blob: 39b5b133e14b68adcf6fc2e5fe442584b56ae1cf [file] [log] [blame]
/*!
This crate provides convenience methods for encoding and decoding numbers
in either big-endian or little-endian order.
The organization of the crate is pretty simple. A trait, `ByteOrder`, specifies
byte conversion methods for each type of number in Rust (sans numbers that have
a platform dependent size like `usize` and `isize`). Two types, `BigEndian`
and `LittleEndian` implement these methods. Finally, `ReadBytesExt` and
`WriteBytesExt` provide convenience methods available to all types that
implement `Read` and `Write`.
# Examples
Read unsigned 16 bit big-endian integers from a `Read` type:
```rust
use std::io::Cursor;
use byteorder::{BigEndian, ReadBytesExt};
let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
// Note that we use type parameters to indicate which kind of byte order
// we want!
assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap());
assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap());
```
Write unsigned 16 bit little-endian integers to a `Write` type:
```rust
use byteorder::{LittleEndian, WriteBytesExt};
let mut wtr = vec![];
wtr.write_u16::<LittleEndian>(517).unwrap();
wtr.write_u16::<LittleEndian>(768).unwrap();
assert_eq!(wtr, vec![5, 2, 0, 3]);
```
*/
#![crate_name = "byteorder"]
#![doc(html_root_url = "http://burntsushi.net/rustdoc/byteorder")]
#![deny(missing_docs)]
#![feature(core, io)]
#![cfg_attr(test, feature(test))]
extern crate bswap;
use std::mem::transmute;
pub use new::{ReadBytesExt, WriteBytesExt, Error, Result};
mod new;
fn extend_sign(val: u64, nbytes: usize) -> i64 {
let shift = (8 - nbytes) * 8;
(val << shift) as i64 >> shift
}
/// ByteOrder describes types that can serialize integers as bytes.
///
/// Note that `Self` does not appear anywhere in this trait's definition!
/// Therefore, in order to use it, you'll need to use syntax like
/// `<T as ByteOrder>::read_u16(&[0, 1])` where `T` implements `ByteOrder`.
///
/// This crate provides two types that implement `ByteOrder`: `BigEndian`
/// and `LittleEndian`.
///
/// # Examples
///
/// Write and read `u32` numbers in little endian order:
///
/// ```rust
/// use byteorder::{ByteOrder, LittleEndian};
///
/// let mut buf = [0; 4];
/// <LittleEndian as ByteOrder>::write_u32(&mut buf, 1_000_000);
/// assert_eq!(1_000_000, <LittleEndian as ByteOrder>::read_u32(&buf));
/// ```
///
/// Write and read `i16` numbers in big endian order:
///
/// ```rust
/// use byteorder::{ByteOrder, BigEndian};
///
/// let mut buf = [0; 2];
/// <BigEndian as ByteOrder>::write_i16(&mut buf, -50_000);
/// assert_eq!(-50_000, <BigEndian as ByteOrder>::read_i16(&buf));
/// ```
pub trait ByteOrder : std::marker::MarkerTrait {
/// Reads an unsigned 16 bit integer from `buf`.
///
/// Task failure occurs when `buf.len() < 2`.
fn read_u16(buf: &[u8]) -> u16;
/// Reads an unsigned 32 bit integer from `buf`.
///
/// Task failure occurs when `buf.len() < 4`.
fn read_u32(buf: &[u8]) -> u32;
/// Reads an unsigned 64 bit integer from `buf`.
///
/// Task failure occurs when `buf.len() < 8`.
fn read_u64(buf: &[u8]) -> u64;
/// Reads an unsigned n-bytes integer from `buf`.
///
/// Task failure occurs when `nbytes < 1` or `nbytes > 8` or
/// `buf.len() < nbytes`
fn read_uint(buf: &[u8], nbytes: usize) -> u64;
/// Writes an unsigned 16 bit integer `n` to `buf`.
///
/// Task failure occurs when `buf.len() < 2`.
fn write_u16(buf: &mut [u8], n: u16);
/// Writes an unsigned 32 bit integer `n` to `buf`.
///
/// Task failure occurs when `buf.len() < 4`.
fn write_u32(buf: &mut [u8], n: u32);
/// Writes an unsigned 64 bit integer `n` to `buf`.
///
/// Task failure occurs when `buf.len() < 8`.
fn write_u64(buf: &mut [u8], n: u64);
/// Reads a signed 16 bit integer from `buf`.
///
/// Task failure occurs when `buf.len() < 2`.
fn read_i16(buf: &[u8]) -> i16 {
<Self as ByteOrder>::read_u16(buf) as i16
}
/// Reads a signed 32 bit integer from `buf`.
///
/// Task failure occurs when `buf.len() < 4`.
fn read_i32(buf: &[u8]) -> i32 {
<Self as ByteOrder>::read_u32(buf) as i32
}
/// Reads a signed 64 bit integer from `buf`.
///
/// Task failure occurs when `buf.len() < 8`.
fn read_i64(buf: &[u8]) -> i64 {
<Self as ByteOrder>::read_u64(buf) as i64
}
/// Reads a signed n-bytes integer from `buf`.
///
/// Task failure occurs when `nbytes < 1` or `nbytes > 8` or
/// `buf.len() < nbytes`
fn read_int(buf: &[u8], nbytes: usize) -> i64 {
extend_sign(<Self as ByteOrder>::read_uint(buf, nbytes), nbytes)
}
/// Reads a IEEE754 single-precision (4 bytes) floating point number.
///
/// Task failure occurs when `buf.len() < 4`.
fn read_f32(buf: &[u8]) -> f32 {
unsafe { transmute(<Self as ByteOrder>::read_u32(buf)) }
}
/// Reads a IEEE754 double-precision (8 bytes) floating point number.
///
/// Task failure occurs when `buf.len() < 8`.
fn read_f64(buf: &[u8]) -> f64 {
unsafe { transmute(<Self as ByteOrder>::read_u64(buf)) }
}
/// Writes a signed 16 bit integer `n` to `buf`.
///
/// Task failure occurs when `buf.len() < 2`.
fn write_i16(buf: &mut [u8], n: i16) {
<Self as ByteOrder>::write_u16(buf, n as u16)
}
/// Writes a signed 32 bit integer `n` to `buf`.
///
/// Task failure occurs when `buf.len() < 4`.
fn write_i32(buf: &mut [u8], n: i32) {
<Self as ByteOrder>::write_u32(buf, n as u32)
}
/// Writes a signed 64 bit integer `n` to `buf`.
///
/// Task failure occurs when `buf.len() < 8`.
fn write_i64(buf: &mut [u8], n: i64) {
<Self as ByteOrder>::write_u64(buf, n as u64)
}
/// Writes a IEEE754 single-precision (4 bytes) floating point number.
///
/// Task failure occurs when `buf.len() < 4`.
fn write_f32(buf: &mut [u8], n: f32) {
<Self as ByteOrder>::write_u32(buf, unsafe { transmute(n) })
}
/// Writes a IEEE754 double-precision (8 bytes) floating point number.
///
/// Task failure occurs when `buf.len() < 8`.
fn write_f64(buf: &mut [u8], n: f64) {
<Self as ByteOrder>::write_u64(buf, unsafe { transmute(n) })
}
}
/// Defines big-endian serialization.
///
/// Note that this type has no value constructor. It is used purely at the
/// type level.
#[allow(missing_copy_implementations)] pub enum BigEndian {}
/// Defines little-endian serialization.
///
/// Note that this type has no value constructor. It is used purely at the
/// type level.
#[allow(missing_copy_implementations)] pub enum LittleEndian {}
/// Defines system native-endian serialization.
///
/// Note that this type has no value constructor. It is used purely at the
/// type level.
#[cfg(target_endian = "little")]
pub type NativeEndian = LittleEndian;
/// Defines system native-endian serialization.
///
/// Note that this type has no value constructor. It is used purely at the
/// type level.
#[cfg(target_endian = "big")]
pub type NativeEndian = BigEndian;
impl ByteOrder for BigEndian {
fn read_u16(buf: &[u8]) -> u16 {
bswap::beu16::decode(buf)
}
fn read_u32(buf: &[u8]) -> u32 {
bswap::beu32::decode(buf)
}
fn read_u64(buf: &[u8]) -> u64 {
bswap::beu64::decode(buf)
}
fn read_uint(buf: &[u8], nbytes: usize) -> u64 {
bswap::beusize::decode(buf, nbytes)
}
fn write_u16(buf: &mut [u8], n: u16) {
bswap::beu16::encode(buf, n);
}
fn write_u32(buf: &mut [u8], n: u32) {
bswap::beu32::encode(buf, n);
}
fn write_u64(buf: &mut [u8], n: u64) {
bswap::beu64::encode(buf, n);
}
}
impl ByteOrder for LittleEndian {
fn read_u16(buf: &[u8]) -> u16 {
bswap::leu16::decode(buf)
}
fn read_u32(buf: &[u8]) -> u32 {
bswap::leu32::decode(buf)
}
fn read_u64(buf: &[u8]) -> u64 {
bswap::leu64::decode(buf)
}
fn read_uint(buf: &[u8], nbytes: usize) -> u64 {
bswap::leusize::decode(buf, nbytes)
}
fn write_u16(buf: &mut [u8], n: u16) {
bswap::leu16::encode(buf, n);
}
fn write_u32(buf: &mut [u8], n: u32) {
bswap::leu32::encode(buf, n);
}
fn write_u64(buf: &mut [u8], n: u64) {
bswap::leu64::encode(buf, n);
}
}
#[cfg(test)]
mod test {
extern crate quickcheck;
extern crate rand;
use test::rand::thread_rng;
use test::quickcheck::{QuickCheck, StdGen, Testable};
fn qc_sized<A: Testable>(f: A, size: u64) {
QuickCheck::new()
.gen(StdGen::new(thread_rng(), size as usize))
.tests(1_00)
.max_tests(10_000)
.quickcheck(f);
}
macro_rules! qc_byte_order {
($name:ident, $ty_int:ident, $max:ident,
$bytes:expr, $read:ident, $write:ident) => (
mod $name {
use std::$ty_int;
use {BigEndian, ByteOrder, NativeEndian, LittleEndian};
use super::qc_sized;
#[test]
fn big_endian() {
let max = $ty_int::$max as u64 - 1 >> (8 * (8 - $bytes));
fn prop(n: $ty_int) -> bool {
let mut buf = [0; 8];
<BigEndian as ByteOrder>::$write(&mut buf, n);
n == <BigEndian as ByteOrder>::$read(
&mut buf[8 - $bytes..], $bytes)
}
qc_sized(prop as fn($ty_int) -> bool, max as u64 - 1);
}
#[test]
fn little_endian() {
let max = $ty_int::$max as u64 - 1 >> (8 * (8 - $bytes));
fn prop(n: $ty_int) -> bool {
let mut buf = [0; 8];
<LittleEndian as ByteOrder>::$write(&mut buf, n);
n == <LittleEndian as ByteOrder>::$read(
&mut buf[..$bytes], $bytes)
}
qc_sized(prop as fn($ty_int) -> bool, max as u64 - 1);
}
#[test]
fn native_endian() {
let max = $ty_int::$max as u64 - 1 >> (8 * (8 - $bytes));
fn prop(n: $ty_int) -> bool {
let mut buf = [0; 8];
<NativeEndian as ByteOrder>::$write(&mut buf, n);
n == <NativeEndian as ByteOrder>::$read(
&mut buf[..$bytes], $bytes)
}
qc_sized(prop as fn($ty_int) -> bool, max as u64 - 1);
}
}
);
($name:ident, $ty_int:ident, $max:ident,
$read:ident, $write:ident) => (
mod $name {
use std::$ty_int;
use std::mem::size_of;
use {BigEndian, ByteOrder, NativeEndian, LittleEndian};
use super::qc_sized;
#[test]
fn big_endian() {
fn prop(n: $ty_int) -> bool {
let bytes = size_of::<$ty_int>();
let mut buf = [0; 8];
<BigEndian as ByteOrder>::$write(
&mut buf[8 - bytes..], n);
n == <BigEndian as ByteOrder>::$read(
&mut buf[8 - bytes..])
}
qc_sized(prop as fn($ty_int) -> bool,
$ty_int::$max as u64 - 1);
}
#[test]
fn little_endian() {
fn prop(n: $ty_int) -> bool {
let bytes = size_of::<$ty_int>();
let mut buf = [0; 8];
<LittleEndian as ByteOrder>::$write(
&mut buf[..bytes], n);
n == <LittleEndian as ByteOrder>::$read(
&mut buf[..bytes])
}
qc_sized(prop as fn($ty_int) -> bool,
$ty_int::$max as u64 - 1);
}
#[test]
fn native_endian() {
fn prop(n: $ty_int) -> bool {
let bytes = size_of::<$ty_int>();
let mut buf = [0; 8];
<NativeEndian as ByteOrder>::$write(
&mut buf[..bytes], n);
n == <NativeEndian as ByteOrder>::$read(
&mut buf[..bytes])
}
qc_sized(prop as fn($ty_int) -> bool,
$ty_int::$max as u64 - 1);
}
}
);
}
qc_byte_order!(prop_u16, u16, MAX, read_u16, write_u16);
qc_byte_order!(prop_i16, i16, MAX, read_i16, write_i16);
qc_byte_order!(prop_u32, u32, MAX, read_u32, write_u32);
qc_byte_order!(prop_i32, i32, MAX, read_i32, write_i32);
qc_byte_order!(prop_u64, u64, MAX, read_u64, write_u64);
qc_byte_order!(prop_i64, i64, MAX, read_i64, write_i64);
qc_byte_order!(prop_f32, f32, MAX, read_f32, write_f32);
qc_byte_order!(prop_f64, f64, MAX, read_f64, write_f64);
qc_byte_order!(prop_uint_1, u64, MAX, 1, read_uint, write_u64);
qc_byte_order!(prop_uint_2, u64, MAX, 2, read_uint, write_u64);
qc_byte_order!(prop_uint_3, u64, MAX, 3, read_uint, write_u64);
qc_byte_order!(prop_uint_4, u64, MAX, 4, read_uint, write_u64);
qc_byte_order!(prop_uint_5, u64, MAX, 5, read_uint, write_u64);
qc_byte_order!(prop_uint_6, u64, MAX, 6, read_uint, write_u64);
qc_byte_order!(prop_uint_7, u64, MAX, 7, read_uint, write_u64);
qc_byte_order!(prop_uint_8, u64, MAX, 8, read_uint, write_u64);
qc_byte_order!(prop_int_1, i64, MAX, 1, read_int, write_i64);
qc_byte_order!(prop_int_2, i64, MAX, 2, read_int, write_i64);
qc_byte_order!(prop_int_3, i64, MAX, 3, read_int, write_i64);
qc_byte_order!(prop_int_4, i64, MAX, 4, read_int, write_i64);
qc_byte_order!(prop_int_5, i64, MAX, 5, read_int, write_i64);
qc_byte_order!(prop_int_6, i64, MAX, 6, read_int, write_i64);
qc_byte_order!(prop_int_7, i64, MAX, 7, read_int, write_i64);
qc_byte_order!(prop_int_8, i64, MAX, 8, read_int, write_i64);
macro_rules! qc_bytes_ext {
($name:ident, $ty_int:ident, $max:ident,
$bytes:expr, $read:ident, $write:ident) => (
mod $name {
use std::io::Cursor;
use std::$ty_int;
use {ReadBytesExt, WriteBytesExt, BigEndian, NativeEndian, LittleEndian};
use super::qc_sized;
#[test]
fn big_endian() {
let max = $ty_int::$max as u64 - 1 >> (8 * (8 - $bytes));
fn prop(n: $ty_int) -> bool {
let mut wtr = vec![];
wtr.$write::<BigEndian>(n).unwrap();
let mut rdr = Vec::new();
rdr.extend(wtr[8 - $bytes..].iter().map(|&x|x));
let mut rdr = Cursor::new(rdr);
n == rdr.$read::<BigEndian>($bytes).unwrap()
}
qc_sized(prop as fn($ty_int) -> bool, max);
}
#[test]
fn little_endian() {
let max = $ty_int::$max as u64 - 1 >> (8 * (8 - $bytes));
fn prop(n: $ty_int) -> bool {
let mut wtr = vec![];
wtr.$write::<LittleEndian>(n).unwrap();
let mut rdr = Cursor::new(wtr);
n == rdr.$read::<LittleEndian>($bytes).unwrap()
}
qc_sized(prop as fn($ty_int) -> bool, max);
}
#[test]
fn native_endian() {
let max = $ty_int::$max as u64 - 1 >> (8 * (8 - $bytes));
fn prop(n: $ty_int) -> bool {
let mut wtr = vec![];
wtr.$write::<NativeEndian>(n).unwrap();
let mut rdr = Cursor::new(wtr);
n == rdr.$read::<NativeEndian>($bytes).unwrap()
}
qc_sized(prop as fn($ty_int) -> bool, max);
}
}
);
($name:ident, $ty_int:ident,
$max:ident, $read:ident, $write:ident) => (
mod $name {
use std::io::Cursor;
use std::$ty_int;
use {ReadBytesExt, WriteBytesExt, BigEndian, NativeEndian, LittleEndian};
use super::qc_sized;
#[test]
fn big_endian() {
fn prop(n: $ty_int) -> bool {
let mut wtr = vec![];
wtr.$write::<BigEndian>(n).unwrap();
let mut rdr = Cursor::new(wtr);
n == rdr.$read::<BigEndian>().unwrap()
}
qc_sized(prop as fn($ty_int) -> bool,
$ty_int::$max as u64 - 1);
}
#[test]
fn little_endian() {
fn prop(n: $ty_int) -> bool {
let mut wtr = vec![];
wtr.$write::<LittleEndian>(n).unwrap();
let mut rdr = Cursor::new(wtr);
n == rdr.$read::<LittleEndian>().unwrap()
}
qc_sized(prop as fn($ty_int) -> bool,
$ty_int::$max as u64 - 1);
}
#[test]
fn native_endian() {
fn prop(n: $ty_int) -> bool {
let mut wtr = vec![];
wtr.$write::<NativeEndian>(n).unwrap();
let mut rdr = Cursor::new(wtr);
n == rdr.$read::<NativeEndian>().unwrap()
}
qc_sized(prop as fn($ty_int) -> bool,
$ty_int::$max as u64 - 1);
}
}
);
}
qc_bytes_ext!(prop_ext_u16, u16, MAX, read_u16, write_u16);
qc_bytes_ext!(prop_ext_i16, i16, MAX, read_i16, write_i16);
qc_bytes_ext!(prop_ext_u32, u32, MAX, read_u32, write_u32);
qc_bytes_ext!(prop_ext_i32, i32, MAX, read_i32, write_i32);
qc_bytes_ext!(prop_ext_u64, u64, MAX, read_u64, write_u64);
qc_bytes_ext!(prop_ext_i64, i64, MAX, read_i64, write_i64);
qc_bytes_ext!(prop_ext_f32, f32, MAX, read_f32, write_f32);
qc_bytes_ext!(prop_ext_f64, f64, MAX, read_f64, write_f64);
qc_bytes_ext!(prop_ext_uint_1, u64, MAX, 1, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_2, u64, MAX, 2, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_3, u64, MAX, 3, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_4, u64, MAX, 4, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_5, u64, MAX, 5, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_6, u64, MAX, 6, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_7, u64, MAX, 7, read_uint, write_u64);
qc_bytes_ext!(prop_ext_uint_8, u64, MAX, 8, read_uint, write_u64);
qc_bytes_ext!(prop_ext_int_1, i64, MAX, 1, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_2, i64, MAX, 2, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_3, i64, MAX, 3, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_4, i64, MAX, 4, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_5, i64, MAX, 5, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_6, i64, MAX, 6, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_7, i64, MAX, 7, read_int, write_i64);
qc_bytes_ext!(prop_ext_int_8, i64, MAX, 8, read_int, write_i64);
// Test that all of the byte conversion functions panic when given a
// buffer that is too small.
//
// These tests are critical to ensure safety, otherwise we might end up
// with a buffer overflow.
macro_rules! too_small {
($name:ident, $maximally_small:expr, $zero:expr,
$read:ident, $write:ident) => (
mod $name {
use {BigEndian, ByteOrder, NativeEndian, LittleEndian};
#[test]
#[should_panic]
fn read_big_endian() {
let buf = [0; $maximally_small];
<BigEndian as ByteOrder>::$read(&buf);
}
#[test]
#[should_panic]
fn read_little_endian() {
let buf = [0; $maximally_small];
<LittleEndian as ByteOrder>::$read(&buf);
}
#[test]
#[should_panic]
fn read_native_endian() {
let buf = [0; $maximally_small];
<NativeEndian as ByteOrder>::$read(&buf);
}
#[test]
#[should_panic]
fn write_big_endian() {
let mut buf = [0; $maximally_small];
<BigEndian as ByteOrder>::$write(&mut buf, $zero);
}
#[test]
#[should_panic]
fn write_little_endian() {
let mut buf = [0; $maximally_small];
<LittleEndian as ByteOrder>::$write(&mut buf, $zero);
}
#[test]
#[should_panic]
fn write_native_endian() {
let mut buf = [0; $maximally_small];
<NativeEndian as ByteOrder>::$write(&mut buf, $zero);
}
}
);
($name:ident, $maximally_small:expr, $read:ident) => (
mod $name {
use {BigEndian, ByteOrder, NativeEndian, LittleEndian};
#[test]
#[should_panic]
fn read_big_endian() {
let buf = [0; $maximally_small];
<BigEndian as ByteOrder>::$read(&buf,
$maximally_small + 1);
}
#[test]
#[should_panic]
fn read_little_endian() {
let buf = [0; $maximally_small];
<LittleEndian as ByteOrder>::$read(&buf,
$maximally_small + 1);
}
#[test]
#[should_panic]
fn read_native_endian() {
let buf = [0; $maximally_small];
<NativeEndian as ByteOrder>::$read(&buf,
$maximally_small + 1);
}
}
);
}
too_small!(small_u16, 1, 0, read_u16, write_u16);
too_small!(small_i16, 1, 0, read_i16, write_i16);
too_small!(small_u32, 3, 0, read_u32, write_u32);
too_small!(small_i32, 3, 0, read_i32, write_i32);
too_small!(small_u64, 7, 0, read_u64, write_u64);
too_small!(small_i64, 7, 0, read_i64, write_i64);
too_small!(small_f32, 3, 0.0, read_f32, write_f32);
too_small!(small_f64, 7, 0.0, read_f64, write_f64);
too_small!(small_uint_1, 1, read_uint);
too_small!(small_uint_2, 2, read_uint);
too_small!(small_uint_3, 3, read_uint);
too_small!(small_uint_4, 4, read_uint);
too_small!(small_uint_5, 5, read_uint);
too_small!(small_uint_6, 6, read_uint);
too_small!(small_uint_7, 7, read_uint);
too_small!(small_int_1, 1, read_int);
too_small!(small_int_2, 2, read_int);
too_small!(small_int_3, 3, read_int);
too_small!(small_int_4, 4, read_int);
too_small!(small_int_5, 5, read_int);
too_small!(small_int_6, 6, read_int);
too_small!(small_int_7, 7, read_int);
}
#[cfg(test)]
mod bench {
extern crate test;
macro_rules! bench_num {
($name:ident, $read:ident, $bytes:expr, $data:expr) => (
mod $name {
use {ByteOrder, BigEndian, NativeEndian, LittleEndian};
use super::test::Bencher;
use super::test::black_box as bb;
const NITER: usize = 100_000;
#[bench]
fn read_big_endian(b: &mut Bencher) {
let buf = $data;
b.iter(|| {
for _ in 0..NITER {
bb(<BigEndian as ByteOrder>::$read(&buf,
$bytes));
}
});
}
#[bench]
fn read_little_endian(b: &mut Bencher) {
let buf = $data;
b.iter(|| {
for _ in 0..NITER {
bb(<LittleEndian as ByteOrder>::$read(&buf,
$bytes));
}
});
}
#[bench]
fn read_native_endian(b: &mut Bencher) {
let buf = $data;
b.iter(|| {
for _ in 0..NITER {
bb(<NativeEndian as ByteOrder>::$read(&buf,
$bytes));
}
});
}
}
);
($ty:ident, $max:ident,
$read:ident, $write:ident, $size:expr, $data:expr) => (
mod $ty {
use std::$ty;
use {ByteOrder, BigEndian, NativeEndian, LittleEndian};
use super::test::Bencher;
use super::test::black_box as bb;
const NITER: usize = 100_000;
#[bench]
fn read_big_endian(b: &mut Bencher) {
let buf = $data;
b.iter(|| {
for _ in 0..NITER {
bb(<BigEndian as ByteOrder>::$read(&buf));
}
});
}
#[bench]
fn read_little_endian(b: &mut Bencher) {
let buf = $data;
b.iter(|| {
for _ in 0..NITER {
bb(<LittleEndian as ByteOrder>::$read(&buf));
}
});
}
#[bench]
fn read_native_endian(b: &mut Bencher) {
let buf = $data;
b.iter(|| {
for _ in 0..NITER {
bb(<NativeEndian as ByteOrder>::$read(&buf));
}
});
}
#[bench]
fn write_big_endian(b: &mut Bencher) {
let mut buf = $data;
let n = $ty::$max;
b.iter(|| {
for _ in 0..NITER {
bb(<BigEndian as ByteOrder>::$write(&mut buf, n));
}
});
}
#[bench]
fn write_little_endian(b: &mut Bencher) {
let mut buf = $data;
let n = $ty::$max;
b.iter(|| {
for _ in 0..NITER {
bb(<LittleEndian as ByteOrder>::$write(&mut buf,
n));
}
});
}
#[bench]
fn write_native_endian(b: &mut Bencher) {
let mut buf = $data;
let n = $ty::$max;
b.iter(|| {
for _ in 0..NITER {
bb(<NativeEndian as ByteOrder>::$write(&mut buf,
n));
}
});
}
}
);
}
bench_num!(u16, MAX, read_u16, write_u16, 2, [1, 2]);
bench_num!(i16, MAX, read_i16, write_i16, 2, [1, 2]);
bench_num!(u32, MAX, read_u32, write_u32, 4, [1, 2, 3, 4]);
bench_num!(i32, MAX, read_i32, write_i32, 4, [1, 2, 3, 4]);
bench_num!(u64, MAX, read_u64, write_u64, 8, [1, 2, 3, 4, 5, 6, 7, 8]);
bench_num!(i64, MAX, read_i64, write_i64, 8, [1, 2, 3, 4, 5, 6, 7, 8]);
bench_num!(f32, MAX, read_f32, write_f32, 4, [1, 2, 3, 4]);
bench_num!(f64, MAX, read_f64, write_f64, 8,
[1, 2, 3, 4, 5, 6, 7, 8]);
bench_num!(uint_1, read_uint, 1, [1]);
bench_num!(uint_2, read_uint, 2, [1, 2]);
bench_num!(uint_3, read_uint, 3, [1, 2, 3]);
bench_num!(uint_4, read_uint, 4, [1, 2, 3, 4]);
bench_num!(uint_5, read_uint, 5, [1, 2, 3, 4, 5]);
bench_num!(uint_6, read_uint, 6, [1, 2, 3, 4, 5, 6]);
bench_num!(uint_7, read_uint, 7, [1, 2, 3, 4, 5, 6, 7]);
bench_num!(uint_8, read_uint, 8, [1, 2, 3, 4, 5, 6, 7, 8]);
bench_num!(int_1, read_int, 1, [1]);
bench_num!(int_2, read_int, 2, [1, 2]);
bench_num!(int_3, read_int, 3, [1, 2, 3]);
bench_num!(int_4, read_int, 4, [1, 2, 3, 4]);
bench_num!(int_5, read_int, 5, [1, 2, 3, 4, 5]);
bench_num!(int_6, read_int, 6, [1, 2, 3, 4, 5, 6]);
bench_num!(int_7, read_int, 7, [1, 2, 3, 4, 5, 6, 7]);
bench_num!(int_8, read_int, 8, [1, 2, 3, 4, 5, 6, 7, 8]);
}