|  | #[cfg(feature = "bytemuck")] | 
|  | use bytemuck::{Pod, Zeroable}; | 
|  | use core::{ | 
|  | cmp::Ordering, | 
|  | iter::{Product, Sum}, | 
|  | num::FpCategory, | 
|  | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, | 
|  | }; | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | use core::{ | 
|  | fmt::{ | 
|  | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, | 
|  | }, | 
|  | num::ParseFloatError, | 
|  | str::FromStr, | 
|  | }; | 
|  | #[cfg(feature = "serde")] | 
|  | use serde::{Deserialize, Serialize}; | 
|  | #[cfg(feature = "zerocopy")] | 
|  | use zerocopy::{AsBytes, FromBytes}; | 
|  |  | 
|  | pub(crate) mod convert; | 
|  |  | 
|  | /// A 16-bit floating point type implementing the [`bfloat16`] format. | 
|  | /// | 
|  | /// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard | 
|  | /// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by | 
|  | /// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of | 
|  | /// 11 bits, [`bf16`] has a precision of only 8 bits. | 
|  | /// | 
|  | /// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for | 
|  | /// compact storage rather than calculations. Operations should be performed with [`f32`] or | 
|  | /// higher-precision types and converted to/from [`bf16`] as necessary. | 
|  | /// | 
|  | /// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format | 
|  | #[allow(non_camel_case_types)] | 
|  | #[derive(Clone, Copy, Default)] | 
|  | #[repr(transparent)] | 
|  | #[cfg_attr(feature = "serde", derive(Serialize))] | 
|  | #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] | 
|  | #[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))] | 
|  | pub struct bf16(u16); | 
|  |  | 
|  | impl bf16 { | 
|  | /// Constructs a [`bf16`] value from the raw bits. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn from_bits(bits: u16) -> bf16 { | 
|  | bf16(bits) | 
|  | } | 
|  |  | 
|  | /// Constructs a [`bf16`] value from a 32-bit floating point value. | 
|  | /// | 
|  | /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. | 
|  | /// Subnormal values that are too tiny to be represented will result in ±0. All other values | 
|  | /// are truncated and rounded to the nearest representable value. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn from_f32(value: f32) -> bf16 { | 
|  | Self::from_f32_const(value) | 
|  | } | 
|  |  | 
|  | /// Constructs a [`bf16`] value from a 32-bit floating point value. | 
|  | /// | 
|  | /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware | 
|  | /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred | 
|  | /// in any non-`const` context. | 
|  | /// | 
|  | /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. | 
|  | /// Subnormal values that are too tiny to be represented will result in ±0. All other values | 
|  | /// are truncated and rounded to the nearest representable value. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn from_f32_const(value: f32) -> bf16 { | 
|  | bf16(convert::f32_to_bf16(value)) | 
|  | } | 
|  |  | 
|  | /// Constructs a [`bf16`] value from a 64-bit floating point value. | 
|  | /// | 
|  | /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. | 
|  | /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that | 
|  | /// underflow the minimum exponent will result in subnormals or ±0. All other values are | 
|  | /// truncated and rounded to the nearest representable value. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn from_f64(value: f64) -> bf16 { | 
|  | Self::from_f64_const(value) | 
|  | } | 
|  |  | 
|  | /// Constructs a [`bf16`] value from a 64-bit floating point value. | 
|  | /// | 
|  | /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware | 
|  | /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred | 
|  | /// in any non-`const` context. | 
|  | /// | 
|  | /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. | 
|  | /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that | 
|  | /// underflow the minimum exponent will result in subnormals or ±0. All other values are | 
|  | /// truncated and rounded to the nearest representable value. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn from_f64_const(value: f64) -> bf16 { | 
|  | bf16(convert::f64_to_bf16(value)) | 
|  | } | 
|  |  | 
|  | /// Converts a [`bf16`] into the underlying bit representation. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn to_bits(self) -> u16 { | 
|  | self.0 | 
|  | } | 
|  |  | 
|  | /// Returns the memory representation of the underlying bit representation as a byte array in | 
|  | /// little-endian byte order. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// let bytes = bf16::from_f32(12.5).to_le_bytes(); | 
|  | /// assert_eq!(bytes, [0x48, 0x41]); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn to_le_bytes(self) -> [u8; 2] { | 
|  | self.0.to_le_bytes() | 
|  | } | 
|  |  | 
|  | /// Returns the memory representation of the underlying bit representation as a byte array in | 
|  | /// big-endian (network) byte order. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// let bytes = bf16::from_f32(12.5).to_be_bytes(); | 
|  | /// assert_eq!(bytes, [0x41, 0x48]); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn to_be_bytes(self) -> [u8; 2] { | 
|  | self.0.to_be_bytes() | 
|  | } | 
|  |  | 
|  | /// Returns the memory representation of the underlying bit representation as a byte array in | 
|  | /// native byte order. | 
|  | /// | 
|  | /// As the target platform's native endianness is used, portable code should use | 
|  | /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate, | 
|  | /// instead. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// let bytes = bf16::from_f32(12.5).to_ne_bytes(); | 
|  | /// assert_eq!(bytes, if cfg!(target_endian = "big") { | 
|  | ///     [0x41, 0x48] | 
|  | /// } else { | 
|  | ///     [0x48, 0x41] | 
|  | /// }); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn to_ne_bytes(self) -> [u8; 2] { | 
|  | self.0.to_ne_bytes() | 
|  | } | 
|  |  | 
|  | /// Creates a floating point value from its representation as a byte array in little endian. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// let value = bf16::from_le_bytes([0x48, 0x41]); | 
|  | /// assert_eq!(value, bf16::from_f32(12.5)); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 { | 
|  | bf16::from_bits(u16::from_le_bytes(bytes)) | 
|  | } | 
|  |  | 
|  | /// Creates a floating point value from its representation as a byte array in big endian. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// let value = bf16::from_be_bytes([0x41, 0x48]); | 
|  | /// assert_eq!(value, bf16::from_f32(12.5)); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 { | 
|  | bf16::from_bits(u16::from_be_bytes(bytes)) | 
|  | } | 
|  |  | 
|  | /// Creates a floating point value from its representation as a byte array in native endian. | 
|  | /// | 
|  | /// As the target platform's native endianness is used, portable code likely wants to use | 
|  | /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as | 
|  | /// appropriate instead. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") { | 
|  | ///     [0x41, 0x48] | 
|  | /// } else { | 
|  | ///     [0x48, 0x41] | 
|  | /// }); | 
|  | /// assert_eq!(value, bf16::from_f32(12.5)); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 { | 
|  | bf16::from_bits(u16::from_ne_bytes(bytes)) | 
|  | } | 
|  |  | 
|  | /// Converts a [`bf16`] value into an [`f32`] value. | 
|  | /// | 
|  | /// This conversion is lossless as all values can be represented exactly in [`f32`]. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn to_f32(self) -> f32 { | 
|  | self.to_f32_const() | 
|  | } | 
|  |  | 
|  | /// Converts a [`bf16`] value into an [`f32`] value. | 
|  | /// | 
|  | /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware | 
|  | /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred | 
|  | /// in any non-`const` context. | 
|  | /// | 
|  | /// This conversion is lossless as all values can be represented exactly in [`f32`]. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn to_f32_const(self) -> f32 { | 
|  | convert::bf16_to_f32(self.0) | 
|  | } | 
|  |  | 
|  | /// Converts a [`bf16`] value into an [`f64`] value. | 
|  | /// | 
|  | /// This conversion is lossless as all values can be represented exactly in [`f64`]. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn to_f64(self) -> f64 { | 
|  | self.to_f64_const() | 
|  | } | 
|  |  | 
|  | /// Converts a [`bf16`] value into an [`f64`] value. | 
|  | /// | 
|  | /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware | 
|  | /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred | 
|  | /// in any non-`const` context. | 
|  | /// | 
|  | /// This conversion is lossless as all values can be represented exactly in [`f64`]. | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn to_f64_const(self) -> f64 { | 
|  | convert::bf16_to_f64(self.0) | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this value is NaN and `false` otherwise. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let nan = bf16::NAN; | 
|  | /// let f = bf16::from_f32(7.0_f32); | 
|  | /// | 
|  | /// assert!(nan.is_nan()); | 
|  | /// assert!(!f.is_nan()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn is_nan(self) -> bool { | 
|  | self.0 & 0x7FFFu16 > 0x7F80u16 | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this value is ±∞ and `false` otherwise. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let f = bf16::from_f32(7.0f32); | 
|  | /// let inf = bf16::INFINITY; | 
|  | /// let neg_inf = bf16::NEG_INFINITY; | 
|  | /// let nan = bf16::NAN; | 
|  | /// | 
|  | /// assert!(!f.is_infinite()); | 
|  | /// assert!(!nan.is_infinite()); | 
|  | /// | 
|  | /// assert!(inf.is_infinite()); | 
|  | /// assert!(neg_inf.is_infinite()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn is_infinite(self) -> bool { | 
|  | self.0 & 0x7FFFu16 == 0x7F80u16 | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this number is neither infinite nor NaN. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let f = bf16::from_f32(7.0f32); | 
|  | /// let inf = bf16::INFINITY; | 
|  | /// let neg_inf = bf16::NEG_INFINITY; | 
|  | /// let nan = bf16::NAN; | 
|  | /// | 
|  | /// assert!(f.is_finite()); | 
|  | /// | 
|  | /// assert!(!nan.is_finite()); | 
|  | /// assert!(!inf.is_finite()); | 
|  | /// assert!(!neg_inf.is_finite()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn is_finite(self) -> bool { | 
|  | self.0 & 0x7F80u16 != 0x7F80u16 | 
|  | } | 
|  |  | 
|  | /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let min = bf16::MIN_POSITIVE; | 
|  | /// let max = bf16::MAX; | 
|  | /// let lower_than_min = bf16::from_f32(1.0e-39_f32); | 
|  | /// let zero = bf16::from_f32(0.0_f32); | 
|  | /// | 
|  | /// assert!(min.is_normal()); | 
|  | /// assert!(max.is_normal()); | 
|  | /// | 
|  | /// assert!(!zero.is_normal()); | 
|  | /// assert!(!bf16::NAN.is_normal()); | 
|  | /// assert!(!bf16::INFINITY.is_normal()); | 
|  | /// // Values between 0 and `min` are subnormal. | 
|  | /// assert!(!lower_than_min.is_normal()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn is_normal(self) -> bool { | 
|  | let exp = self.0 & 0x7F80u16; | 
|  | exp != 0x7F80u16 && exp != 0 | 
|  | } | 
|  |  | 
|  | /// Returns the floating point category of the number. | 
|  | /// | 
|  | /// If only one property is going to be tested, it is generally faster to use the specific | 
|  | /// predicate instead. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// use std::num::FpCategory; | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let num = bf16::from_f32(12.4_f32); | 
|  | /// let inf = bf16::INFINITY; | 
|  | /// | 
|  | /// assert_eq!(num.classify(), FpCategory::Normal); | 
|  | /// assert_eq!(inf.classify(), FpCategory::Infinite); | 
|  | /// ``` | 
|  | #[must_use] | 
|  | pub const fn classify(self) -> FpCategory { | 
|  | let exp = self.0 & 0x7F80u16; | 
|  | let man = self.0 & 0x007Fu16; | 
|  | match (exp, man) { | 
|  | (0, 0) => FpCategory::Zero, | 
|  | (0, _) => FpCategory::Subnormal, | 
|  | (0x7F80u16, 0) => FpCategory::Infinite, | 
|  | (0x7F80u16, _) => FpCategory::Nan, | 
|  | _ => FpCategory::Normal, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns a number that represents the sign of `self`. | 
|  | /// | 
|  | /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY] | 
|  | /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY] | 
|  | /// * [`NAN`][bf16::NAN] if the number is NaN | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let f = bf16::from_f32(3.5_f32); | 
|  | /// | 
|  | /// assert_eq!(f.signum(), bf16::from_f32(1.0)); | 
|  | /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0)); | 
|  | /// | 
|  | /// assert!(bf16::NAN.signum().is_nan()); | 
|  | /// ``` | 
|  | #[must_use] | 
|  | pub const fn signum(self) -> bf16 { | 
|  | if self.is_nan() { | 
|  | self | 
|  | } else if self.0 & 0x8000u16 != 0 { | 
|  | Self::NEG_ONE | 
|  | } else { | 
|  | Self::ONE | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a | 
|  | /// positive sign bit and +∞. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let nan = bf16::NAN; | 
|  | /// let f = bf16::from_f32(7.0_f32); | 
|  | /// let g = bf16::from_f32(-7.0_f32); | 
|  | /// | 
|  | /// assert!(f.is_sign_positive()); | 
|  | /// assert!(!g.is_sign_positive()); | 
|  | /// // NaN can be either positive or negative | 
|  | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn is_sign_positive(self) -> bool { | 
|  | self.0 & 0x8000u16 == 0 | 
|  | } | 
|  |  | 
|  | /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a | 
|  | /// negative sign bit and −∞. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use half::prelude::*; | 
|  | /// | 
|  | /// let nan = bf16::NAN; | 
|  | /// let f = bf16::from_f32(7.0f32); | 
|  | /// let g = bf16::from_f32(-7.0f32); | 
|  | /// | 
|  | /// assert!(!f.is_sign_negative()); | 
|  | /// assert!(g.is_sign_negative()); | 
|  | /// // NaN can be either positive or negative | 
|  | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn is_sign_negative(self) -> bool { | 
|  | self.0 & 0x8000u16 != 0 | 
|  | } | 
|  |  | 
|  | /// Returns a number composed of the magnitude of `self` and the sign of `sign`. | 
|  | /// | 
|  | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. | 
|  | /// If `self` is NaN, then NaN with the sign of `sign` is returned. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// # use half::prelude::*; | 
|  | /// let f = bf16::from_f32(3.5); | 
|  | /// | 
|  | /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); | 
|  | /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); | 
|  | /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); | 
|  | /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); | 
|  | /// | 
|  | /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub const fn copysign(self, sign: bf16) -> bf16 { | 
|  | bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) | 
|  | } | 
|  |  | 
|  | /// Returns the maximum of the two numbers. | 
|  | /// | 
|  | /// If one of the arguments is NaN, then the other argument is returned. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// # use half::prelude::*; | 
|  | /// let x = bf16::from_f32(1.0); | 
|  | /// let y = bf16::from_f32(2.0); | 
|  | /// | 
|  | /// assert_eq!(x.max(y), y); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn max(self, other: bf16) -> bf16 { | 
|  | if other > self && !other.is_nan() { | 
|  | other | 
|  | } else { | 
|  | self | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns the minimum of the two numbers. | 
|  | /// | 
|  | /// If one of the arguments is NaN, then the other argument is returned. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// # use half::prelude::*; | 
|  | /// let x = bf16::from_f32(1.0); | 
|  | /// let y = bf16::from_f32(2.0); | 
|  | /// | 
|  | /// assert_eq!(x.min(y), x); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn min(self, other: bf16) -> bf16 { | 
|  | if other < self && !other.is_nan() { | 
|  | other | 
|  | } else { | 
|  | self | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Restrict a value to a certain interval unless it is NaN. | 
|  | /// | 
|  | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. | 
|  | /// Otherwise this returns `self`. | 
|  | /// | 
|  | /// Note that this function returns NaN if the initial value was NaN as well. | 
|  | /// | 
|  | /// # Panics | 
|  | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// # use half::prelude::*; | 
|  | /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0)); | 
|  | /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0)); | 
|  | /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0)); | 
|  | /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn clamp(self, min: bf16, max: bf16) -> bf16 { | 
|  | assert!(min <= max); | 
|  | let mut x = self; | 
|  | if x < min { | 
|  | x = min; | 
|  | } | 
|  | if x > max { | 
|  | x = max; | 
|  | } | 
|  | x | 
|  | } | 
|  |  | 
|  | /// Returns the ordering between `self` and `other`. | 
|  | /// | 
|  | /// Unlike the standard partial comparison between floating point numbers, | 
|  | /// this comparison always produces an ordering in accordance to | 
|  | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) | 
|  | /// floating point standard. The values are ordered in the following sequence: | 
|  | /// | 
|  | /// - negative quiet NaN | 
|  | /// - negative signaling NaN | 
|  | /// - negative infinity | 
|  | /// - negative numbers | 
|  | /// - negative subnormal numbers | 
|  | /// - negative zero | 
|  | /// - positive zero | 
|  | /// - positive subnormal numbers | 
|  | /// - positive numbers | 
|  | /// - positive infinity | 
|  | /// - positive signaling NaN | 
|  | /// - positive quiet NaN. | 
|  | /// | 
|  | /// The ordering established by this function does not always agree with the | 
|  | /// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example, | 
|  | /// they consider negative and positive zero equal, while `total_cmp` | 
|  | /// doesn't. | 
|  | /// | 
|  | /// The interpretation of the signaling NaN bit follows the definition in | 
|  | /// the IEEE 754 standard, which may not match the interpretation by some of | 
|  | /// the older, non-conformant (e.g. MIPS) hardware implementations. | 
|  | /// | 
|  | /// # Examples | 
|  | /// ``` | 
|  | /// # use half::bf16; | 
|  | /// let mut v: Vec<bf16> = vec![]; | 
|  | /// v.push(bf16::ONE); | 
|  | /// v.push(bf16::INFINITY); | 
|  | /// v.push(bf16::NEG_INFINITY); | 
|  | /// v.push(bf16::NAN); | 
|  | /// v.push(bf16::MAX_SUBNORMAL); | 
|  | /// v.push(-bf16::MAX_SUBNORMAL); | 
|  | /// v.push(bf16::ZERO); | 
|  | /// v.push(bf16::NEG_ZERO); | 
|  | /// v.push(bf16::NEG_ONE); | 
|  | /// v.push(bf16::MIN_POSITIVE); | 
|  | /// | 
|  | /// v.sort_by(|a, b| a.total_cmp(&b)); | 
|  | /// | 
|  | /// assert!(v | 
|  | ///     .into_iter() | 
|  | ///     .zip( | 
|  | ///         [ | 
|  | ///             bf16::NEG_INFINITY, | 
|  | ///             bf16::NEG_ONE, | 
|  | ///             -bf16::MAX_SUBNORMAL, | 
|  | ///             bf16::NEG_ZERO, | 
|  | ///             bf16::ZERO, | 
|  | ///             bf16::MAX_SUBNORMAL, | 
|  | ///             bf16::MIN_POSITIVE, | 
|  | ///             bf16::ONE, | 
|  | ///             bf16::INFINITY, | 
|  | ///             bf16::NAN | 
|  | ///         ] | 
|  | ///         .iter() | 
|  | ///     ) | 
|  | ///     .all(|(a, b)| a.to_bits() == b.to_bits())); | 
|  | /// ``` | 
|  | // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp | 
|  | #[inline] | 
|  | #[must_use] | 
|  | pub fn total_cmp(&self, other: &Self) -> Ordering { | 
|  | let mut left = self.to_bits() as i16; | 
|  | let mut right = other.to_bits() as i16; | 
|  | left ^= (((left >> 15) as u16) >> 1) as i16; | 
|  | right ^= (((right >> 15) as u16) >> 1) as i16; | 
|  | left.cmp(&right) | 
|  | } | 
|  |  | 
|  | /// Alternate serialize adapter for serializing as a float. | 
|  | /// | 
|  | /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize | 
|  | /// implementation that serializes as an [`f32`] value. It is designed for use with | 
|  | /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by | 
|  | /// the default deserialize implementation. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// A demonstration on how to use this adapater: | 
|  | /// | 
|  | /// ``` | 
|  | /// use serde::{Serialize, Deserialize}; | 
|  | /// use half::bf16; | 
|  | /// | 
|  | /// #[derive(Serialize, Deserialize)] | 
|  | /// struct MyStruct { | 
|  | ///     #[serde(serialize_with = "bf16::serialize_as_f32")] | 
|  | ///     value: bf16 // Will be serialized as f32 instead of u16 | 
|  | /// } | 
|  | /// ``` | 
|  | #[cfg(feature = "serde")] | 
|  | pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { | 
|  | serializer.serialize_f32(self.to_f32()) | 
|  | } | 
|  |  | 
|  | /// Alternate serialize adapter for serializing as a string. | 
|  | /// | 
|  | /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize | 
|  | /// implementation that serializes as a string value. It is designed for use with | 
|  | /// `serialize_with` serde attributes. Deserialization from string values is already supported | 
|  | /// by the default deserialize implementation. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// A demonstration on how to use this adapater: | 
|  | /// | 
|  | /// ``` | 
|  | /// use serde::{Serialize, Deserialize}; | 
|  | /// use half::bf16; | 
|  | /// | 
|  | /// #[derive(Serialize, Deserialize)] | 
|  | /// struct MyStruct { | 
|  | ///     #[serde(serialize_with = "bf16::serialize_as_string")] | 
|  | ///     value: bf16 // Will be serialized as a string instead of u16 | 
|  | /// } | 
|  | /// ``` | 
|  | #[cfg(feature = "serde")] | 
|  | pub fn serialize_as_string<S: serde::Serializer>( | 
|  | &self, | 
|  | serializer: S, | 
|  | ) -> Result<S::Ok, S::Error> { | 
|  | serializer.serialize_str(&self.to_string()) | 
|  | } | 
|  |  | 
|  | /// Approximate number of [`bf16`] significant digits in base 10 | 
|  | pub const DIGITS: u32 = 2; | 
|  | /// [`bf16`] | 
|  | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value | 
|  | /// | 
|  | /// This is the difference between 1.0 and the next largest representable number. | 
|  | pub const EPSILON: bf16 = bf16(0x3C00u16); | 
|  | /// [`bf16`] positive Infinity (+∞) | 
|  | pub const INFINITY: bf16 = bf16(0x7F80u16); | 
|  | /// Number of [`bf16`] significant digits in base 2 | 
|  | pub const MANTISSA_DIGITS: u32 = 8; | 
|  | /// Largest finite [`bf16`] value | 
|  | pub const MAX: bf16 = bf16(0x7F7F); | 
|  | /// Maximum possible [`bf16`] power of 10 exponent | 
|  | pub const MAX_10_EXP: i32 = 38; | 
|  | /// Maximum possible [`bf16`] power of 2 exponent | 
|  | pub const MAX_EXP: i32 = 128; | 
|  | /// Smallest finite [`bf16`] value | 
|  | pub const MIN: bf16 = bf16(0xFF7F); | 
|  | /// Minimum possible normal [`bf16`] power of 10 exponent | 
|  | pub const MIN_10_EXP: i32 = -37; | 
|  | /// One greater than the minimum possible normal [`bf16`] power of 2 exponent | 
|  | pub const MIN_EXP: i32 = -125; | 
|  | /// Smallest positive normal [`bf16`] value | 
|  | pub const MIN_POSITIVE: bf16 = bf16(0x0080u16); | 
|  | /// [`bf16`] Not a Number (NaN) | 
|  | pub const NAN: bf16 = bf16(0x7FC0u16); | 
|  | /// [`bf16`] negative infinity (-∞). | 
|  | pub const NEG_INFINITY: bf16 = bf16(0xFF80u16); | 
|  | /// The radix or base of the internal representation of [`bf16`] | 
|  | pub const RADIX: u32 = 2; | 
|  |  | 
|  | /// Minimum positive subnormal [`bf16`] value | 
|  | pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16); | 
|  | /// Maximum subnormal [`bf16`] value | 
|  | pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16); | 
|  |  | 
|  | /// [`bf16`] 1 | 
|  | pub const ONE: bf16 = bf16(0x3F80u16); | 
|  | /// [`bf16`] 0 | 
|  | pub const ZERO: bf16 = bf16(0x0000u16); | 
|  | /// [`bf16`] -0 | 
|  | pub const NEG_ZERO: bf16 = bf16(0x8000u16); | 
|  | /// [`bf16`] -1 | 
|  | pub const NEG_ONE: bf16 = bf16(0xBF80u16); | 
|  |  | 
|  | /// [`bf16`] Euler's number (ℯ) | 
|  | pub const E: bf16 = bf16(0x402Eu16); | 
|  | /// [`bf16`] Archimedes' constant (π) | 
|  | pub const PI: bf16 = bf16(0x4049u16); | 
|  | /// [`bf16`] 1/π | 
|  | pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16); | 
|  | /// [`bf16`] 1/√2 | 
|  | pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16); | 
|  | /// [`bf16`] 2/π | 
|  | pub const FRAC_2_PI: bf16 = bf16(0x3F23u16); | 
|  | /// [`bf16`] 2/√π | 
|  | pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16); | 
|  | /// [`bf16`] π/2 | 
|  | pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16); | 
|  | /// [`bf16`] π/3 | 
|  | pub const FRAC_PI_3: bf16 = bf16(0x3F86u16); | 
|  | /// [`bf16`] π/4 | 
|  | pub const FRAC_PI_4: bf16 = bf16(0x3F49u16); | 
|  | /// [`bf16`] π/6 | 
|  | pub const FRAC_PI_6: bf16 = bf16(0x3F06u16); | 
|  | /// [`bf16`] π/8 | 
|  | pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16); | 
|  | /// [`bf16`] 𝗅𝗇 10 | 
|  | pub const LN_10: bf16 = bf16(0x4013u16); | 
|  | /// [`bf16`] 𝗅𝗇 2 | 
|  | pub const LN_2: bf16 = bf16(0x3F31u16); | 
|  | /// [`bf16`] 𝗅𝗈𝗀₁₀ℯ | 
|  | pub const LOG10_E: bf16 = bf16(0x3EDEu16); | 
|  | /// [`bf16`] 𝗅𝗈𝗀₁₀2 | 
|  | pub const LOG10_2: bf16 = bf16(0x3E9Au16); | 
|  | /// [`bf16`] 𝗅𝗈𝗀₂ℯ | 
|  | pub const LOG2_E: bf16 = bf16(0x3FB9u16); | 
|  | /// [`bf16`] 𝗅𝗈𝗀₂10 | 
|  | pub const LOG2_10: bf16 = bf16(0x4055u16); | 
|  | /// [`bf16`] √2 | 
|  | pub const SQRT_2: bf16 = bf16(0x3FB5u16); | 
|  | } | 
|  |  | 
|  | impl From<bf16> for f32 { | 
|  | #[inline] | 
|  | fn from(x: bf16) -> f32 { | 
|  | x.to_f32() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<bf16> for f64 { | 
|  | #[inline] | 
|  | fn from(x: bf16) -> f64 { | 
|  | x.to_f64() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<i8> for bf16 { | 
|  | #[inline] | 
|  | fn from(x: i8) -> bf16 { | 
|  | // Convert to f32, then to bf16 | 
|  | bf16::from_f32(f32::from(x)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<u8> for bf16 { | 
|  | #[inline] | 
|  | fn from(x: u8) -> bf16 { | 
|  | // Convert to f32, then to f16 | 
|  | bf16::from_f32(f32::from(x)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq for bf16 { | 
|  | fn eq(&self, other: &bf16) -> bool { | 
|  | if self.is_nan() || other.is_nan() { | 
|  | false | 
|  | } else { | 
|  | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd for bf16 { | 
|  | fn partial_cmp(&self, other: &bf16) -> Option<Ordering> { | 
|  | if self.is_nan() || other.is_nan() { | 
|  | None | 
|  | } else { | 
|  | let neg = self.0 & 0x8000u16 != 0; | 
|  | let other_neg = other.0 & 0x8000u16 != 0; | 
|  | match (neg, other_neg) { | 
|  | (false, false) => Some(self.0.cmp(&other.0)), | 
|  | (false, true) => { | 
|  | if (self.0 | other.0) & 0x7FFFu16 == 0 { | 
|  | Some(Ordering::Equal) | 
|  | } else { | 
|  | Some(Ordering::Greater) | 
|  | } | 
|  | } | 
|  | (true, false) => { | 
|  | if (self.0 | other.0) & 0x7FFFu16 == 0 { | 
|  | Some(Ordering::Equal) | 
|  | } else { | 
|  | Some(Ordering::Less) | 
|  | } | 
|  | } | 
|  | (true, true) => Some(other.0.cmp(&self.0)), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn lt(&self, other: &bf16) -> bool { | 
|  | if self.is_nan() || other.is_nan() { | 
|  | false | 
|  | } else { | 
|  | let neg = self.0 & 0x8000u16 != 0; | 
|  | let other_neg = other.0 & 0x8000u16 != 0; | 
|  | match (neg, other_neg) { | 
|  | (false, false) => self.0 < other.0, | 
|  | (false, true) => false, | 
|  | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, | 
|  | (true, true) => self.0 > other.0, | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn le(&self, other: &bf16) -> bool { | 
|  | if self.is_nan() || other.is_nan() { | 
|  | false | 
|  | } else { | 
|  | let neg = self.0 & 0x8000u16 != 0; | 
|  | let other_neg = other.0 & 0x8000u16 != 0; | 
|  | match (neg, other_neg) { | 
|  | (false, false) => self.0 <= other.0, | 
|  | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, | 
|  | (true, false) => true, | 
|  | (true, true) => self.0 >= other.0, | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn gt(&self, other: &bf16) -> bool { | 
|  | if self.is_nan() || other.is_nan() { | 
|  | false | 
|  | } else { | 
|  | let neg = self.0 & 0x8000u16 != 0; | 
|  | let other_neg = other.0 & 0x8000u16 != 0; | 
|  | match (neg, other_neg) { | 
|  | (false, false) => self.0 > other.0, | 
|  | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, | 
|  | (true, false) => false, | 
|  | (true, true) => self.0 < other.0, | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn ge(&self, other: &bf16) -> bool { | 
|  | if self.is_nan() || other.is_nan() { | 
|  | false | 
|  | } else { | 
|  | let neg = self.0 & 0x8000u16 != 0; | 
|  | let other_neg = other.0 & 0x8000u16 != 0; | 
|  | match (neg, other_neg) { | 
|  | (false, false) => self.0 >= other.0, | 
|  | (false, true) => true, | 
|  | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, | 
|  | (true, true) => self.0 <= other.0, | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl FromStr for bf16 { | 
|  | type Err = ParseFloatError; | 
|  | fn from_str(src: &str) -> Result<bf16, ParseFloatError> { | 
|  | f32::from_str(src).map(bf16::from_f32) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl Debug for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:?}", self.to_f32()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl Display for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{}", self.to_f32()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl LowerExp for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:e}", self.to_f32()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl UpperExp for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:E}", self.to_f32()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl Binary for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:b}", self.0) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl Octal for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:o}", self.0) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl LowerHex for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:x}", self.0) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(target_arch = "spirv"))] | 
|  | impl UpperHex for bf16 { | 
|  | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { | 
|  | write!(f, "{:X}", self.0) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Neg for bf16 { | 
|  | type Output = Self; | 
|  |  | 
|  | fn neg(self) -> Self::Output { | 
|  | Self(self.0 ^ 0x8000) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Neg for &bf16 { | 
|  | type Output = <bf16 as Neg>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn neg(self) -> Self::Output { | 
|  | Neg::neg(*self) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Add for bf16 { | 
|  | type Output = Self; | 
|  |  | 
|  | fn add(self, rhs: Self) -> Self::Output { | 
|  | Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Add<&bf16> for bf16 { | 
|  | type Output = <bf16 as Add<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn add(self, rhs: &bf16) -> Self::Output { | 
|  | self.add(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Add<&bf16> for &bf16 { | 
|  | type Output = <bf16 as Add<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn add(self, rhs: &bf16) -> Self::Output { | 
|  | (*self).add(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Add<bf16> for &bf16 { | 
|  | type Output = <bf16 as Add<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn add(self, rhs: bf16) -> Self::Output { | 
|  | (*self).add(rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl AddAssign for bf16 { | 
|  | #[inline] | 
|  | fn add_assign(&mut self, rhs: Self) { | 
|  | *self = (*self).add(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl AddAssign<&bf16> for bf16 { | 
|  | #[inline] | 
|  | fn add_assign(&mut self, rhs: &bf16) { | 
|  | *self = (*self).add(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Sub for bf16 { | 
|  | type Output = Self; | 
|  |  | 
|  | fn sub(self, rhs: Self) -> Self::Output { | 
|  | Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Sub<&bf16> for bf16 { | 
|  | type Output = <bf16 as Sub<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn sub(self, rhs: &bf16) -> Self::Output { | 
|  | self.sub(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Sub<&bf16> for &bf16 { | 
|  | type Output = <bf16 as Sub<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn sub(self, rhs: &bf16) -> Self::Output { | 
|  | (*self).sub(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Sub<bf16> for &bf16 { | 
|  | type Output = <bf16 as Sub<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn sub(self, rhs: bf16) -> Self::Output { | 
|  | (*self).sub(rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl SubAssign for bf16 { | 
|  | #[inline] | 
|  | fn sub_assign(&mut self, rhs: Self) { | 
|  | *self = (*self).sub(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl SubAssign<&bf16> for bf16 { | 
|  | #[inline] | 
|  | fn sub_assign(&mut self, rhs: &bf16) { | 
|  | *self = (*self).sub(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Mul for bf16 { | 
|  | type Output = Self; | 
|  |  | 
|  | fn mul(self, rhs: Self) -> Self::Output { | 
|  | Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Mul<&bf16> for bf16 { | 
|  | type Output = <bf16 as Mul<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn mul(self, rhs: &bf16) -> Self::Output { | 
|  | self.mul(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Mul<&bf16> for &bf16 { | 
|  | type Output = <bf16 as Mul<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn mul(self, rhs: &bf16) -> Self::Output { | 
|  | (*self).mul(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Mul<bf16> for &bf16 { | 
|  | type Output = <bf16 as Mul<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn mul(self, rhs: bf16) -> Self::Output { | 
|  | (*self).mul(rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl MulAssign for bf16 { | 
|  | #[inline] | 
|  | fn mul_assign(&mut self, rhs: Self) { | 
|  | *self = (*self).mul(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl MulAssign<&bf16> for bf16 { | 
|  | #[inline] | 
|  | fn mul_assign(&mut self, rhs: &bf16) { | 
|  | *self = (*self).mul(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Div for bf16 { | 
|  | type Output = Self; | 
|  |  | 
|  | fn div(self, rhs: Self) -> Self::Output { | 
|  | Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Div<&bf16> for bf16 { | 
|  | type Output = <bf16 as Div<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn div(self, rhs: &bf16) -> Self::Output { | 
|  | self.div(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Div<&bf16> for &bf16 { | 
|  | type Output = <bf16 as Div<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn div(self, rhs: &bf16) -> Self::Output { | 
|  | (*self).div(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Div<bf16> for &bf16 { | 
|  | type Output = <bf16 as Div<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn div(self, rhs: bf16) -> Self::Output { | 
|  | (*self).div(rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl DivAssign for bf16 { | 
|  | #[inline] | 
|  | fn div_assign(&mut self, rhs: Self) { | 
|  | *self = (*self).div(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl DivAssign<&bf16> for bf16 { | 
|  | #[inline] | 
|  | fn div_assign(&mut self, rhs: &bf16) { | 
|  | *self = (*self).div(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Rem for bf16 { | 
|  | type Output = Self; | 
|  |  | 
|  | fn rem(self, rhs: Self) -> Self::Output { | 
|  | Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Rem<&bf16> for bf16 { | 
|  | type Output = <bf16 as Rem<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn rem(self, rhs: &bf16) -> Self::Output { | 
|  | self.rem(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Rem<&bf16> for &bf16 { | 
|  | type Output = <bf16 as Rem<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn rem(self, rhs: &bf16) -> Self::Output { | 
|  | (*self).rem(*rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Rem<bf16> for &bf16 { | 
|  | type Output = <bf16 as Rem<bf16>>::Output; | 
|  |  | 
|  | #[inline] | 
|  | fn rem(self, rhs: bf16) -> Self::Output { | 
|  | (*self).rem(rhs) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl RemAssign for bf16 { | 
|  | #[inline] | 
|  | fn rem_assign(&mut self, rhs: Self) { | 
|  | *self = (*self).rem(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl RemAssign<&bf16> for bf16 { | 
|  | #[inline] | 
|  | fn rem_assign(&mut self, rhs: &bf16) { | 
|  | *self = (*self).rem(rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Product for bf16 { | 
|  | #[inline] | 
|  | fn product<I: Iterator<Item = Self>>(iter: I) -> Self { | 
|  | bf16::from_f32(iter.map(|f| f.to_f32()).product()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a> Product<&'a bf16> for bf16 { | 
|  | #[inline] | 
|  | fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { | 
|  | bf16::from_f32(iter.map(|f| f.to_f32()).product()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Sum for bf16 { | 
|  | #[inline] | 
|  | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { | 
|  | bf16::from_f32(iter.map(|f| f.to_f32()).sum()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a> Sum<&'a bf16> for bf16 { | 
|  | #[inline] | 
|  | fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { | 
|  | bf16::from_f32(iter.map(|f| f.to_f32()).product()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(feature = "serde")] | 
|  | struct Visitor; | 
|  |  | 
|  | #[cfg(feature = "serde")] | 
|  | impl<'de> Deserialize<'de> for bf16 { | 
|  | fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error> | 
|  | where | 
|  | D: serde::de::Deserializer<'de>, | 
|  | { | 
|  | deserializer.deserialize_newtype_struct("bf16", Visitor) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(feature = "serde")] | 
|  | impl<'de> serde::de::Visitor<'de> for Visitor { | 
|  | type Value = bf16; | 
|  |  | 
|  | fn expecting(&self, formatter: &mut alloc::fmt::Formatter) -> alloc::fmt::Result { | 
|  | write!(formatter, "tuple struct bf16") | 
|  | } | 
|  |  | 
|  | fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> | 
|  | where | 
|  | D: serde::Deserializer<'de>, | 
|  | { | 
|  | Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?)) | 
|  | } | 
|  |  | 
|  | fn visit_str<E>(self, v: &str) -> Result<Self::Value, E> | 
|  | where | 
|  | E: serde::de::Error, | 
|  | { | 
|  | v.parse().map_err(|_| { | 
|  | serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string") | 
|  | }) | 
|  | } | 
|  |  | 
|  | fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E> | 
|  | where | 
|  | E: serde::de::Error, | 
|  | { | 
|  | Ok(bf16::from_f32(v)) | 
|  | } | 
|  |  | 
|  | fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E> | 
|  | where | 
|  | E: serde::de::Error, | 
|  | { | 
|  | Ok(bf16::from_f64(v)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[allow( | 
|  | clippy::cognitive_complexity, | 
|  | clippy::float_cmp, | 
|  | clippy::neg_cmp_op_on_partial_ord | 
|  | )] | 
|  | #[cfg(test)] | 
|  | mod test { | 
|  | use super::*; | 
|  | use core::cmp::Ordering; | 
|  | #[cfg(feature = "num-traits")] | 
|  | use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; | 
|  | use quickcheck_macros::quickcheck; | 
|  |  | 
|  | #[cfg(feature = "num-traits")] | 
|  | #[test] | 
|  | fn as_primitive() { | 
|  | let two = bf16::from_f32(2.0); | 
|  | assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two); | 
|  | assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2); | 
|  |  | 
|  | assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two); | 
|  | assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0); | 
|  |  | 
|  | assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two); | 
|  | assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0); | 
|  | } | 
|  |  | 
|  | #[cfg(feature = "num-traits")] | 
|  | #[test] | 
|  | fn to_primitive() { | 
|  | let two = bf16::from_f32(2.0); | 
|  | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); | 
|  | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); | 
|  | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); | 
|  | } | 
|  |  | 
|  | #[cfg(feature = "num-traits")] | 
|  | #[test] | 
|  | fn from_primitive() { | 
|  | let two = bf16::from_f32(2.0); | 
|  | assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two); | 
|  | assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two); | 
|  | assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_bf16_consts_from_f32() { | 
|  | let one = bf16::from_f32(1.0); | 
|  | let zero = bf16::from_f32(0.0); | 
|  | let neg_zero = bf16::from_f32(-0.0); | 
|  | let neg_one = bf16::from_f32(-1.0); | 
|  | let inf = bf16::from_f32(core::f32::INFINITY); | 
|  | let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY); | 
|  | let nan = bf16::from_f32(core::f32::NAN); | 
|  |  | 
|  | assert_eq!(bf16::ONE, one); | 
|  | assert_eq!(bf16::ZERO, zero); | 
|  | assert!(zero.is_sign_positive()); | 
|  | assert_eq!(bf16::NEG_ZERO, neg_zero); | 
|  | assert!(neg_zero.is_sign_negative()); | 
|  | assert_eq!(bf16::NEG_ONE, neg_one); | 
|  | assert!(neg_one.is_sign_negative()); | 
|  | assert_eq!(bf16::INFINITY, inf); | 
|  | assert_eq!(bf16::NEG_INFINITY, neg_inf); | 
|  | assert!(nan.is_nan()); | 
|  | assert!(bf16::NAN.is_nan()); | 
|  |  | 
|  | let e = bf16::from_f32(core::f32::consts::E); | 
|  | let pi = bf16::from_f32(core::f32::consts::PI); | 
|  | let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI); | 
|  | let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2); | 
|  | let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI); | 
|  | let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); | 
|  | let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2); | 
|  | let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3); | 
|  | let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4); | 
|  | let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6); | 
|  | let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8); | 
|  | let ln_10 = bf16::from_f32(core::f32::consts::LN_10); | 
|  | let ln_2 = bf16::from_f32(core::f32::consts::LN_2); | 
|  | let log10_e = bf16::from_f32(core::f32::consts::LOG10_E); | 
|  | // core::f32::consts::LOG10_2 requires rustc 1.43.0 | 
|  | let log10_2 = bf16::from_f32(2f32.log10()); | 
|  | let log2_e = bf16::from_f32(core::f32::consts::LOG2_E); | 
|  | // core::f32::consts::LOG2_10 requires rustc 1.43.0 | 
|  | let log2_10 = bf16::from_f32(10f32.log2()); | 
|  | let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2); | 
|  |  | 
|  | assert_eq!(bf16::E, e); | 
|  | assert_eq!(bf16::PI, pi); | 
|  | assert_eq!(bf16::FRAC_1_PI, frac_1_pi); | 
|  | assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); | 
|  | assert_eq!(bf16::FRAC_2_PI, frac_2_pi); | 
|  | assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); | 
|  | assert_eq!(bf16::FRAC_PI_2, frac_pi_2); | 
|  | assert_eq!(bf16::FRAC_PI_3, frac_pi_3); | 
|  | assert_eq!(bf16::FRAC_PI_4, frac_pi_4); | 
|  | assert_eq!(bf16::FRAC_PI_6, frac_pi_6); | 
|  | assert_eq!(bf16::FRAC_PI_8, frac_pi_8); | 
|  | assert_eq!(bf16::LN_10, ln_10); | 
|  | assert_eq!(bf16::LN_2, ln_2); | 
|  | assert_eq!(bf16::LOG10_E, log10_e); | 
|  | assert_eq!(bf16::LOG10_2, log10_2); | 
|  | assert_eq!(bf16::LOG2_E, log2_e); | 
|  | assert_eq!(bf16::LOG2_10, log2_10); | 
|  | assert_eq!(bf16::SQRT_2, sqrt_2); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_bf16_consts_from_f64() { | 
|  | let one = bf16::from_f64(1.0); | 
|  | let zero = bf16::from_f64(0.0); | 
|  | let neg_zero = bf16::from_f64(-0.0); | 
|  | let inf = bf16::from_f64(core::f64::INFINITY); | 
|  | let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY); | 
|  | let nan = bf16::from_f64(core::f64::NAN); | 
|  |  | 
|  | assert_eq!(bf16::ONE, one); | 
|  | assert_eq!(bf16::ZERO, zero); | 
|  | assert_eq!(bf16::NEG_ZERO, neg_zero); | 
|  | assert_eq!(bf16::INFINITY, inf); | 
|  | assert_eq!(bf16::NEG_INFINITY, neg_inf); | 
|  | assert!(nan.is_nan()); | 
|  | assert!(bf16::NAN.is_nan()); | 
|  |  | 
|  | let e = bf16::from_f64(core::f64::consts::E); | 
|  | let pi = bf16::from_f64(core::f64::consts::PI); | 
|  | let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI); | 
|  | let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2); | 
|  | let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI); | 
|  | let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); | 
|  | let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2); | 
|  | let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3); | 
|  | let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4); | 
|  | let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6); | 
|  | let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8); | 
|  | let ln_10 = bf16::from_f64(core::f64::consts::LN_10); | 
|  | let ln_2 = bf16::from_f64(core::f64::consts::LN_2); | 
|  | let log10_e = bf16::from_f64(core::f64::consts::LOG10_E); | 
|  | // core::f64::consts::LOG10_2 requires rustc 1.43.0 | 
|  | let log10_2 = bf16::from_f64(2f64.log10()); | 
|  | let log2_e = bf16::from_f64(core::f64::consts::LOG2_E); | 
|  | // core::f64::consts::LOG2_10 requires rustc 1.43.0 | 
|  | let log2_10 = bf16::from_f64(10f64.log2()); | 
|  | let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2); | 
|  |  | 
|  | assert_eq!(bf16::E, e); | 
|  | assert_eq!(bf16::PI, pi); | 
|  | assert_eq!(bf16::FRAC_1_PI, frac_1_pi); | 
|  | assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); | 
|  | assert_eq!(bf16::FRAC_2_PI, frac_2_pi); | 
|  | assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); | 
|  | assert_eq!(bf16::FRAC_PI_2, frac_pi_2); | 
|  | assert_eq!(bf16::FRAC_PI_3, frac_pi_3); | 
|  | assert_eq!(bf16::FRAC_PI_4, frac_pi_4); | 
|  | assert_eq!(bf16::FRAC_PI_6, frac_pi_6); | 
|  | assert_eq!(bf16::FRAC_PI_8, frac_pi_8); | 
|  | assert_eq!(bf16::LN_10, ln_10); | 
|  | assert_eq!(bf16::LN_2, ln_2); | 
|  | assert_eq!(bf16::LOG10_E, log10_e); | 
|  | assert_eq!(bf16::LOG10_2, log10_2); | 
|  | assert_eq!(bf16::LOG2_E, log2_e); | 
|  | assert_eq!(bf16::LOG2_10, log2_10); | 
|  | assert_eq!(bf16::SQRT_2, sqrt_2); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_nan_conversion_to_smaller() { | 
|  | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); | 
|  | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); | 
|  | let nan32 = f32::from_bits(0x7F80_0001u32); | 
|  | let neg_nan32 = f32::from_bits(0xFF80_0001u32); | 
|  | let nan32_from_64 = nan64 as f32; | 
|  | let neg_nan32_from_64 = neg_nan64 as f32; | 
|  | let nan16_from_64 = bf16::from_f64(nan64); | 
|  | let neg_nan16_from_64 = bf16::from_f64(neg_nan64); | 
|  | let nan16_from_32 = bf16::from_f32(nan32); | 
|  | let neg_nan16_from_32 = bf16::from_f32(neg_nan32); | 
|  |  | 
|  | assert!(nan64.is_nan() && nan64.is_sign_positive()); | 
|  | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); | 
|  | assert!(nan32.is_nan() && nan32.is_sign_positive()); | 
|  | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); | 
|  | assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); | 
|  | assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); | 
|  | assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); | 
|  | assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); | 
|  | assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); | 
|  | assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_nan_conversion_to_larger() { | 
|  | let nan16 = bf16::from_bits(0x7F81u16); | 
|  | let neg_nan16 = bf16::from_bits(0xFF81u16); | 
|  | let nan32 = f32::from_bits(0x7F80_0001u32); | 
|  | let neg_nan32 = f32::from_bits(0xFF80_0001u32); | 
|  | let nan32_from_16 = f32::from(nan16); | 
|  | let neg_nan32_from_16 = f32::from(neg_nan16); | 
|  | let nan64_from_16 = f64::from(nan16); | 
|  | let neg_nan64_from_16 = f64::from(neg_nan16); | 
|  | let nan64_from_32 = f64::from(nan32); | 
|  | let neg_nan64_from_32 = f64::from(neg_nan32); | 
|  |  | 
|  | assert!(nan16.is_nan() && nan16.is_sign_positive()); | 
|  | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); | 
|  | assert!(nan32.is_nan() && nan32.is_sign_positive()); | 
|  | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); | 
|  | assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); | 
|  | assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); | 
|  | assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); | 
|  | assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); | 
|  | assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); | 
|  | assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_bf16_to_f32() { | 
|  | let f = bf16::from_f32(7.0); | 
|  | assert_eq!(f.to_f32(), 7.0f32); | 
|  |  | 
|  | // 7.1 is NOT exactly representable in 16-bit, it's rounded | 
|  | let f = bf16::from_f32(7.1); | 
|  | let diff = (f.to_f32() - 7.1f32).abs(); | 
|  | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 | 
|  | assert!(diff <= 4.0 * bf16::EPSILON.to_f32()); | 
|  |  | 
|  | let tiny32 = f32::from_bits(0x0001_0000u32); | 
|  | assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32); | 
|  | assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32); | 
|  |  | 
|  | assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32)); | 
|  | assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_bf16_to_f64() { | 
|  | let f = bf16::from_f64(7.0); | 
|  | assert_eq!(f.to_f64(), 7.0f64); | 
|  |  | 
|  | // 7.1 is NOT exactly representable in 16-bit, it's rounded | 
|  | let f = bf16::from_f64(7.1); | 
|  | let diff = (f.to_f64() - 7.1f64).abs(); | 
|  | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 | 
|  | assert!(diff <= 4.0 * bf16::EPSILON.to_f64()); | 
|  |  | 
|  | let tiny64 = 2.0f64.powi(-133); | 
|  | assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64); | 
|  | assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64); | 
|  |  | 
|  | assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64)); | 
|  | assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_comparisons() { | 
|  | let zero = bf16::from_f64(0.0); | 
|  | let one = bf16::from_f64(1.0); | 
|  | let neg_zero = bf16::from_f64(-0.0); | 
|  | let neg_one = bf16::from_f64(-1.0); | 
|  |  | 
|  | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); | 
|  | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); | 
|  | assert!(zero == neg_zero); | 
|  | assert!(neg_zero == zero); | 
|  | assert!(!(zero != neg_zero)); | 
|  | assert!(!(neg_zero != zero)); | 
|  | assert!(!(zero < neg_zero)); | 
|  | assert!(!(neg_zero < zero)); | 
|  | assert!(zero <= neg_zero); | 
|  | assert!(neg_zero <= zero); | 
|  | assert!(!(zero > neg_zero)); | 
|  | assert!(!(neg_zero > zero)); | 
|  | assert!(zero >= neg_zero); | 
|  | assert!(neg_zero >= zero); | 
|  |  | 
|  | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); | 
|  | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); | 
|  | assert!(!(one == neg_zero)); | 
|  | assert!(!(neg_zero == one)); | 
|  | assert!(one != neg_zero); | 
|  | assert!(neg_zero != one); | 
|  | assert!(!(one < neg_zero)); | 
|  | assert!(neg_zero < one); | 
|  | assert!(!(one <= neg_zero)); | 
|  | assert!(neg_zero <= one); | 
|  | assert!(one > neg_zero); | 
|  | assert!(!(neg_zero > one)); | 
|  | assert!(one >= neg_zero); | 
|  | assert!(!(neg_zero >= one)); | 
|  |  | 
|  | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); | 
|  | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); | 
|  | assert!(!(one == neg_one)); | 
|  | assert!(!(neg_one == one)); | 
|  | assert!(one != neg_one); | 
|  | assert!(neg_one != one); | 
|  | assert!(!(one < neg_one)); | 
|  | assert!(neg_one < one); | 
|  | assert!(!(one <= neg_one)); | 
|  | assert!(neg_one <= one); | 
|  | assert!(one > neg_one); | 
|  | assert!(!(neg_one > one)); | 
|  | assert!(one >= neg_one); | 
|  | assert!(!(neg_one >= one)); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | #[allow(clippy::erasing_op, clippy::identity_op)] | 
|  | fn round_to_even_f32() { | 
|  | // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 | 
|  | let min_sub = bf16::from_bits(1); | 
|  | let min_sub_f = (-133f32).exp2(); | 
|  | assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); | 
|  | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); | 
|  |  | 
|  | // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) | 
|  | // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) | 
|  | // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 0.49).to_bits(), | 
|  | min_sub.to_bits() * 0 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 0.50).to_bits(), | 
|  | min_sub.to_bits() * 0 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 0.51).to_bits(), | 
|  | min_sub.to_bits() * 1 | 
|  | ); | 
|  |  | 
|  | // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) | 
|  | // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) | 
|  | // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 1.49).to_bits(), | 
|  | min_sub.to_bits() * 1 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 1.50).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 1.51).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  |  | 
|  | // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) | 
|  | // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) | 
|  | // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 2.49).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 2.50).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(min_sub_f * 2.51).to_bits(), | 
|  | min_sub.to_bits() * 3 | 
|  | ); | 
|  |  | 
|  | assert_eq!( | 
|  | bf16::from_f32(250.49f32).to_bits(), | 
|  | bf16::from_f32(250.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(250.50f32).to_bits(), | 
|  | bf16::from_f32(250.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(250.51f32).to_bits(), | 
|  | bf16::from_f32(251.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(251.49f32).to_bits(), | 
|  | bf16::from_f32(251.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(251.50f32).to_bits(), | 
|  | bf16::from_f32(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(251.51f32).to_bits(), | 
|  | bf16::from_f32(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(252.49f32).to_bits(), | 
|  | bf16::from_f32(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(252.50f32).to_bits(), | 
|  | bf16::from_f32(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f32(252.51f32).to_bits(), | 
|  | bf16::from_f32(253.0).to_bits() | 
|  | ); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | #[allow(clippy::erasing_op, clippy::identity_op)] | 
|  | fn round_to_even_f64() { | 
|  | // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 | 
|  | let min_sub = bf16::from_bits(1); | 
|  | let min_sub_f = (-133f64).exp2(); | 
|  | assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); | 
|  | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); | 
|  |  | 
|  | // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) | 
|  | // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) | 
|  | // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 0.49).to_bits(), | 
|  | min_sub.to_bits() * 0 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 0.50).to_bits(), | 
|  | min_sub.to_bits() * 0 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 0.51).to_bits(), | 
|  | min_sub.to_bits() * 1 | 
|  | ); | 
|  |  | 
|  | // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) | 
|  | // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) | 
|  | // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 1.49).to_bits(), | 
|  | min_sub.to_bits() * 1 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 1.50).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 1.51).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  |  | 
|  | // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) | 
|  | // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) | 
|  | // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 2.49).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 2.50).to_bits(), | 
|  | min_sub.to_bits() * 2 | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(min_sub_f * 2.51).to_bits(), | 
|  | min_sub.to_bits() * 3 | 
|  | ); | 
|  |  | 
|  | assert_eq!( | 
|  | bf16::from_f64(250.49f64).to_bits(), | 
|  | bf16::from_f64(250.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(250.50f64).to_bits(), | 
|  | bf16::from_f64(250.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(250.51f64).to_bits(), | 
|  | bf16::from_f64(251.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(251.49f64).to_bits(), | 
|  | bf16::from_f64(251.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(251.50f64).to_bits(), | 
|  | bf16::from_f64(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(251.51f64).to_bits(), | 
|  | bf16::from_f64(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(252.49f64).to_bits(), | 
|  | bf16::from_f64(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(252.50f64).to_bits(), | 
|  | bf16::from_f64(252.0).to_bits() | 
|  | ); | 
|  | assert_eq!( | 
|  | bf16::from_f64(252.51f64).to_bits(), | 
|  | bf16::from_f64(253.0).to_bits() | 
|  | ); | 
|  | } | 
|  |  | 
|  | impl quickcheck::Arbitrary for bf16 { | 
|  | fn arbitrary(g: &mut quickcheck::Gen) -> Self { | 
|  | bf16(u16::arbitrary(g)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[quickcheck] | 
|  | fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool { | 
|  | let roundtrip = bf16::from_f32(f.to_f32()); | 
|  | if f.is_nan() { | 
|  | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() | 
|  | } else { | 
|  | f.0 == roundtrip.0 | 
|  | } | 
|  | } | 
|  |  | 
|  | #[quickcheck] | 
|  | fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool { | 
|  | let roundtrip = bf16::from_f64(f.to_f64()); | 
|  | if f.is_nan() { | 
|  | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() | 
|  | } else { | 
|  | f.0 == roundtrip.0 | 
|  | } | 
|  | } | 
|  | } |