|  | use crate::common::*; | 
|  | use crate::f2s; | 
|  | use crate::f2s_intrinsics::*; | 
|  | use crate::parse::Error; | 
|  | #[cfg(feature = "no-panic")] | 
|  | use no_panic::no_panic; | 
|  |  | 
|  | const FLOAT_EXPONENT_BIAS: usize = 127; | 
|  |  | 
|  | fn floor_log2(value: u32) -> u32 { | 
|  | 31_u32.wrapping_sub(value.leading_zeros()) | 
|  | } | 
|  |  | 
|  | #[cfg_attr(feature = "no-panic", no_panic)] | 
|  | pub fn s2f(buffer: &[u8]) -> Result<f32, Error> { | 
|  | let len = buffer.len(); | 
|  | if len == 0 { | 
|  | return Err(Error::InputTooShort); | 
|  | } | 
|  |  | 
|  | let mut m10digits = 0; | 
|  | let mut e10digits = 0; | 
|  | let mut dot_index = len; | 
|  | let mut e_index = len; | 
|  | let mut m10 = 0u32; | 
|  | let mut e10 = 0i32; | 
|  | let mut signed_m = false; | 
|  | let mut signed_e = false; | 
|  |  | 
|  | let mut i = 0; | 
|  | if unsafe { *buffer.get_unchecked(0) } == b'-' { | 
|  | signed_m = true; | 
|  | i += 1; | 
|  | } | 
|  |  | 
|  | while let Some(c) = buffer.get(i).copied() { | 
|  | if c == b'.' { | 
|  | if dot_index != len { | 
|  | return Err(Error::MalformedInput); | 
|  | } | 
|  | dot_index = i; | 
|  | i += 1; | 
|  | continue; | 
|  | } | 
|  | if c < b'0' || c > b'9' { | 
|  | break; | 
|  | } | 
|  | if m10digits >= 9 { | 
|  | return Err(Error::InputTooLong); | 
|  | } | 
|  | m10 = 10 * m10 + (c - b'0') as u32; | 
|  | if m10 != 0 { | 
|  | m10digits += 1; | 
|  | } | 
|  | i += 1; | 
|  | } | 
|  |  | 
|  | if let Some(b'e') | Some(b'E') = buffer.get(i) { | 
|  | e_index = i; | 
|  | i += 1; | 
|  | match buffer.get(i) { | 
|  | Some(b'-') => { | 
|  | signed_e = true; | 
|  | i += 1; | 
|  | } | 
|  | Some(b'+') => i += 1, | 
|  | _ => {} | 
|  | } | 
|  | while let Some(c) = buffer.get(i).copied() { | 
|  | if c < b'0' || c > b'9' { | 
|  | return Err(Error::MalformedInput); | 
|  | } | 
|  | if e10digits > 3 { | 
|  | // TODO: Be more lenient. Return +/-Infinity or +/-0 instead. | 
|  | return Err(Error::InputTooLong); | 
|  | } | 
|  | e10 = 10 * e10 + (c - b'0') as i32; | 
|  | if e10 != 0 { | 
|  | e10digits += 1; | 
|  | } | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if i < len { | 
|  | return Err(Error::MalformedInput); | 
|  | } | 
|  | if signed_e { | 
|  | e10 = -e10; | 
|  | } | 
|  | e10 -= if dot_index < e_index { | 
|  | (e_index - dot_index - 1) as i32 | 
|  | } else { | 
|  | 0 | 
|  | }; | 
|  | if m10 == 0 { | 
|  | return Ok(if signed_m { -0.0 } else { 0.0 }); | 
|  | } | 
|  |  | 
|  | if m10digits + e10 <= -46 || m10 == 0 { | 
|  | // Number is less than 1e-46, which should be rounded down to 0; return | 
|  | // +/-0.0. | 
|  | let ieee = (signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS); | 
|  | return Ok(f32::from_bits(ieee)); | 
|  | } | 
|  | if m10digits + e10 >= 40 { | 
|  | // Number is larger than 1e+39, which should be rounded to +/-Infinity. | 
|  | let ieee = ((signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS)) | 
|  | | (0xff_u32 << f2s::FLOAT_MANTISSA_BITS); | 
|  | return Ok(f32::from_bits(ieee)); | 
|  | } | 
|  |  | 
|  | // Convert to binary float m2 * 2^e2, while retaining information about | 
|  | // whether the conversion was exact (trailing_zeros). | 
|  | let e2: i32; | 
|  | let m2: u32; | 
|  | let mut trailing_zeros: bool; | 
|  | if e10 >= 0 { | 
|  | // The length of m * 10^e in bits is: | 
|  | //   log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5) | 
|  | // | 
|  | // We want to compute the FLOAT_MANTISSA_BITS + 1 top-most bits (+1 for | 
|  | // the implicit leading one in IEEE format). We therefore choose a | 
|  | // binary output exponent of | 
|  | //   log2(m10 * 10^e10) - (FLOAT_MANTISSA_BITS + 1). | 
|  | // | 
|  | // We use floor(log2(5^e10)) so that we get at least this many bits; better to | 
|  | // have an additional bit than to not have enough bits. | 
|  | e2 = floor_log2(m10) | 
|  | .wrapping_add(e10 as u32) | 
|  | .wrapping_add(log2_pow5(e10) as u32) | 
|  | .wrapping_sub(f2s::FLOAT_MANTISSA_BITS + 1) as i32; | 
|  |  | 
|  | // We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)]. | 
|  | // To that end, we use the FLOAT_POW5_SPLIT table. | 
|  | let j = e2 | 
|  | .wrapping_sub(e10) | 
|  | .wrapping_sub(ceil_log2_pow5(e10)) | 
|  | .wrapping_add(f2s::FLOAT_POW5_BITCOUNT); | 
|  | debug_assert!(j >= 0); | 
|  | m2 = mul_pow5_div_pow2(m10, e10 as u32, j); | 
|  |  | 
|  | // We also compute if the result is exact, i.e., | 
|  | //   [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2. | 
|  | // This can only be the case if 2^e2 divides m10 * 10^e10, which in turn | 
|  | // requires that the largest power of 2 that divides m10 + e10 is | 
|  | // greater than e2. If e2 is less than e10, then the result must be | 
|  | // exact. Otherwise we use the existing multiple_of_power_of_2 function. | 
|  | trailing_zeros = | 
|  | e2 < e10 || e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32); | 
|  | } else { | 
|  | e2 = floor_log2(m10) | 
|  | .wrapping_add(e10 as u32) | 
|  | .wrapping_sub(ceil_log2_pow5(-e10) as u32) | 
|  | .wrapping_sub(f2s::FLOAT_MANTISSA_BITS + 1) as i32; | 
|  |  | 
|  | // We now compute [m10 * 10^e10 / 2^e2] = [m10 / (5^(-e10) 2^(e2-e10))]. | 
|  | let j = e2 | 
|  | .wrapping_sub(e10) | 
|  | .wrapping_add(ceil_log2_pow5(-e10)) | 
|  | .wrapping_sub(1) | 
|  | .wrapping_add(f2s::FLOAT_POW5_INV_BITCOUNT); | 
|  | m2 = mul_pow5_inv_div_pow2(m10, -e10 as u32, j); | 
|  |  | 
|  | // We also compute if the result is exact, i.e., | 
|  | //   [m10 / (5^(-e10) 2^(e2-e10))] == m10 / (5^(-e10) 2^(e2-e10)) | 
|  | // | 
|  | // If e2-e10 >= 0, we need to check whether (5^(-e10) 2^(e2-e10)) | 
|  | // divides m10, which is the case iff pow5(m10) >= -e10 AND pow2(m10) >= | 
|  | // e2-e10. | 
|  | // | 
|  | // If e2-e10 < 0, we have actually computed [m10 * 2^(e10 e2) / | 
|  | // 5^(-e10)] above, and we need to check whether 5^(-e10) divides (m10 * | 
|  | // 2^(e10-e2)), which is the case iff pow5(m10 * 2^(e10-e2)) = pow5(m10) | 
|  | // >= -e10. | 
|  | trailing_zeros = (e2 < e10 | 
|  | || (e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32))) | 
|  | && multiple_of_power_of_5_32(m10, -e10 as u32); | 
|  | } | 
|  |  | 
|  | // Compute the final IEEE exponent. | 
|  | let mut ieee_e2 = i32::max(0, e2 + FLOAT_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32; | 
|  |  | 
|  | if ieee_e2 > 0xfe { | 
|  | // Final IEEE exponent is larger than the maximum representable; return | 
|  | // +/-Infinity. | 
|  | let ieee = ((signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS)) | 
|  | | (0xff_u32 << f2s::FLOAT_MANTISSA_BITS); | 
|  | return Ok(f32::from_bits(ieee)); | 
|  | } | 
|  |  | 
|  | // We need to figure out how much we need to shift m2. The tricky part is | 
|  | // that we need to take the final IEEE exponent into account, so we need to | 
|  | // reverse the bias and also special-case the value 0. | 
|  | let shift = if ieee_e2 == 0 { 1 } else { ieee_e2 as i32 } | 
|  | .wrapping_sub(e2) | 
|  | .wrapping_sub(FLOAT_EXPONENT_BIAS as i32) | 
|  | .wrapping_sub(f2s::FLOAT_MANTISSA_BITS as i32); | 
|  | debug_assert!(shift >= 0); | 
|  |  | 
|  | // We need to round up if the exact value is more than 0.5 above the value | 
|  | // we computed. That's equivalent to checking if the last removed bit was 1 | 
|  | // and either the value was not just trailing zeros or the result would | 
|  | // otherwise be odd. | 
|  | // | 
|  | // We need to update trailing_zeros given that we have the exact output | 
|  | // exponent ieee_e2 now. | 
|  | trailing_zeros &= (m2 & ((1_u32 << (shift - 1)) - 1)) == 0; | 
|  | let last_removed_bit = (m2 >> (shift - 1)) & 1; | 
|  | let round_up = last_removed_bit != 0 && (!trailing_zeros || ((m2 >> shift) & 1) != 0); | 
|  |  | 
|  | let mut ieee_m2 = (m2 >> shift).wrapping_add(round_up as u32); | 
|  | debug_assert!(ieee_m2 <= 1_u32 << (f2s::FLOAT_MANTISSA_BITS + 1)); | 
|  | ieee_m2 &= (1_u32 << f2s::FLOAT_MANTISSA_BITS) - 1; | 
|  | if ieee_m2 == 0 && round_up { | 
|  | // Rounding up may overflow the mantissa. | 
|  | // In this case we move a trailing zero of the mantissa into the | 
|  | // exponent. | 
|  | // Due to how the IEEE represents +/-Infinity, we don't need to check | 
|  | // for overflow here. | 
|  | ieee_e2 += 1; | 
|  | } | 
|  | let ieee = ((((signed_m as u32) << f2s::FLOAT_EXPONENT_BITS) | ieee_e2) | 
|  | << f2s::FLOAT_MANTISSA_BITS) | 
|  | | ieee_m2; | 
|  | Ok(f32::from_bits(ieee)) | 
|  | } |