, `BigEndian` |
| and `LittleEndian` implement these methods. Finally, `ReadBytesExt` and |
| `WriteBytesExt` provide convenience methods available to all types that |
| implement `Read` and `Write`. |
| |
| # Examples |
| |
| Read unsigned 16 bit big-endian integers from a `Read` type: |
| |
| ```rust |
| use std::io::Cursor; |
| use byteorder::{BigEndian, ReadBytesExt}; |
| |
| let mut rdr = Cursor::new(vec![2, 5, 3, 0]); |
| // Note that we use type parameters to indicate which kind of byte order |
| // we want! |
| assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); |
| assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); |
| ``` |
| |
| Write unsigned 16 bit little-endian integers to a `Write` type: |
| |
| ```rust |
| use byteorder::{LittleEndian, WriteBytesExt}; |
| |
| let mut wtr = vec![]; |
| wtr.write_u16::<LittleEndian>(517).unwrap(); |
| wtr.write_u16::<LittleEndian>(768).unwrap(); |
| assert_eq!(wtr, vec![5, 2, 0, 3]); |
| ``` |
| */ |
| |
| #![crate_name = "byteorder"] |
| #![doc(html_root_url = "http://burntsushi.net/rustdoc/byteorder")] |
| |
| #![deny(missing_docs)] |
| |
| use std::mem::transmute; |
| use std::ptr::copy_nonoverlapping; |
| |
| #[cfg(not(feature = "no-std"))] |
| pub use new::{ReadBytesExt, WriteBytesExt}; |
| |
| #[cfg(not(feature = "no-std"))] |
| mod new; |
| |
| #[inline] |
| fn extend_sign(val: u64, nbytes: usize) -> i64 { |
| let shift = (8 - nbytes) * 8; |
| (val << shift) as i64 >> shift |
| } |
| |
| #[inline] |
| fn unextend_sign(val: i64, nbytes: usize) -> u64 { |
| let shift = (8 - nbytes) * 8; |
| (val << shift) as u64 >> shift |
| } |
| |
| #[inline] |
| fn pack_size(n: u64) -> usize { |
| if n < 1 << 8 { |
| 1 |
| } else if n < 1 << 16 { |
| 2 |
| } else if n < 1 << 24 { |
| 3 |
| } else if n < 1 << 32 { |
| 4 |
| } else if n < 1 << 40 { |
| 5 |
| } else if n < 1 << 48 { |
| 6 |
| } else if n < 1 << 56 { |
| 7 |
| } else { |
| 8 |
| } |
| } |
| |
| /// ByteOrder describes types that can serialize integers as bytes. |
| /// |
| /// Note that `Self` does not appear anywhere in this trait's definition! |
| /// Therefore, in order to use it, you'll need to use syntax like |
| /// `T::read_u16(&[0, 1])` where `T` implements `ByteOrder`. |
| /// |
| /// This crate provides two types that implement `ByteOrder`: `BigEndian` |
| /// and `LittleEndian`. |
| /// |
| /// # Examples |
| /// |
| /// Write and read `u32` numbers in little endian order: |
| /// |
| /// ```rust |
| /// use byteorder::{ByteOrder, LittleEndian}; |
| /// |
| /// let mut buf = [0; 4]; |
| /// LittleEndian::write_u32(&mut buf, 1_000_000); |
| /// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); |
| /// ``` |
| /// |
| /// Write and read `i16` numbers in big endian order: |
| /// |
| /// ```rust |
| /// use byteorder::{ByteOrder, BigEndian}; |
| /// |
| /// let mut buf = [0; 2]; |
| /// BigEndian::write_i16(&mut buf, -50_000); |
| /// assert_eq!(-50_000, BigEndian::read_i16(&buf)); |
| /// ``` |
| pub trait ByteOrder { |
| /// Reads an unsigned 16 bit integer from `buf`. |
| /// |
| /// Panics when `buf.len() < 2`. |
| fn read_u16(buf: &[u8]) -> u16; |
| |
| /// Reads an unsigned 32 bit integer from `buf`. |
| /// |
| /// Panics when `buf.len() < 4`. |
| fn read_u32(buf: &[u8]) -> u32; |
| |
| /// Reads an unsigned 64 bit integer from `buf`. |
| /// |
| /// Panics when `buf.len() < 8`. |
| fn read_u64(buf: &[u8]) -> u64; |
| |
| /// Reads an unsigned n-bytes integer from `buf`. |
| /// |
| /// Panics when `nbytes < 1` or `nbytes > 8` or |
| /// `buf.len() < nbytes` |
| fn read_uint(buf: &[u8], nbytes: usize) -> u64; |
| |
| /// Writes an unsigned 16 bit integer `n` to `buf`. |
| /// |
| /// Panics when `buf.len() < 2`. |
| fn write_u16(buf: &mut [u8], n: u16); |
| |
| /// Writes an unsigned 32 bit integer `n` to `buf`. |
| /// |
| /// Panics when `buf.len() < 4`. |
| fn write_u32(buf: &mut [u8], n: u32); |
| |
| /// Writes an unsigned 64 bit integer `n` to `buf`. |
| /// |
| /// Panics when `buf.len() < 8`. |
| fn write_u64(buf: &mut [u8], n: u64); |
| |
| /// Writes an unsigned integer `n` to `buf` using only `nbytes`. |
| /// |
| /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then |
| /// this method panics. |
| fn write_uint(buf: &mut [u8], n: u64, nbytes: usize); |
| |
| /// Reads a signed 16 bit integer from `buf`. |
| /// |
| /// Panics when `buf.len() < 2`. |
| #[inline] |
| fn read_i16(buf: &[u8]) -> i16 { |
| Self::read_u16(buf) as i16 |
| } |
| |
| /// Reads a signed 32 bit integer from `buf`. |
| /// |
| /// Panics when `buf.len() < 4`. |
| #[inline] |
| fn read_i32(buf: &[u8]) -> i32 { |
| Self::read_u32(buf) as i32 |
| } |
| |
| /// Reads a signed 64 bit integer from `buf`. |
| /// |
| /// Panics when `buf.len() < 8`. |
| #[inline] |
| fn read_i64(buf: &[u8]) -> i64 { |
| Self::read_u64(buf) as i64 |
| } |
| |
| /// Reads a signed n-bytes integer from `buf`. |
| /// |
| /// Panics when `nbytes < 1` or `nbytes > 8` or |
| /// `buf.len() < nbytes` |
| #[inline] |
| fn read_int(buf: &[u8], nbytes: usize) -> i64 { |
| extend_sign(Self::read_uint(buf, nbytes), nbytes) |
| } |
| |
| /// Reads a IEEE754 single-precision (4 bytes) floating point number. |
| /// |
| /// Panics when `buf.len() < 4`. |
| #[inline] |
| fn read_f32(buf: &[u8]) -> f32 { |
| unsafe { transmute(Self::read_u32(buf)) } |
| } |
| |
| /// Reads a IEEE754 double-precision (8 bytes) floating point number. |
| /// |
| /// Panics when `buf.len() < 8`. |
| #[inline] |
| fn read_f64(buf: &[u8]) -> f64 { |
| unsafe { transmute(Self::read_u64(buf)) } |
| } |
| |
| /// Writes a signed 16 bit integer `n` to `buf`. |
| /// |
| /// Panics when `buf.len() < 2`. |
| #[inline] |
| fn write_i16(buf: &mut [u8], n: i16) { |
| Self::write_u16(buf, n as u16) |
| } |
| |
| /// Writes a signed 32 bit integer `n` to `buf`. |
| /// |
| /// Panics when `buf.len() < 4`. |
| #[inline] |
| fn write_i32(buf: &mut [u8], n: i32) { |
| Self::write_u32(buf, n as u32) |
| } |
| |
| /// Writes a signed 64 bit integer `n` to `buf`. |
| /// |
| /// Panics when `buf.len() < 8`. |
| #[inline] |
| fn write_i64(buf: &mut [u8], n: i64) { |
| Self::write_u64(buf, n as u64) |
| } |
| |
| /// Writes a signed integer `n` to `buf` using only `nbytes`. |
| /// |
| /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then |
| /// this method panics. |
| #[inline] |
| fn write_int(buf: &mut [u8], n: i64, nbytes: usize) { |
| Self::write_uint(buf, unextend_sign(n, nbytes), nbytes) |
| } |
| |
| /// Writes a IEEE754 single-precision (4 bytes) floating point number. |
| /// |
| /// Panics when `buf.len() < 4`. |
| #[inline] |
| fn write_f32(buf: &mut [u8], n: f32) { |
| Self::write_u32(buf, unsafe { transmute(n) }) |
| } |
| |
| /// Writes a IEEE754 double-precision (8 bytes) floating point number. |
| /// |
| /// Panics when `buf.len() < 8`. |
| #[inline] |
| fn write_f64(buf: &mut [u8], n: f64) { |
| Self::write_u64(buf, unsafe { transmute(n) }) |
| } |
| } |
| |
| /// Defines big-endian serialization. |
| /// |
| /// Note that this type has no value constructor. It is used purely at the |
| /// type level. |
| #[allow(missing_copy_implementations)] pub enum BigEndian {} |
| |
| /// Defines little-endian serialization. |
| /// |
| /// Note that this type has no value constructor. It is used purely at the |
| /// type level. |
| #[allow(missing_copy_implementations)] pub enum LittleEndian {} |
| |
| /// Defines network byte order serialization. |
| /// |
| /// Network byte order is defined by [RFC 1700][1] to be big-endian, and is |
| /// referred to in several protocol specifications. This type is an alias of |
| /// BigEndian. |
| /// |
| /// [1]: https://tools.ietf.org/html/rfc1700 |
| /// |
| /// Note that this type has no value constructor. It is used purely at the |
| /// type level. |
| pub type NetworkEndian = BigEndian; |
| |
| /// Defines system native-endian serialization. |
| /// |
| /// Note that this type has no value constructor. It is used purely at the |
| /// type level. |
| #[cfg(target_endian = "little")] |
| pub type NativeEndian = LittleEndian; |
| |
| /// Defines system native-endian serialization. |
| /// |
| /// Note that this type has no value constructor. It is used purely at the |
| /// type level. |
| #[cfg(target_endian = "big")] |
| pub type NativeEndian = BigEndian; |
| |
| macro_rules! read_num_bytes { |
| ($ty:ty, $size:expr, $src:expr, $which:ident) => ({ |
| assert!($size <= $src.len()); |
| unsafe { |
| (*($src.as_ptr() as *const $ty)).$which() |
| } |
| }); |
| } |
| |
| macro_rules! write_num_bytes { |
| ($ty:ty, $size:expr, $n:expr, $dst:expr, $which:ident) => ({ |
| assert!($size <= $dst.len()); |
| unsafe { |
| // N.B. https://github.com/rust-lang/rust/issues/22776 |
| let bytes = transmute::<_, [u8; $size]>($n.$which()); |
| copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size); |
| } |
| }); |
| } |
| |
| impl ByteOrder for BigEndian { |
| #[inline] |
| fn read_u16(buf: &[u8]) -> u16 { |
| read_num_bytes!(u16, 2, buf, to_be) |
| } |
| |
| #[inline] |
| fn read_u32(buf: &[u8]) -> u32 { |
| read_num_bytes!(u32, 4, buf, to_be) |
| } |
| |
| #[inline] |
| fn read_u64(buf: &[u8]) -> u64 { |
| read_num_bytes!(u64, 8, buf, to_be) |
| } |
| |
| #[inline] |
| fn read_uint(buf: &[u8], nbytes: usize) -> u64 { |
| assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); |
| let mut out = [0u8; 8]; |
| let ptr_out = out.as_mut_ptr(); |
| unsafe { |
| copy_nonoverlapping( |
| buf.as_ptr(), ptr_out.offset((8 - nbytes) as isize), nbytes); |
| (*(ptr_out as *const u64)).to_be() |
| } |
| } |
| |
| #[inline] |
| fn write_u16(buf: &mut [u8], n: u16) { |
| write_num_bytes!(u16, 2, n, buf, to_be); |
| } |
| |
| #[inline] |
| fn write_u32(buf: &mut [u8], n: u32) { |
| write_num_bytes!(u32, 4, n, buf, to_be); |
| } |
| |
| #[inline] |
| fn write_u64(buf: &mut [u8], n: u64) { |
| write_num_bytes!(u64, 8, n, buf, to_be); |
| } |
| |
| #[inline] |
| fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { |
| assert!(pack_size(n) <= nbytes && nbytes <= 8); |
| assert!(nbytes <= buf.len()); |
| unsafe { |
| let bytes: [u8; 8] = transmute(n.to_be()); |
| copy_nonoverlapping( |
| bytes.as_ptr().offset((8 - nbytes) as isize), |
| buf.as_mut_ptr(), |
| nbytes); |
| } |
| } |
| } |
| |
| impl ByteOrder for LittleEndian { |
| #[inline] |
| fn read_u16(buf: &[u8]) -> u16 { |
| read_num_bytes!(u16, 2, buf, to_le) |
| } |
| |
| #[inline] |
| fn read_u32(buf: &[u8]) -> u32 { |
| read_num_bytes!(u32, 4, buf, to_le) |
| } |
| |
| #[inline] |
| fn read_u64(buf: &[u8]) -> u64 { |
| read_num_bytes!(u64, 8, buf, to_le) |
| } |
| |
| #[inline] |
| fn read_uint(buf: &[u8], nbytes: usize) -> u64 { |
| assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); |
| let mut out = [0u8; 8]; |
| let ptr_out = out.as_mut_ptr(); |
| unsafe { |
| copy_nonoverlapping(buf.as_ptr(), ptr_out, nbytes); |
| (*(ptr_out as *const u64)).to_le() |
| } |
| } |
| |
| #[inline] |
| fn write_u16(buf: &mut [u8], n: u16) { |
| write_num_bytes!(u16, 2, n, buf, to_le); |
| } |
| |
| #[inline] |
| fn write_u32(buf: &mut [u8], n: u32) { |
| write_num_bytes!(u32, 4, n, buf, to_le); |
| } |
| |
| #[inline] |
| fn write_u64(buf: &mut [u8], n: u64) { |
| write_num_bytes!(u64, 8, n, buf, to_le); |
| } |
| |
| #[inline] |
| fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { |
| assert!(pack_size(n as u64) <= nbytes && nbytes <= 8); |
| assert!(nbytes <= buf.len()); |
| unsafe { |
| let bytes: [u8; 8] = transmute(n.to_le()); |
| copy_nonoverlapping(bytes.as_ptr(), buf.as_mut_ptr(), nbytes); |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| extern crate quickcheck; |
| extern crate rand; |
| |
| use test::rand::thread_rng; |
| use test::quickcheck::{QuickCheck, StdGen, Testable}; |
| |
| const U64_MAX: u64 = ::std::u64::MAX; |
| const I64_MAX: u64 = ::std::i64::MAX as u64; |
| |
| fn qc_sized<A: Testable>(f: A, size: u64) { |
| QuickCheck::new() |
| .gen(StdGen::new(thread_rng(), size as usize)) |
| .tests(1_00) |
| .max_tests(10_000) |
| .quickcheck(f); |
| } |
| |
| macro_rules! qc_byte_order { |
| ($name:ident, $ty_int:ident, $max:expr, |
| $bytes:expr, $read:ident, $write:ident) => ( |
| mod $name { |
| use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; |
| use super::qc_sized; |
| |
| #[test] |
| fn big_endian() { |
| let max = ($max - 1) >> (8 * (8 - $bytes)); |
| fn prop(n: $ty_int) -> bool { |
| let mut buf = [0; 8]; |
| BigEndian::$write(&mut buf, n, $bytes); |
| n == BigEndian::$read(&mut buf[..$bytes], $bytes) |
| } |
| qc_sized(prop as fn($ty_int) -> bool, max); |
| } |
| |
| #[test] |
| fn little_endian() { |
| let max = ($max - 1) >> (8 * (8 - $bytes)); |
| fn prop(n: $ty_int) -> bool { |
| let mut buf = [0; 8]; |
| LittleEndian::$write(&mut buf, n, $bytes); |
| n == LittleEndian::$read(&mut buf[..$bytes], $bytes) |
| } |
| qc_sized(prop as fn($ty_int) -> bool, max); |
| } |
| |
| #[test] |
| fn native_endian() { |
| let max = ($max - 1) >> (8 * (8 - $bytes)); |
| fn prop(n: $ty_int) -> bool { |
| let mut buf = [0; 8]; |
| NativeEndian::$write(&mut buf, n, $bytes); |
| n == NativeEndian::$read(&mut buf[..$bytes], $bytes) |
| } |
| qc_sized(prop as fn($ty_int) -> bool, max); |
| } |
| } |
| ); |
| ($name:ident, $ty_int:ident, $max:expr, |
| $read:ident, $write:ident) => ( |
| mod $name { |
| use std::mem::size_of; |
| use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; |
| use super::qc_sized; |
| |
| #[test] |
| fn big_endian() { |
| fn prop(n: $ty_int) -> bool { |
| let bytes = size_of::<$ty_int>(); |
| let mut buf = [0; 8]; |
| BigEndian::$write(&mut buf[8 - bytes..], n); |
| n == BigEndian::$read(&mut buf[8 - bytes..]) |
| } |
| qc_sized(prop as fn($ty_int) -> bool, $max - 1); |
| } |
| |
| #[test] |
| fn little_endian() { |
| fn prop(n: $ty_int) -> bool { |
| let bytes = size_of::<$ty_int>(); |
| let mut buf = [0; 8]; |
| LittleEndian::$write(&mut buf[..bytes], n); |
| n == LittleEndian::$read(&mut buf[..bytes]) |
| } |
| qc_sized(prop as fn($ty_int) -> bool, $max - 1); |
| } |
| |
| #[test] |
| fn native_endian() { |
| fn prop(n: $ty_int) -> bool { |
| let bytes = size_of::<$ty_int>(); |
| let mut buf = [0; 8]; |
| NativeEndian::$write(&mut buf[..bytes], n); |
| n == NativeEndian::$read(&mut buf[..bytes]) |
| } |
| qc_sized(prop as fn($ty_int) -> bool, $max - 1); |
| } |
| } |
| ); |
| } |
| |
| qc_byte_order!(prop_u16, u16, ::std::u16::MAX as u64, read_u16, write_u16); |
| qc_byte_order!(prop_i16, i16, ::std::i16::MAX as u64, read_i16, write_i16); |
| qc_byte_order!(prop_u32, u32, ::std::u32::MAX as u64, read_u32, write_u32); |
| qc_byte_order!(prop_i32, i32, ::std::i32::MAX as u64, read_i32, write_i32); |
| qc_byte_order!(prop_u64, u64, ::std::u64::MAX as u64, read_u64, write_u64); |
| qc_byte_order!(prop_i64, i64, ::std::i64::MAX as u64, read_i64, write_i64); |
| qc_byte_order!(prop_f32, f32, ::std::u64::MAX as u64, read_f32, write_f32); |
| qc_byte_order!(prop_f64, f64, ::std::i64::MAX as u64, read_f64, write_f64); |
| |
| qc_byte_order!(prop_uint_1, u64, super::U64_MAX, 1, read_uint, write_uint); |
| qc_byte_order!(prop_uint_2, u64, super::U64_MAX, 2, read_uint, write_uint); |
| qc_byte_order!(prop_uint_3, u64, super::U64_MAX, 3, read_uint, write_uint); |
| qc_byte_order!(prop_uint_4, u64, super::U64_MAX, 4, read_uint, write_uint); |
| qc_byte_order!(prop_uint_5, u64, super::U64_MAX, 5, read_uint, write_uint); |
| qc_byte_order!(prop_uint_6, u64, super::U64_MAX, 6, read_uint, write_uint); |
| qc_byte_order!(prop_uint_7, u64, super::U64_MAX, 7, read_uint, write_uint); |
| qc_byte_order!(prop_uint_8, u64, super::U64_MAX, 8, read_uint, write_uint); |
| |
| qc_byte_order!(prop_int_1, i64, super::I64_MAX, 1, read_int, write_int); |
| qc_byte_order!(prop_int_2, i64, super::I64_MAX, 2, read_int, write_int); |
| qc_byte_order!(prop_int_3, i64, super::I64_MAX, 3, read_int, write_int); |
| qc_byte_order!(prop_int_4, i64, super::I64_MAX, 4, read_int, write_int); |
| qc_byte_order!(prop_int_5, i64, super::I64_MAX, 5, read_int, write_int); |
| qc_byte_order!(prop_int_6, i64, super::I64_MAX, 6, read_int, write_int); |
| qc_byte_order!(prop_int_7, i64, super::I64_MAX, 7, read_int, write_int); |
| qc_byte_order!(prop_int_8, i64, super::I64_MAX, 8, read_int, write_int); |
| |
| macro_rules! qc_bytes_ext { |
| ($name:ident, $ty_int:ident, $max:expr, |
| $bytes:expr, $read:ident, $write:ident) => ( |
| mod $name { |
| use std::io::Cursor; |
| use { |
| ReadBytesExt, WriteBytesExt, |
| BigEndian, NativeEndian, LittleEndian, |
| }; |
| use super::qc_sized; |
| |
| #[test] |
| fn big_endian() { |
| let max = ($max - 1) >> (8 * (8 - $bytes)); |
| fn prop(n: $ty_int) -> bool { |
| let mut wtr = vec![]; |
| wtr.$write::<BigEndian>(n).unwrap(); |
| let mut rdr = Vec::new(); |
| rdr.extend(wtr[8 - $bytes..].iter().map(|&x|x)); |
| let mut rdr = Cursor::new(rdr); |
| n == rdr.$read::<BigEndian>($bytes).unwrap() |
| } |
| qc_sized(prop as fn($ty_int) -> bool, max); |
| } |
| |
| #[test] |
| fn little_endian() { |
| let max = ($max - 1) >> (8 * (8 - $bytes)); |
| fn prop(n: $ty_int) -> bool { |
| let mut wtr = vec![]; |
| wtr.$write::<LittleEndian>(n).unwrap(); |
| let mut rdr = Cursor::new(wtr); |
| n == rdr.$read::<LittleEndian>($bytes).unwrap() |
| } |
| qc_sized(prop as fn($ty_int) -> bool, max); |
| } |
| |
| #[test] |
| fn native_endian() { |
| let max = ($max - 1) >> (8 * (8 - $bytes)); |
| fn prop(n: $ty_int) -> bool { |
| let mut wtr = vec![]; |
| wtr.$write::<NativeEndian>(n).unwrap(); |
| let mut rdr = Cursor::new(wtr); |
| n == rdr.$read::<NativeEndian>($bytes).unwrap() |
| } |
| qc_sized(prop as fn($ty_int) -> bool, max); |
| } |
| } |
| ); |
| ($name:ident, $ty_int:ident, $max:expr, $read:ident, $write:ident) => ( |
| mod $name { |
| use std::io::Cursor; |
| use { |
| ReadBytesExt, WriteBytesExt, |
| BigEndian, NativeEndian, LittleEndian, |
| }; |
| use super::qc_sized; |
| |
| #[test] |
| fn big_endian() { |
| fn prop(n: $ty_int) -> bool { |
| let mut wtr = vec![]; |
| wtr.$write::<BigEndian>(n).unwrap(); |
| let mut rdr = Cursor::new(wtr); |
| n == rdr.$read::<BigEndian>().unwrap() |
| } |
| qc_sized(prop as fn($ty_int) -> bool, $max - 1); |
| } |
| |
| #[test] |
| fn little_endian() { |
| fn prop(n: $ty_int) -> bool { |
| let mut wtr = vec![]; |
| wtr.$write::<LittleEndian>(n).unwrap(); |
| let mut rdr = Cursor::new(wtr); |
| n == rdr.$read::<LittleEndian>().unwrap() |
| } |
| qc_sized(prop as fn($ty_int) -> bool, $max - 1); |
| } |
| |
| #[test] |
| fn native_endian() { |
| fn prop(n: $ty_int) -> bool { |
| let mut wtr = vec![]; |
| wtr.$write::<NativeEndian>(n).unwrap(); |
| let mut rdr = Cursor::new(wtr); |
| n == rdr.$read::<NativeEndian>().unwrap() |
| } |
| qc_sized(prop as fn($ty_int) -> bool, $max - 1); |
| } |
| } |
| ); |
| } |
| |
| qc_bytes_ext!(prop_ext_u16, u16, ::std::u16::MAX as u64, read_u16, write_u16); |
| qc_bytes_ext!(prop_ext_i16, i16, ::std::i16::MAX as u64, read_i16, write_i16); |
| qc_bytes_ext!(prop_ext_u32, u32, ::std::u32::MAX as u64, read_u32, write_u32); |
| qc_bytes_ext!(prop_ext_i32, i32, ::std::i32::MAX as u64, read_i32, write_i32); |
| qc_bytes_ext!(prop_ext_u64, u64, ::std::u64::MAX as u64, read_u64, write_u64); |
| qc_bytes_ext!(prop_ext_i64, i64, ::std::i64::MAX as u64, read_i64, write_i64); |
| qc_bytes_ext!(prop_ext_f32, f32, ::std::u64::MAX as u64, read_f32, write_f32); |
| qc_bytes_ext!(prop_ext_f64, f64, ::std::i64::MAX as u64, read_f64, write_f64); |
| |
| qc_bytes_ext!(prop_ext_uint_1, u64, super::U64_MAX, 1, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_2, u64, super::U64_MAX, 2, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_3, u64, super::U64_MAX, 3, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_4, u64, super::U64_MAX, 4, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_5, u64, super::U64_MAX, 5, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_6, u64, super::U64_MAX, 6, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_7, u64, super::U64_MAX, 7, read_uint, write_u64); |
| qc_bytes_ext!(prop_ext_uint_8, u64, super::U64_MAX, 8, read_uint, write_u64); |
| |
| qc_bytes_ext!(prop_ext_int_1, i64, super::I64_MAX, 1, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_2, i64, super::I64_MAX, 2, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_3, i64, super::I64_MAX, 3, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_4, i64, super::I64_MAX, 4, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_5, i64, super::I64_MAX, 5, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_6, i64, super::I64_MAX, 6, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_7, i64, super::I64_MAX, 7, read_int, write_i64); |
| qc_bytes_ext!(prop_ext_int_8, i64, super::I64_MAX, 8, read_int, write_i64); |
| |
| // Test that all of the byte conversion functions panic when given a |
| // buffer that is too small. |
| // |
| // These tests are critical to ensure safety, otherwise we might end up |
| // with a buffer overflow. |
| macro_rules! too_small { |
| ($name:ident, $maximally_small:expr, $zero:expr, |
| $read:ident, $write:ident) => ( |
| mod $name { |
| use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; |
| |
| #[test] |
| #[should_panic] |
| fn read_big_endian() { |
| let buf = [0; $maximally_small]; |
| BigEndian::$read(&buf); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn read_little_endian() { |
| let buf = [0; $maximally_small]; |
| LittleEndian::$read(&buf); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn read_native_endian() { |
| let buf = [0; $maximally_small]; |
| NativeEndian::$read(&buf); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn write_big_endian() { |
| let mut buf = [0; $maximally_small]; |
| BigEndian::$write(&mut buf, $zero); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn write_little_endian() { |
| let mut buf = [0; $maximally_small]; |
| LittleEndian::$write(&mut buf, $zero); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn write_native_endian() { |
| let mut buf = [0; $maximally_small]; |
| NativeEndian::$write(&mut buf, $zero); |
| } |
| } |
| ); |
| ($name:ident, $maximally_small:expr, $read:ident) => ( |
| mod $name { |
| use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; |
| |
| #[test] |
| #[should_panic] |
| fn read_big_endian() { |
| let buf = [0; $maximally_small]; |
| BigEndian::$read(&buf, $maximally_small + 1); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn read_little_endian() { |
| let buf = [0; $maximally_small]; |
| LittleEndian::$read(&buf, $maximally_small + 1); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn read_native_endian() { |
| let buf = [0; $maximally_small]; |
| NativeEndian::$read(&buf, $maximally_small + 1); |
| } |
| } |
| ); |
| } |
| |
| too_small!(small_u16, 1, 0, read_u16, write_u16); |
| too_small!(small_i16, 1, 0, read_i16, write_i16); |
| too_small!(small_u32, 3, 0, read_u32, write_u32); |
| too_small!(small_i32, 3, 0, read_i32, write_i32); |
| too_small!(small_u64, 7, 0, read_u64, write_u64); |
| too_small!(small_i64, 7, 0, read_i64, write_i64); |
| too_small!(small_f32, 3, 0.0, read_f32, write_f32); |
| too_small!(small_f64, 7, 0.0, read_f64, write_f64); |
| |
| too_small!(small_uint_1, 1, read_uint); |
| too_small!(small_uint_2, 2, read_uint); |
| too_small!(small_uint_3, 3, read_uint); |
| too_small!(small_uint_4, 4, read_uint); |
| too_small!(small_uint_5, 5, read_uint); |
| too_small!(small_uint_6, 6, read_uint); |
| too_small!(small_uint_7, 7, read_uint); |
| |
| too_small!(small_int_1, 1, read_int); |
| too_small!(small_int_2, 2, read_int); |
| too_small!(small_int_3, 3, read_int); |
| too_small!(small_int_4, 4, read_int); |
| too_small!(small_int_5, 5, read_int); |
| too_small!(small_int_6, 6, read_int); |
| too_small!(small_int_7, 7, read_int); |
| |
| #[test] |
| fn uint_bigger_buffer() { |
| use {ByteOrder, LittleEndian}; |
| let n = LittleEndian::read_uint(&[1, 2, 3, 4, 5, 6, 7, 8], 5); |
| assert_eq!(n, 0x0504030201); |
| } |
| } |