blob: 5beb0e16ae926d1b06dccecc319c6092b36c1f87 [file] [log] [blame]
use std::borrow::Cow;
use std::error;
use std::ffi::{OsStr, OsString};
use std::fmt;
use std::iter;
use std::ops;
use std::path::{Path, PathBuf};
use std::ptr;
use std::str;
use std::vec;
use crate::ext_slice::ByteSlice;
use crate::utf8::{self, Utf8Error};
/// Concatenate the elements given by the iterator together into a single
/// `Vec<u8>`.
///
/// The elements may be any type that can be cheaply converted into an `&[u8]`.
/// This includes, but is not limited to, `&str`, `&BStr` and `&[u8]` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr;
///
/// let s = bstr::concat(&["foo", "bar", "baz"]);
/// assert_eq!(s, "foobarbaz".as_bytes());
/// ```
#[inline]
pub fn concat<T, I>(elements: I) -> Vec<u8>
where
T: AsRef<[u8]>,
I: IntoIterator<Item = T>,
{
let mut dest = vec![];
for element in elements {
dest.push_str(element);
}
dest
}
/// Join the elements given by the iterator with the given separator into a
/// single `Vec<u8>`.
///
/// Both the separator and the elements may be any type that can be cheaply
/// converted into an `&[u8]`. This includes, but is not limited to,
/// `&str`, `&BStr` and `&[u8]` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr;
///
/// let s = bstr::join(",", &["foo", "bar", "baz"]);
/// assert_eq!(s, "foo,bar,baz".as_bytes());
/// ```
#[inline]
pub fn join<B, T, I>(separator: B, elements: I) -> Vec<u8>
where
B: AsRef<[u8]>,
T: AsRef<[u8]>,
I: IntoIterator<Item = T>,
{
let mut it = elements.into_iter();
let mut dest = vec![];
match it.next() {
None => return dest,
Some(first) => {
dest.push_str(first);
}
}
for element in it {
dest.push_str(&separator);
dest.push_str(element);
}
dest
}
impl ByteVec for Vec<u8> {
#[inline]
fn as_vec(&self) -> &Vec<u8> {
self
}
#[inline]
fn as_vec_mut(&mut self) -> &mut Vec<u8> {
self
}
#[inline]
fn into_vec(self) -> Vec<u8> {
self
}
}
/// Ensure that callers cannot implement `ByteSlice` by making an
/// umplementable trait its super trait.
pub trait Sealed {}
impl Sealed for Vec<u8> {}
/// A trait that extends `Vec<u8>` with string oriented methods.
///
/// Note that when using the constructor methods, such as
/// `ByteVec::from_slice`, one should actually call them using the concrete
/// type. For example:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let s = Vec::from_slice(b"abc"); // NOT ByteVec::from_slice("...")
/// assert_eq!(s, B("abc"));
/// ```
pub trait ByteVec: Sealed {
/// A method for accessing the raw vector bytes of this type. This is
/// always a no-op and callers shouldn't care about it. This only exists
/// for making the extension trait work.
#[doc(hidden)]
fn as_vec(&self) -> &Vec<u8>;
/// A method for accessing the raw vector bytes of this type, mutably. This
/// is always a no-op and callers shouldn't care about it. This only exists
/// for making the extension trait work.
#[doc(hidden)]
fn as_vec_mut(&mut self) -> &mut Vec<u8>;
/// A method for consuming ownership of this vector. This is always a no-op
/// and callers shouldn't care about it. This only exists for making the
/// extension trait work.
#[doc(hidden)]
fn into_vec(self) -> Vec<u8>
where
Self: Sized;
/// Create a new owned byte string from the given byte slice.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let s = Vec::from_slice(b"abc");
/// assert_eq!(s, B("abc"));
/// ```
#[inline]
fn from_slice<B: AsRef<[u8]>>(bytes: B) -> Vec<u8> {
bytes.as_ref().to_vec()
}
/// Create a new byte string from an owned OS string.
///
/// On Unix, this always succeeds and is zero cost. On non-Unix systems,
/// this returns the original OS string if it is not valid UTF-8.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::ffi::OsString;
///
/// use bstr::{B, ByteVec};
///
/// let os_str = OsString::from("foo");
/// let bs = Vec::from_os_string(os_str).expect("valid UTF-8");
/// assert_eq!(bs, B("foo"));
/// ```
#[inline]
fn from_os_string(os_str: OsString) -> Result<Vec<u8>, OsString> {
#[cfg(unix)]
#[inline]
fn imp(os_str: OsString) -> Result<Vec<u8>, OsString> {
use std::os::unix::ffi::OsStringExt;
Ok(Vec::from(os_str.into_vec()))
}
#[cfg(not(unix))]
#[inline]
fn imp(os_str: OsString) -> Result<Vec<u8>, OsString> {
os_str.into_string().map(Vec::from)
}
imp(os_str)
}
/// Lossily create a new byte string from an OS string slice.
///
/// On Unix, this always succeeds, is zero cost and always returns a slice.
/// On non-Unix systems, this does a UTF-8 check. If the given OS string
/// slice is not valid UTF-8, then it is lossily decoded into valid UTF-8
/// (with invalid bytes replaced by the Unicode replacement codepoint).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::ffi::OsStr;
///
/// use bstr::{B, ByteVec};
///
/// let os_str = OsStr::new("foo");
/// let bs = Vec::from_os_str_lossy(os_str);
/// assert_eq!(bs, B("foo"));
/// ```
#[inline]
fn from_os_str_lossy<'a>(os_str: &'a OsStr) -> Cow<'a, [u8]> {
#[cfg(unix)]
#[inline]
fn imp<'a>(os_str: &'a OsStr) -> Cow<'a, [u8]> {
use std::os::unix::ffi::OsStrExt;
Cow::Borrowed(os_str.as_bytes())
}
#[cfg(not(unix))]
#[inline]
fn imp<'a>(os_str: &'a OsStr) -> Cow<'a, [u8]> {
match os_str.to_string_lossy() {
Cow::Borrowed(x) => Cow::Borrowed(x.as_bytes()),
Cow::Owned(x) => Cow::Owned(Vec::from(x)),
}
}
imp(os_str)
}
/// Create a new byte string from an owned file path.
///
/// On Unix, this always succeeds and is zero cost. On non-Unix systems,
/// this returns the original path if it is not valid UTF-8.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::path::PathBuf;
///
/// use bstr::{B, ByteVec};
///
/// let path = PathBuf::from("foo");
/// let bs = Vec::from_path_buf(path).expect("must be valid UTF-8");
/// assert_eq!(bs, B("foo"));
/// ```
#[inline]
fn from_path_buf(path: PathBuf) -> Result<Vec<u8>, PathBuf> {
Vec::from_os_string(path.into_os_string()).map_err(PathBuf::from)
}
/// Lossily create a new byte string from a file path.
///
/// On Unix, this always succeeds, is zero cost and always returns a slice.
/// On non-Unix systems, this does a UTF-8 check. If the given path is not
/// valid UTF-8, then it is lossily decoded into valid UTF-8 (with invalid
/// bytes replaced by the Unicode replacement codepoint).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::path::Path;
///
/// use bstr::{B, ByteVec};
///
/// let path = Path::new("foo");
/// let bs = Vec::from_path_lossy(path);
/// assert_eq!(bs, B("foo"));
/// ```
#[inline]
fn from_path_lossy<'a>(path: &'a Path) -> Cow<'a, [u8]> {
Vec::from_os_str_lossy(path.as_os_str())
}
/// Appends the given byte to the end of this byte string.
///
/// Note that this is equivalent to the generic `Vec::push` method. This
/// method is provided to permit callers to explicitly differentiate
/// between pushing bytes, codepoints and strings.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = <Vec<u8>>::from("abc");
/// s.push_byte(b'\xE2');
/// s.push_byte(b'\x98');
/// s.push_byte(b'\x83');
/// assert_eq!(s, "abc☃".as_bytes());
/// ```
#[inline]
fn push_byte(&mut self, byte: u8) {
self.as_vec_mut().push(byte);
}
/// Appends the given `char` to the end of this byte string.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = <Vec<u8>>::from("abc");
/// s.push_char('1');
/// s.push_char('2');
/// s.push_char('3');
/// assert_eq!(s, "abc123".as_bytes());
/// ```
#[inline]
fn push_char(&mut self, ch: char) {
if ch.len_utf8() == 1 {
self.push_byte(ch as u8);
return;
}
self.as_vec_mut()
.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes());
}
/// Appends the given slice to the end of this byte string. This accepts
/// any type that be converted to a `&[u8]`. This includes, but is not
/// limited to, `&str`, `&BStr`, and of course, `&[u8]` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = <Vec<u8>>::from("abc");
/// s.push_str(b"123");
/// assert_eq!(s, "abc123".as_bytes());
/// ```
#[inline]
fn push_str<B: AsRef<[u8]>>(&mut self, bytes: B) {
self.as_vec_mut().extend_from_slice(bytes.as_ref());
}
/// Converts a `Vec<u8>` into a `String` if and only if this byte string is
/// valid UTF-8.
///
/// If it is not valid UTF-8, then a
/// [`FromUtf8Error`](struct.FromUtf8Error.html)
/// is returned. (This error can be used to examine why UTF-8 validation
/// failed, or to regain the original byte string.)
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// # fn example() -> Result<(), Box<dyn std::error::Error>> {
/// let bytes = Vec::from("hello");
/// let string = bytes.into_string()?;
///
/// assert_eq!("hello", string);
/// # Ok(()) }; example().unwrap()
/// ```
///
/// If this byte string is not valid UTF-8, then an error will be returned.
/// That error can then be used to inspect the location at which invalid
/// UTF-8 was found, or to regain the original byte string:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let bytes = Vec::from_slice(b"foo\xFFbar");
/// let err = bytes.into_string().unwrap_err();
///
/// assert_eq!(err.utf8_error().valid_up_to(), 3);
/// assert_eq!(err.utf8_error().error_len(), Some(1));
///
/// // At no point in this example is an allocation performed.
/// let bytes = Vec::from(err.into_vec());
/// assert_eq!(bytes, B(b"foo\xFFbar"));
/// ```
#[inline]
fn into_string(self) -> Result<String, FromUtf8Error>
where
Self: Sized,
{
match utf8::validate(self.as_vec()) {
Err(err) => Err(FromUtf8Error { original: self.into_vec(), err }),
Ok(()) => {
// SAFETY: This is safe because of the guarantees provided by
// utf8::validate.
unsafe { Ok(self.into_string_unchecked()) }
}
}
}
/// Lossily converts a `Vec<u8>` into a `String`. If this byte string
/// contains invalid UTF-8, then the invalid bytes are replaced with the
/// Unicode replacement codepoint.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let bytes = Vec::from_slice(b"foo\xFFbar");
/// let string = bytes.into_string_lossy();
/// assert_eq!(string, "foo\u{FFFD}bar");
/// ```
#[inline]
fn into_string_lossy(self) -> String
where
Self: Sized,
{
match self.as_vec().to_str_lossy() {
Cow::Borrowed(_) => {
// SAFETY: to_str_lossy() returning a Cow::Borrowed guarantees
// the entire string is valid utf8.
unsafe { self.into_string_unchecked() }
}
Cow::Owned(s) => s,
}
}
/// Unsafely convert this byte string into a `String`, without checking for
/// valid UTF-8.
///
/// # Safety
///
/// Callers *must* ensure that this byte string is valid UTF-8 before
/// calling this method. Converting a byte string into a `String` that is
/// not valid UTF-8 is considered undefined behavior.
///
/// This routine is useful in performance sensitive contexts where the
/// UTF-8 validity of the byte string is already known and it is
/// undesirable to pay the cost of an additional UTF-8 validation check
/// that [`into_string`](#method.into_string) performs.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// // SAFETY: This is safe because string literals are guaranteed to be
/// // valid UTF-8 by the Rust compiler.
/// let s = unsafe { Vec::from("☃βツ").into_string_unchecked() };
/// assert_eq!("☃βツ", s);
/// ```
#[inline]
unsafe fn into_string_unchecked(self) -> String
where
Self: Sized,
{
String::from_utf8_unchecked(self.into_vec())
}
/// Converts this byte string into an OS string, in place.
///
/// On Unix, this always succeeds and is zero cost. On non-Unix systems,
/// this returns the original byte string if it is not valid UTF-8.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::ffi::OsStr;
///
/// use bstr::ByteVec;
///
/// let bs = Vec::from("foo");
/// let os_str = bs.into_os_string().expect("should be valid UTF-8");
/// assert_eq!(os_str, OsStr::new("foo"));
/// ```
#[inline]
fn into_os_string(self) -> Result<OsString, Vec<u8>>
where
Self: Sized,
{
#[cfg(unix)]
#[inline]
fn imp(v: Vec<u8>) -> Result<OsString, Vec<u8>> {
use std::os::unix::ffi::OsStringExt;
Ok(OsString::from_vec(v))
}
#[cfg(not(unix))]
#[inline]
fn imp(v: Vec<u8>) -> Result<OsString, Vec<u8>> {
match v.into_string() {
Ok(s) => Ok(OsString::from(s)),
Err(err) => Err(err.into_vec()),
}
}
imp(self.into_vec())
}
/// Lossily converts this byte string into an OS string, in place.
///
/// On Unix, this always succeeds and is zero cost. On non-Unix systems,
/// this will perform a UTF-8 check and lossily convert this byte string
/// into valid UTF-8 using the Unicode replacement codepoint.
///
/// Note that this can prevent the correct roundtripping of file paths on
/// non-Unix systems such as Windows, where file paths are an arbitrary
/// sequence of 16-bit integers.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let bs = Vec::from_slice(b"foo\xFFbar");
/// let os_str = bs.into_os_string_lossy();
/// assert_eq!(os_str.to_string_lossy(), "foo\u{FFFD}bar");
/// ```
#[inline]
fn into_os_string_lossy(self) -> OsString
where
Self: Sized,
{
#[cfg(unix)]
#[inline]
fn imp(v: Vec<u8>) -> OsString {
use std::os::unix::ffi::OsStringExt;
OsString::from_vec(v)
}
#[cfg(not(unix))]
#[inline]
fn imp(v: Vec<u8>) -> OsString {
OsString::from(v.into_string_lossy())
}
imp(self.into_vec())
}
/// Converts this byte string into an owned file path, in place.
///
/// On Unix, this always succeeds and is zero cost. On non-Unix systems,
/// this returns the original byte string if it is not valid UTF-8.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let bs = Vec::from("foo");
/// let path = bs.into_path_buf().expect("should be valid UTF-8");
/// assert_eq!(path.as_os_str(), "foo");
/// ```
#[inline]
fn into_path_buf(self) -> Result<PathBuf, Vec<u8>>
where
Self: Sized,
{
self.into_os_string().map(PathBuf::from)
}
/// Lossily converts this byte string into an owned file path, in place.
///
/// On Unix, this always succeeds and is zero cost. On non-Unix systems,
/// this will perform a UTF-8 check and lossily convert this byte string
/// into valid UTF-8 using the Unicode replacement codepoint.
///
/// Note that this can prevent the correct roundtripping of file paths on
/// non-Unix systems such as Windows, where file paths are an arbitrary
/// sequence of 16-bit integers.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let bs = Vec::from_slice(b"foo\xFFbar");
/// let path = bs.into_path_buf_lossy();
/// assert_eq!(path.to_string_lossy(), "foo\u{FFFD}bar");
/// ```
#[inline]
fn into_path_buf_lossy(self) -> PathBuf
where
Self: Sized,
{
PathBuf::from(self.into_os_string_lossy())
}
/// Removes the last byte from this `Vec<u8>` and returns it.
///
/// If this byte string is empty, then `None` is returned.
///
/// If the last codepoint in this byte string is not ASCII, then removing
/// the last byte could make this byte string contain invalid UTF-8.
///
/// Note that this is equivalent to the generic `Vec::pop` method. This
/// method is provided to permit callers to explicitly differentiate
/// between popping bytes and codepoints.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foo");
/// assert_eq!(s.pop_byte(), Some(b'o'));
/// assert_eq!(s.pop_byte(), Some(b'o'));
/// assert_eq!(s.pop_byte(), Some(b'f'));
/// assert_eq!(s.pop_byte(), None);
/// ```
#[inline]
fn pop_byte(&mut self) -> Option<u8> {
self.as_vec_mut().pop()
}
/// Removes the last codepoint from this `Vec<u8>` and returns it.
///
/// If this byte string is empty, then `None` is returned. If the last
/// bytes of this byte string do not correspond to a valid UTF-8 code unit
/// sequence, then the Unicode replacement codepoint is yielded instead in
/// accordance with the
/// [replacement codepoint substitution policy](index.html#handling-of-invalid-utf8-8).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foo");
/// assert_eq!(s.pop_char(), Some('o'));
/// assert_eq!(s.pop_char(), Some('o'));
/// assert_eq!(s.pop_char(), Some('f'));
/// assert_eq!(s.pop_char(), None);
/// ```
///
/// This shows the replacement codepoint substitution policy. Note that
/// the first pop yields a replacement codepoint but actually removes two
/// bytes. This is in contrast with subsequent pops when encountering
/// `\xFF` since `\xFF` is never a valid prefix for any valid UTF-8
/// code unit sequence.
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from_slice(b"f\xFF\xFF\xFFoo\xE2\x98");
/// assert_eq!(s.pop_char(), Some('\u{FFFD}'));
/// assert_eq!(s.pop_char(), Some('o'));
/// assert_eq!(s.pop_char(), Some('o'));
/// assert_eq!(s.pop_char(), Some('\u{FFFD}'));
/// assert_eq!(s.pop_char(), Some('\u{FFFD}'));
/// assert_eq!(s.pop_char(), Some('\u{FFFD}'));
/// assert_eq!(s.pop_char(), Some('f'));
/// assert_eq!(s.pop_char(), None);
/// ```
#[inline]
fn pop_char(&mut self) -> Option<char> {
let (ch, size) = utf8::decode_last_lossy(self.as_vec());
if size == 0 {
return None;
}
let new_len = self.as_vec().len() - size;
self.as_vec_mut().truncate(new_len);
Some(ch)
}
/// Removes a `char` from this `Vec<u8>` at the given byte position and
/// returns it.
///
/// If the bytes at the given position do not lead to a valid UTF-8 code
/// unit sequence, then a
/// [replacement codepoint is returned instead](index.html#handling-of-invalid-utf8-8).
///
/// # Panics
///
/// Panics if `at` is larger than or equal to this byte string's length.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foo☃bar");
/// assert_eq!(s.remove_char(3), '☃');
/// assert_eq!(s, b"foobar");
/// ```
///
/// This example shows how the Unicode replacement codepoint policy is
/// used:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from_slice(b"foo\xFFbar");
/// assert_eq!(s.remove_char(3), '\u{FFFD}');
/// assert_eq!(s, b"foobar");
/// ```
#[inline]
fn remove_char(&mut self, at: usize) -> char {
let (ch, size) = utf8::decode_lossy(&self.as_vec()[at..]);
assert!(
size > 0,
"expected {} to be less than {}",
at,
self.as_vec().len(),
);
self.as_vec_mut().drain(at..at + size);
ch
}
/// Inserts the given codepoint into this `Vec<u8>` at a particular byte
/// position.
///
/// This is an `O(n)` operation as it may copy a number of elements in this
/// byte string proportional to its length.
///
/// # Panics
///
/// Panics if `at` is larger than the byte string's length.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foobar");
/// s.insert_char(3, '☃');
/// assert_eq!(s, "foo☃bar".as_bytes());
/// ```
#[inline]
fn insert_char(&mut self, at: usize, ch: char) {
self.insert_str(at, ch.encode_utf8(&mut [0; 4]).as_bytes());
}
/// Inserts the given byte string into this byte string at a particular
/// byte position.
///
/// This is an `O(n)` operation as it may copy a number of elements in this
/// byte string proportional to its length.
///
/// The given byte string may be any type that can be cheaply converted
/// into a `&[u8]`. This includes, but is not limited to, `&str` and
/// `&[u8]`.
///
/// # Panics
///
/// Panics if `at` is larger than the byte string's length.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foobar");
/// s.insert_str(3, "☃☃☃");
/// assert_eq!(s, "foo☃☃☃bar".as_bytes());
/// ```
#[inline]
fn insert_str<B: AsRef<[u8]>>(&mut self, at: usize, bytes: B) {
let bytes = bytes.as_ref();
let len = self.as_vec().len();
assert!(at <= len, "expected {} to be <= {}", at, len);
// SAFETY: We'd like to efficiently splice in the given bytes into
// this byte string. Since we are only working with `u8` elements here,
// we only need to consider whether our bounds are correct and whether
// our byte string has enough space.
self.as_vec_mut().reserve(bytes.len());
unsafe {
// Shift bytes after `at` over by the length of `bytes` to make
// room for it. This requires referencing two regions of memory
// that may overlap, so we use ptr::copy.
ptr::copy(
self.as_vec().as_ptr().add(at),
self.as_vec_mut().as_mut_ptr().add(at + bytes.len()),
len - at,
);
// Now copy the bytes given into the room we made above. In this
// case, we know that the given bytes cannot possibly overlap
// with this byte string since we have a mutable borrow of the
// latter. Thus, we can use a nonoverlapping copy.
ptr::copy_nonoverlapping(
bytes.as_ptr(),
self.as_vec_mut().as_mut_ptr().add(at),
bytes.len(),
);
self.as_vec_mut().set_len(len + bytes.len());
}
}
/// Removes the specified range in this byte string and replaces it with
/// the given bytes. The given bytes do not need to have the same length
/// as the range provided.
///
/// # Panics
///
/// Panics if the given range is invalid.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foobar");
/// s.replace_range(2..4, "xxxxx");
/// assert_eq!(s, "foxxxxxar".as_bytes());
/// ```
#[inline]
fn replace_range<R, B>(&mut self, range: R, replace_with: B)
where
R: ops::RangeBounds<usize>,
B: AsRef<[u8]>,
{
self.as_vec_mut().splice(range, replace_with.as_ref().iter().cloned());
}
/// Creates a draining iterator that removes the specified range in this
/// `Vec<u8>` and yields each of the removed bytes.
///
/// Note that the elements specified by the given range are removed
/// regardless of whether the returned iterator is fully exhausted.
///
/// Also note that is is unspecified how many bytes are removed from the
/// `Vec<u8>` if the `DrainBytes` iterator is leaked.
///
/// # Panics
///
/// Panics if the given range is not valid.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foobar");
/// {
/// let mut drainer = s.drain_bytes(2..4);
/// assert_eq!(drainer.next(), Some(b'o'));
/// assert_eq!(drainer.next(), Some(b'b'));
/// assert_eq!(drainer.next(), None);
/// }
/// assert_eq!(s, "foar".as_bytes());
/// ```
#[inline]
fn drain_bytes<R>(&mut self, range: R) -> DrainBytes<'_>
where
R: ops::RangeBounds<usize>,
{
DrainBytes { it: self.as_vec_mut().drain(range) }
}
}
/// A draining byte oriented iterator for `Vec<u8>`.
///
/// This iterator is created by
/// [`ByteVec::drain_bytes`](trait.ByteVec.html#method.drain_bytes).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::ByteVec;
///
/// let mut s = Vec::from("foobar");
/// {
/// let mut drainer = s.drain_bytes(2..4);
/// assert_eq!(drainer.next(), Some(b'o'));
/// assert_eq!(drainer.next(), Some(b'b'));
/// assert_eq!(drainer.next(), None);
/// }
/// assert_eq!(s, "foar".as_bytes());
/// ```
#[derive(Debug)]
pub struct DrainBytes<'a> {
it: vec::Drain<'a, u8>,
}
impl<'a> iter::FusedIterator for DrainBytes<'a> {}
impl<'a> Iterator for DrainBytes<'a> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<u8> {
self.it.next()
}
}
impl<'a> DoubleEndedIterator for DrainBytes<'a> {
#[inline]
fn next_back(&mut self) -> Option<u8> {
self.it.next_back()
}
}
impl<'a> ExactSizeIterator for DrainBytes<'a> {
#[inline]
fn len(&self) -> usize {
self.it.len()
}
}
/// An error that may occur when converting a `Vec<u8>` to a `String`.
///
/// This error includes the original `Vec<u8>` that failed to convert to a
/// `String`. This permits callers to recover the allocation used even if it
/// it not valid UTF-8.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let bytes = Vec::from_slice(b"foo\xFFbar");
/// let err = bytes.into_string().unwrap_err();
///
/// assert_eq!(err.utf8_error().valid_up_to(), 3);
/// assert_eq!(err.utf8_error().error_len(), Some(1));
///
/// // At no point in this example is an allocation performed.
/// let bytes = Vec::from(err.into_vec());
/// assert_eq!(bytes, B(b"foo\xFFbar"));
/// ```
#[derive(Debug, Eq, PartialEq)]
pub struct FromUtf8Error {
original: Vec<u8>,
err: Utf8Error,
}
impl FromUtf8Error {
/// Return the original bytes as a slice that failed to convert to a
/// `String`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let bytes = Vec::from_slice(b"foo\xFFbar");
/// let err = bytes.into_string().unwrap_err();
///
/// // At no point in this example is an allocation performed.
/// assert_eq!(err.as_bytes(), B(b"foo\xFFbar"));
/// ```
#[inline]
pub fn as_bytes(&self) -> &[u8] {
&self.original
}
/// Consume this error and return the original byte string that failed to
/// convert to a `String`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let bytes = Vec::from_slice(b"foo\xFFbar");
/// let err = bytes.into_string().unwrap_err();
/// let original = err.into_vec();
///
/// // At no point in this example is an allocation performed.
/// assert_eq!(original, B(b"foo\xFFbar"));
/// ```
#[inline]
pub fn into_vec(self) -> Vec<u8> {
self.original
}
/// Return the underlying UTF-8 error that occurred. This error provides
/// information on the nature and location of the invalid UTF-8 detected.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::{B, ByteVec};
///
/// let bytes = Vec::from_slice(b"foo\xFFbar");
/// let err = bytes.into_string().unwrap_err();
///
/// assert_eq!(err.utf8_error().valid_up_to(), 3);
/// assert_eq!(err.utf8_error().error_len(), Some(1));
/// ```
#[inline]
pub fn utf8_error(&self) -> &Utf8Error {
&self.err
}
}
impl error::Error for FromUtf8Error {
#[inline]
fn description(&self) -> &str {
"invalid UTF-8 vector"
}
}
impl fmt::Display for FromUtf8Error {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.err)
}
}
#[cfg(test)]
mod tests {
use crate::ext_vec::ByteVec;
#[test]
fn insert() {
let mut s = vec![];
s.insert_str(0, "foo");
assert_eq!(s, "foo".as_bytes());
let mut s = Vec::from("a");
s.insert_str(0, "foo");
assert_eq!(s, "fooa".as_bytes());
let mut s = Vec::from("a");
s.insert_str(1, "foo");
assert_eq!(s, "afoo".as_bytes());
let mut s = Vec::from("foobar");
s.insert_str(3, "quux");
assert_eq!(s, "fooquuxbar".as_bytes());
let mut s = Vec::from("foobar");
s.insert_str(3, "x");
assert_eq!(s, "fooxbar".as_bytes());
let mut s = Vec::from("foobar");
s.insert_str(0, "x");
assert_eq!(s, "xfoobar".as_bytes());
let mut s = Vec::from("foobar");
s.insert_str(6, "x");
assert_eq!(s, "foobarx".as_bytes());
let mut s = Vec::from("foobar");
s.insert_str(3, "quuxbazquux");
assert_eq!(s, "fooquuxbazquuxbar".as_bytes());
}
#[test]
#[should_panic]
fn insert_fail1() {
let mut s = vec![];
s.insert_str(1, "foo");
}
#[test]
#[should_panic]
fn insert_fail2() {
let mut s = Vec::from("a");
s.insert_str(2, "foo");
}
#[test]
#[should_panic]
fn insert_fail3() {
let mut s = Vec::from("foobar");
s.insert_str(7, "foo");
}
}