|  | // Copyright 2012 The Rust Project Developers. See the COPYRIGHT | 
|  | // file at the top-level directory of this distribution and at | 
|  | // http://rust-lang.org/COPYRIGHT. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | 
|  | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | 
|  | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | 
|  | // option. This file may not be copied, modified, or distributed | 
|  | // except according to those terms. | 
|  |  | 
|  | #![allow(missing_docs)] | 
|  | #![allow(deprecated)] // Float | 
|  |  | 
|  | use std::cmp::Ordering::{self, Equal, Greater, Less}; | 
|  | use std::mem; | 
|  |  | 
|  | fn local_cmp(x: f64, y: f64) -> Ordering { | 
|  | // arbitrarily decide that NaNs are larger than everything. | 
|  | if y.is_nan() { | 
|  | Less | 
|  | } else if x.is_nan() { | 
|  | Greater | 
|  | } else if x < y { | 
|  | Less | 
|  | } else if x == y { | 
|  | Equal | 
|  | } else { | 
|  | Greater | 
|  | } | 
|  | } | 
|  |  | 
|  | fn local_sort(v: &mut [f64]) { | 
|  | v.sort_by(|x: &f64, y: &f64| local_cmp(*x, *y)); | 
|  | } | 
|  |  | 
|  | /// Trait that provides simple descriptive statistics on a univariate set of numeric samples. | 
|  | pub trait Stats { | 
|  | /// Sum of the samples. | 
|  | /// | 
|  | /// Note: this method sacrifices performance at the altar of accuracy | 
|  | /// Depends on IEEE-754 arithmetic guarantees. See proof of correctness at: | 
|  | /// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates"] | 
|  | /// (http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps) | 
|  | fn sum(&self) -> f64; | 
|  |  | 
|  | /// Minimum value of the samples. | 
|  | fn min(&self) -> f64; | 
|  |  | 
|  | /// Maximum value of the samples. | 
|  | fn max(&self) -> f64; | 
|  |  | 
|  | /// Arithmetic mean (average) of the samples: sum divided by sample-count. | 
|  | /// | 
|  | /// See: https://en.wikipedia.org/wiki/Arithmetic_mean | 
|  | fn mean(&self) -> f64; | 
|  |  | 
|  | /// Median of the samples: value separating the lower half of the samples from the higher half. | 
|  | /// Equal to `self.percentile(50.0)`. | 
|  | /// | 
|  | /// See: https://en.wikipedia.org/wiki/Median | 
|  | fn median(&self) -> f64; | 
|  |  | 
|  | /// Variance of the samples: bias-corrected mean of the squares of the differences of each | 
|  | /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the | 
|  | /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n` | 
|  | /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather | 
|  | /// than `n`. | 
|  | /// | 
|  | /// See: https://en.wikipedia.org/wiki/Variance | 
|  | fn var(&self) -> f64; | 
|  |  | 
|  | /// Standard deviation: the square root of the sample variance. | 
|  | /// | 
|  | /// Note: this is not a robust statistic for non-normal distributions. Prefer the | 
|  | /// `median_abs_dev` for unknown distributions. | 
|  | /// | 
|  | /// See: https://en.wikipedia.org/wiki/Standard_deviation | 
|  | fn std_dev(&self) -> f64; | 
|  |  | 
|  | /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`. | 
|  | /// | 
|  | /// Note: this is not a robust statistic for non-normal distributions. Prefer the | 
|  | /// `median_abs_dev_pct` for unknown distributions. | 
|  | fn std_dev_pct(&self) -> f64; | 
|  |  | 
|  | /// Scaled median of the absolute deviations of each sample from the sample median. This is a | 
|  | /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to | 
|  | /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled | 
|  | /// by the constant `1.4826` to allow its use as a consistent estimator for the standard | 
|  | /// deviation. | 
|  | /// | 
|  | /// See: http://en.wikipedia.org/wiki/Median_absolute_deviation | 
|  | fn median_abs_dev(&self) -> f64; | 
|  |  | 
|  | /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`. | 
|  | fn median_abs_dev_pct(&self) -> f64; | 
|  |  | 
|  | /// Percentile: the value below which `pct` percent of the values in `self` fall. For example, | 
|  | /// percentile(95.0) will return the value `v` such that 95% of the samples `s` in `self` | 
|  | /// satisfy `s <= v`. | 
|  | /// | 
|  | /// Calculated by linear interpolation between closest ranks. | 
|  | /// | 
|  | /// See: http://en.wikipedia.org/wiki/Percentile | 
|  | fn percentile(&self, pct: f64) -> f64; | 
|  |  | 
|  | /// Quartiles of the sample: three values that divide the sample into four equal groups, each | 
|  | /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This | 
|  | /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but | 
|  | /// is otherwise equivalent. | 
|  | /// | 
|  | /// See also: https://en.wikipedia.org/wiki/Quartile | 
|  | fn quartiles(&self) -> (f64, f64, f64); | 
|  |  | 
|  | /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th | 
|  | /// percentile (3rd quartile). See `quartiles`. | 
|  | /// | 
|  | /// See also: https://en.wikipedia.org/wiki/Interquartile_range | 
|  | fn iqr(&self) -> f64; | 
|  | } | 
|  |  | 
|  | /// Extracted collection of all the summary statistics of a sample set. | 
|  | #[derive(Clone, PartialEq)] | 
|  | #[allow(missing_docs)] | 
|  | pub struct Summary { | 
|  | pub sum: f64, | 
|  | pub min: f64, | 
|  | pub max: f64, | 
|  | pub mean: f64, | 
|  | pub median: f64, | 
|  | pub var: f64, | 
|  | pub std_dev: f64, | 
|  | pub std_dev_pct: f64, | 
|  | pub median_abs_dev: f64, | 
|  | pub median_abs_dev_pct: f64, | 
|  | pub quartiles: (f64, f64, f64), | 
|  | pub iqr: f64, | 
|  | } | 
|  |  | 
|  | impl Summary { | 
|  | /// Construct a new summary of a sample set. | 
|  | pub fn new(samples: &[f64]) -> Summary { | 
|  | Summary { | 
|  | sum: samples.sum(), | 
|  | min: samples.min(), | 
|  | max: samples.max(), | 
|  | mean: samples.mean(), | 
|  | median: samples.median(), | 
|  | var: samples.var(), | 
|  | std_dev: samples.std_dev(), | 
|  | std_dev_pct: samples.std_dev_pct(), | 
|  | median_abs_dev: samples.median_abs_dev(), | 
|  | median_abs_dev_pct: samples.median_abs_dev_pct(), | 
|  | quartiles: samples.quartiles(), | 
|  | iqr: samples.iqr(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Stats for [f64] { | 
|  | // FIXME #11059 handle NaN, inf and overflow | 
|  | fn sum(&self) -> f64 { | 
|  | let mut partials = vec![]; | 
|  |  | 
|  | for &x in self { | 
|  | let mut x = x; | 
|  | let mut j = 0; | 
|  | // This inner loop applies `hi`/`lo` summation to each | 
|  | // partial so that the list of partial sums remains exact. | 
|  | for i in 0..partials.len() { | 
|  | let mut y: f64 = partials[i]; | 
|  | if x.abs() < y.abs() { | 
|  | mem::swap(&mut x, &mut y); | 
|  | } | 
|  | // Rounded `x+y` is stored in `hi` with round-off stored in | 
|  | // `lo`. Together `hi+lo` are exactly equal to `x+y`. | 
|  | let hi = x + y; | 
|  | let lo = y - (hi - x); | 
|  | if lo != 0.0 { | 
|  | partials[j] = lo; | 
|  | j += 1; | 
|  | } | 
|  | x = hi; | 
|  | } | 
|  | if j >= partials.len() { | 
|  | partials.push(x); | 
|  | } else { | 
|  | partials[j] = x; | 
|  | partials.truncate(j + 1); | 
|  | } | 
|  | } | 
|  | let zero: f64 = 0.0; | 
|  | partials.iter().fold(zero, |p, q| p + *q) | 
|  | } | 
|  |  | 
|  | fn min(&self) -> f64 { | 
|  | assert!(!self.is_empty()); | 
|  | self.iter().fold(self[0], |p, q| p.min(*q)) | 
|  | } | 
|  |  | 
|  | fn max(&self) -> f64 { | 
|  | assert!(!self.is_empty()); | 
|  | self.iter().fold(self[0], |p, q| p.max(*q)) | 
|  | } | 
|  |  | 
|  | fn mean(&self) -> f64 { | 
|  | assert!(!self.is_empty()); | 
|  | self.sum() / (self.len() as f64) | 
|  | } | 
|  |  | 
|  | fn median(&self) -> f64 { | 
|  | self.percentile(50 as f64) | 
|  | } | 
|  |  | 
|  | fn var(&self) -> f64 { | 
|  | if self.len() < 2 { | 
|  | 0.0 | 
|  | } else { | 
|  | let mean = self.mean(); | 
|  | let mut v: f64 = 0.0; | 
|  | for s in self { | 
|  | let x = *s - mean; | 
|  | v += x * x; | 
|  | } | 
|  | // NB: this is _supposed to be_ len-1, not len. If you | 
|  | // change it back to len, you will be calculating a | 
|  | // population variance, not a sample variance. | 
|  | let denom = (self.len() - 1) as f64; | 
|  | v / denom | 
|  | } | 
|  | } | 
|  |  | 
|  | fn std_dev(&self) -> f64 { | 
|  | self.var().sqrt() | 
|  | } | 
|  |  | 
|  | fn std_dev_pct(&self) -> f64 { | 
|  | let hundred = 100 as f64; | 
|  | (self.std_dev() / self.mean()) * hundred | 
|  | } | 
|  |  | 
|  | fn median_abs_dev(&self) -> f64 { | 
|  | let med = self.median(); | 
|  | let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect(); | 
|  | // This constant is derived by smarter statistics brains than me, but it is | 
|  | // consistent with how R and other packages treat the MAD. | 
|  | let number = 1.4826; | 
|  | abs_devs.median() * number | 
|  | } | 
|  |  | 
|  | fn median_abs_dev_pct(&self) -> f64 { | 
|  | let hundred = 100 as f64; | 
|  | (self.median_abs_dev() / self.median()) * hundred | 
|  | } | 
|  |  | 
|  | fn percentile(&self, pct: f64) -> f64 { | 
|  | let mut tmp = self.to_vec(); | 
|  | local_sort(&mut tmp); | 
|  | percentile_of_sorted(&tmp, pct) | 
|  | } | 
|  |  | 
|  | fn quartiles(&self) -> (f64, f64, f64) { | 
|  | let mut tmp = self.to_vec(); | 
|  | local_sort(&mut tmp); | 
|  | let first = 25f64; | 
|  | let a = percentile_of_sorted(&tmp, first); | 
|  | let secound = 50f64; | 
|  | let b = percentile_of_sorted(&tmp, secound); | 
|  | let third = 75f64; | 
|  | let c = percentile_of_sorted(&tmp, third); | 
|  | (a, b, c) | 
|  | } | 
|  |  | 
|  | fn iqr(&self) -> f64 { | 
|  | let (a, _, c) = self.quartiles(); | 
|  | c - a | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using | 
|  | // linear interpolation. If samples are not sorted, return nonsensical value. | 
|  | fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 { | 
|  | assert!(!sorted_samples.is_empty()); | 
|  | if sorted_samples.len() == 1 { | 
|  | return sorted_samples[0]; | 
|  | } | 
|  | let zero: f64 = 0.0; | 
|  | assert!(zero <= pct); | 
|  | let hundred = 100f64; | 
|  | assert!(pct <= hundred); | 
|  | if pct == hundred { | 
|  | return sorted_samples[sorted_samples.len() - 1]; | 
|  | } | 
|  | let length = (sorted_samples.len() - 1) as f64; | 
|  | let rank = (pct / hundred) * length; | 
|  | let lrank = rank.floor(); | 
|  | let d = rank - lrank; | 
|  | let n = lrank as usize; | 
|  | let lo = sorted_samples[n]; | 
|  | let hi = sorted_samples[n + 1]; | 
|  | lo + (hi - lo) * d | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Winsorize a set of samples, replacing values above the `100-pct` percentile | 
|  | /// and below the `pct` percentile with those percentiles themselves. This is a | 
|  | /// way of minimizing the effect of outliers, at the cost of biasing the sample. | 
|  | /// It differs from trimming in that it does not change the number of samples, | 
|  | /// just changes the values of those that are outliers. | 
|  | /// | 
|  | /// See: http://en.wikipedia.org/wiki/Winsorising | 
|  | pub fn winsorize(samples: &mut [f64], pct: f64) { | 
|  | let mut tmp = samples.to_vec(); | 
|  | local_sort(&mut tmp); | 
|  | let lo = percentile_of_sorted(&tmp, pct); | 
|  | let hundred = 100 as f64; | 
|  | let hi = percentile_of_sorted(&tmp, hundred - pct); | 
|  | for samp in samples { | 
|  | if *samp > hi { | 
|  | *samp = hi | 
|  | } else if *samp < lo { | 
|  | *samp = lo | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test vectors generated from R, using the script src/etc/stat-test-vectors.r. | 
|  |  | 
|  | #[cfg(test)] | 
|  | mod tests { | 
|  | use stats::Stats; | 
|  | use stats::Summary; | 
|  | use std::f64; | 
|  | use std::io::prelude::*; | 
|  | use std::io; | 
|  |  | 
|  | macro_rules! assert_approx_eq { | 
|  | ($a:expr, $b:expr) => ({ | 
|  | let (a, b) = (&$a, &$b); | 
|  | assert!((*a - *b).abs() < 1.0e-6, | 
|  | "{} is not approximately equal to {}", *a, *b); | 
|  | }) | 
|  | } | 
|  |  | 
|  | fn check(samples: &[f64], summ: &Summary) { | 
|  |  | 
|  | let summ2 = Summary::new(samples); | 
|  |  | 
|  | let mut w = io::sink(); | 
|  | let w = &mut w; | 
|  | (write!(w, "\n")).unwrap(); | 
|  |  | 
|  | assert_eq!(summ.sum, summ2.sum); | 
|  | assert_eq!(summ.min, summ2.min); | 
|  | assert_eq!(summ.max, summ2.max); | 
|  | assert_eq!(summ.mean, summ2.mean); | 
|  | assert_eq!(summ.median, summ2.median); | 
|  |  | 
|  | // We needed a few more digits to get exact equality on these | 
|  | // but they're within float epsilon, which is 1.0e-6. | 
|  | assert_approx_eq!(summ.var, summ2.var); | 
|  | assert_approx_eq!(summ.std_dev, summ2.std_dev); | 
|  | assert_approx_eq!(summ.std_dev_pct, summ2.std_dev_pct); | 
|  | assert_approx_eq!(summ.median_abs_dev, summ2.median_abs_dev); | 
|  | assert_approx_eq!(summ.median_abs_dev_pct, summ2.median_abs_dev_pct); | 
|  |  | 
|  | assert_eq!(summ.quartiles, summ2.quartiles); | 
|  | assert_eq!(summ.iqr, summ2.iqr); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_min_max_nan() { | 
|  | let xs = &[1.0, 2.0, f64::NAN, 3.0, 4.0]; | 
|  | let summary = Summary::new(xs); | 
|  | assert_eq!(summary.min, 1.0); | 
|  | assert_eq!(summary.max, 4.0); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_norm2() { | 
|  | let val = &[958.0000000000, 924.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 1882.0000000000, | 
|  | min: 924.0000000000, | 
|  | max: 958.0000000000, | 
|  | mean: 941.0000000000, | 
|  | median: 941.0000000000, | 
|  | var: 578.0000000000, | 
|  | std_dev: 24.0416305603, | 
|  | std_dev_pct: 2.5549022912, | 
|  | median_abs_dev: 25.2042000000, | 
|  | median_abs_dev_pct: 2.6784484591, | 
|  | quartiles: (932.5000000000, 941.0000000000, 949.5000000000), | 
|  | iqr: 17.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_norm10narrow() { | 
|  | let val = &[966.0000000000, | 
|  | 985.0000000000, | 
|  | 1110.0000000000, | 
|  | 848.0000000000, | 
|  | 821.0000000000, | 
|  | 975.0000000000, | 
|  | 962.0000000000, | 
|  | 1157.0000000000, | 
|  | 1217.0000000000, | 
|  | 955.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 9996.0000000000, | 
|  | min: 821.0000000000, | 
|  | max: 1217.0000000000, | 
|  | mean: 999.6000000000, | 
|  | median: 970.5000000000, | 
|  | var: 16050.7111111111, | 
|  | std_dev: 126.6914010938, | 
|  | std_dev_pct: 12.6742097933, | 
|  | median_abs_dev: 102.2994000000, | 
|  | median_abs_dev_pct: 10.5408964451, | 
|  | quartiles: (956.7500000000, 970.5000000000, 1078.7500000000), | 
|  | iqr: 122.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_norm10medium() { | 
|  | let val = &[954.0000000000, | 
|  | 1064.0000000000, | 
|  | 855.0000000000, | 
|  | 1000.0000000000, | 
|  | 743.0000000000, | 
|  | 1084.0000000000, | 
|  | 704.0000000000, | 
|  | 1023.0000000000, | 
|  | 357.0000000000, | 
|  | 869.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 8653.0000000000, | 
|  | min: 357.0000000000, | 
|  | max: 1084.0000000000, | 
|  | mean: 865.3000000000, | 
|  | median: 911.5000000000, | 
|  | var: 48628.4555555556, | 
|  | std_dev: 220.5186059170, | 
|  | std_dev_pct: 25.4846418487, | 
|  | median_abs_dev: 195.7032000000, | 
|  | median_abs_dev_pct: 21.4704552935, | 
|  | quartiles: (771.0000000000, 911.5000000000, 1017.2500000000), | 
|  | iqr: 246.2500000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_norm10wide() { | 
|  | let val = &[505.0000000000, | 
|  | 497.0000000000, | 
|  | 1591.0000000000, | 
|  | 887.0000000000, | 
|  | 1026.0000000000, | 
|  | 136.0000000000, | 
|  | 1580.0000000000, | 
|  | 940.0000000000, | 
|  | 754.0000000000, | 
|  | 1433.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 9349.0000000000, | 
|  | min: 136.0000000000, | 
|  | max: 1591.0000000000, | 
|  | mean: 934.9000000000, | 
|  | median: 913.5000000000, | 
|  | var: 239208.9888888889, | 
|  | std_dev: 489.0899599142, | 
|  | std_dev_pct: 52.3146817750, | 
|  | median_abs_dev: 611.5725000000, | 
|  | median_abs_dev_pct: 66.9482758621, | 
|  | quartiles: (567.2500000000, 913.5000000000, 1331.2500000000), | 
|  | iqr: 764.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_norm25verynarrow() { | 
|  | let val = &[991.0000000000, | 
|  | 1018.0000000000, | 
|  | 998.0000000000, | 
|  | 1013.0000000000, | 
|  | 974.0000000000, | 
|  | 1007.0000000000, | 
|  | 1014.0000000000, | 
|  | 999.0000000000, | 
|  | 1011.0000000000, | 
|  | 978.0000000000, | 
|  | 985.0000000000, | 
|  | 999.0000000000, | 
|  | 983.0000000000, | 
|  | 982.0000000000, | 
|  | 1015.0000000000, | 
|  | 1002.0000000000, | 
|  | 977.0000000000, | 
|  | 948.0000000000, | 
|  | 1040.0000000000, | 
|  | 974.0000000000, | 
|  | 996.0000000000, | 
|  | 989.0000000000, | 
|  | 1015.0000000000, | 
|  | 994.0000000000, | 
|  | 1024.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 24926.0000000000, | 
|  | min: 948.0000000000, | 
|  | max: 1040.0000000000, | 
|  | mean: 997.0400000000, | 
|  | median: 998.0000000000, | 
|  | var: 393.2066666667, | 
|  | std_dev: 19.8294393937, | 
|  | std_dev_pct: 1.9888308788, | 
|  | median_abs_dev: 22.2390000000, | 
|  | median_abs_dev_pct: 2.2283567134, | 
|  | quartiles: (983.0000000000, 998.0000000000, 1013.0000000000), | 
|  | iqr: 30.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_exp10a() { | 
|  | let val = &[23.0000000000, | 
|  | 11.0000000000, | 
|  | 2.0000000000, | 
|  | 57.0000000000, | 
|  | 4.0000000000, | 
|  | 12.0000000000, | 
|  | 5.0000000000, | 
|  | 29.0000000000, | 
|  | 3.0000000000, | 
|  | 21.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 167.0000000000, | 
|  | min: 2.0000000000, | 
|  | max: 57.0000000000, | 
|  | mean: 16.7000000000, | 
|  | median: 11.5000000000, | 
|  | var: 287.7888888889, | 
|  | std_dev: 16.9643416875, | 
|  | std_dev_pct: 101.5828843560, | 
|  | median_abs_dev: 13.3434000000, | 
|  | median_abs_dev_pct: 116.0295652174, | 
|  | quartiles: (4.2500000000, 11.5000000000, 22.5000000000), | 
|  | iqr: 18.2500000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_exp10b() { | 
|  | let val = &[24.0000000000, | 
|  | 17.0000000000, | 
|  | 6.0000000000, | 
|  | 38.0000000000, | 
|  | 25.0000000000, | 
|  | 7.0000000000, | 
|  | 51.0000000000, | 
|  | 2.0000000000, | 
|  | 61.0000000000, | 
|  | 32.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 263.0000000000, | 
|  | min: 2.0000000000, | 
|  | max: 61.0000000000, | 
|  | mean: 26.3000000000, | 
|  | median: 24.5000000000, | 
|  | var: 383.5666666667, | 
|  | std_dev: 19.5848580967, | 
|  | std_dev_pct: 74.4671410520, | 
|  | median_abs_dev: 22.9803000000, | 
|  | median_abs_dev_pct: 93.7971428571, | 
|  | quartiles: (9.5000000000, 24.5000000000, 36.5000000000), | 
|  | iqr: 27.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_exp10c() { | 
|  | let val = &[71.0000000000, | 
|  | 2.0000000000, | 
|  | 32.0000000000, | 
|  | 1.0000000000, | 
|  | 6.0000000000, | 
|  | 28.0000000000, | 
|  | 13.0000000000, | 
|  | 37.0000000000, | 
|  | 16.0000000000, | 
|  | 36.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 242.0000000000, | 
|  | min: 1.0000000000, | 
|  | max: 71.0000000000, | 
|  | mean: 24.2000000000, | 
|  | median: 22.0000000000, | 
|  | var: 458.1777777778, | 
|  | std_dev: 21.4050876611, | 
|  | std_dev_pct: 88.4507754589, | 
|  | median_abs_dev: 21.4977000000, | 
|  | median_abs_dev_pct: 97.7168181818, | 
|  | quartiles: (7.7500000000, 22.0000000000, 35.0000000000), | 
|  | iqr: 27.2500000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_exp25() { | 
|  | let val = &[3.0000000000, | 
|  | 24.0000000000, | 
|  | 1.0000000000, | 
|  | 19.0000000000, | 
|  | 7.0000000000, | 
|  | 5.0000000000, | 
|  | 30.0000000000, | 
|  | 39.0000000000, | 
|  | 31.0000000000, | 
|  | 13.0000000000, | 
|  | 25.0000000000, | 
|  | 48.0000000000, | 
|  | 1.0000000000, | 
|  | 6.0000000000, | 
|  | 42.0000000000, | 
|  | 63.0000000000, | 
|  | 2.0000000000, | 
|  | 12.0000000000, | 
|  | 108.0000000000, | 
|  | 26.0000000000, | 
|  | 1.0000000000, | 
|  | 7.0000000000, | 
|  | 44.0000000000, | 
|  | 25.0000000000, | 
|  | 11.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 593.0000000000, | 
|  | min: 1.0000000000, | 
|  | max: 108.0000000000, | 
|  | mean: 23.7200000000, | 
|  | median: 19.0000000000, | 
|  | var: 601.0433333333, | 
|  | std_dev: 24.5161851301, | 
|  | std_dev_pct: 103.3565983562, | 
|  | median_abs_dev: 19.2738000000, | 
|  | median_abs_dev_pct: 101.4410526316, | 
|  | quartiles: (6.0000000000, 19.0000000000, 31.0000000000), | 
|  | iqr: 25.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_binom25() { | 
|  | let val = &[18.0000000000, | 
|  | 17.0000000000, | 
|  | 27.0000000000, | 
|  | 15.0000000000, | 
|  | 21.0000000000, | 
|  | 25.0000000000, | 
|  | 17.0000000000, | 
|  | 24.0000000000, | 
|  | 25.0000000000, | 
|  | 24.0000000000, | 
|  | 26.0000000000, | 
|  | 26.0000000000, | 
|  | 23.0000000000, | 
|  | 15.0000000000, | 
|  | 23.0000000000, | 
|  | 17.0000000000, | 
|  | 18.0000000000, | 
|  | 18.0000000000, | 
|  | 21.0000000000, | 
|  | 16.0000000000, | 
|  | 15.0000000000, | 
|  | 31.0000000000, | 
|  | 20.0000000000, | 
|  | 17.0000000000, | 
|  | 15.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 514.0000000000, | 
|  | min: 15.0000000000, | 
|  | max: 31.0000000000, | 
|  | mean: 20.5600000000, | 
|  | median: 20.0000000000, | 
|  | var: 20.8400000000, | 
|  | std_dev: 4.5650848842, | 
|  | std_dev_pct: 22.2037202539, | 
|  | median_abs_dev: 5.9304000000, | 
|  | median_abs_dev_pct: 29.6520000000, | 
|  | quartiles: (17.0000000000, 20.0000000000, 24.0000000000), | 
|  | iqr: 7.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_pois25lambda30() { | 
|  | let val = &[27.0000000000, | 
|  | 33.0000000000, | 
|  | 34.0000000000, | 
|  | 34.0000000000, | 
|  | 24.0000000000, | 
|  | 39.0000000000, | 
|  | 28.0000000000, | 
|  | 27.0000000000, | 
|  | 31.0000000000, | 
|  | 28.0000000000, | 
|  | 38.0000000000, | 
|  | 21.0000000000, | 
|  | 33.0000000000, | 
|  | 36.0000000000, | 
|  | 29.0000000000, | 
|  | 37.0000000000, | 
|  | 32.0000000000, | 
|  | 34.0000000000, | 
|  | 31.0000000000, | 
|  | 39.0000000000, | 
|  | 25.0000000000, | 
|  | 31.0000000000, | 
|  | 32.0000000000, | 
|  | 40.0000000000, | 
|  | 24.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 787.0000000000, | 
|  | min: 21.0000000000, | 
|  | max: 40.0000000000, | 
|  | mean: 31.4800000000, | 
|  | median: 32.0000000000, | 
|  | var: 26.5933333333, | 
|  | std_dev: 5.1568724372, | 
|  | std_dev_pct: 16.3814245145, | 
|  | median_abs_dev: 5.9304000000, | 
|  | median_abs_dev_pct: 18.5325000000, | 
|  | quartiles: (28.0000000000, 32.0000000000, 34.0000000000), | 
|  | iqr: 6.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_pois25lambda40() { | 
|  | let val = &[42.0000000000, | 
|  | 50.0000000000, | 
|  | 42.0000000000, | 
|  | 46.0000000000, | 
|  | 34.0000000000, | 
|  | 45.0000000000, | 
|  | 34.0000000000, | 
|  | 49.0000000000, | 
|  | 39.0000000000, | 
|  | 28.0000000000, | 
|  | 40.0000000000, | 
|  | 35.0000000000, | 
|  | 37.0000000000, | 
|  | 39.0000000000, | 
|  | 46.0000000000, | 
|  | 44.0000000000, | 
|  | 32.0000000000, | 
|  | 45.0000000000, | 
|  | 42.0000000000, | 
|  | 37.0000000000, | 
|  | 48.0000000000, | 
|  | 42.0000000000, | 
|  | 33.0000000000, | 
|  | 42.0000000000, | 
|  | 48.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 1019.0000000000, | 
|  | min: 28.0000000000, | 
|  | max: 50.0000000000, | 
|  | mean: 40.7600000000, | 
|  | median: 42.0000000000, | 
|  | var: 34.4400000000, | 
|  | std_dev: 5.8685603004, | 
|  | std_dev_pct: 14.3978417577, | 
|  | median_abs_dev: 5.9304000000, | 
|  | median_abs_dev_pct: 14.1200000000, | 
|  | quartiles: (37.0000000000, 42.0000000000, 45.0000000000), | 
|  | iqr: 8.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_pois25lambda50() { | 
|  | let val = &[45.0000000000, | 
|  | 43.0000000000, | 
|  | 44.0000000000, | 
|  | 61.0000000000, | 
|  | 51.0000000000, | 
|  | 53.0000000000, | 
|  | 59.0000000000, | 
|  | 52.0000000000, | 
|  | 49.0000000000, | 
|  | 51.0000000000, | 
|  | 51.0000000000, | 
|  | 50.0000000000, | 
|  | 49.0000000000, | 
|  | 56.0000000000, | 
|  | 42.0000000000, | 
|  | 52.0000000000, | 
|  | 51.0000000000, | 
|  | 43.0000000000, | 
|  | 48.0000000000, | 
|  | 48.0000000000, | 
|  | 50.0000000000, | 
|  | 42.0000000000, | 
|  | 43.0000000000, | 
|  | 42.0000000000, | 
|  | 60.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 1235.0000000000, | 
|  | min: 42.0000000000, | 
|  | max: 61.0000000000, | 
|  | mean: 49.4000000000, | 
|  | median: 50.0000000000, | 
|  | var: 31.6666666667, | 
|  | std_dev: 5.6273143387, | 
|  | std_dev_pct: 11.3913245723, | 
|  | median_abs_dev: 4.4478000000, | 
|  | median_abs_dev_pct: 8.8956000000, | 
|  | quartiles: (44.0000000000, 50.0000000000, 52.0000000000), | 
|  | iqr: 8.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  | #[test] | 
|  | fn test_unif25() { | 
|  | let val = &[99.0000000000, | 
|  | 55.0000000000, | 
|  | 92.0000000000, | 
|  | 79.0000000000, | 
|  | 14.0000000000, | 
|  | 2.0000000000, | 
|  | 33.0000000000, | 
|  | 49.0000000000, | 
|  | 3.0000000000, | 
|  | 32.0000000000, | 
|  | 84.0000000000, | 
|  | 59.0000000000, | 
|  | 22.0000000000, | 
|  | 86.0000000000, | 
|  | 76.0000000000, | 
|  | 31.0000000000, | 
|  | 29.0000000000, | 
|  | 11.0000000000, | 
|  | 41.0000000000, | 
|  | 53.0000000000, | 
|  | 45.0000000000, | 
|  | 44.0000000000, | 
|  | 98.0000000000, | 
|  | 98.0000000000, | 
|  | 7.0000000000]; | 
|  | let summ = &Summary { | 
|  | sum: 1242.0000000000, | 
|  | min: 2.0000000000, | 
|  | max: 99.0000000000, | 
|  | mean: 49.6800000000, | 
|  | median: 45.0000000000, | 
|  | var: 1015.6433333333, | 
|  | std_dev: 31.8691595957, | 
|  | std_dev_pct: 64.1488719719, | 
|  | median_abs_dev: 45.9606000000, | 
|  | median_abs_dev_pct: 102.1346666667, | 
|  | quartiles: (29.0000000000, 45.0000000000, 79.0000000000), | 
|  | iqr: 50.0000000000, | 
|  | }; | 
|  | check(val, summ); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn test_sum_f64s() { | 
|  | assert_eq!([0.5f64, 3.2321f64, 1.5678f64].sum(), 5.2999); | 
|  | } | 
|  | #[test] | 
|  | fn test_sum_f64_between_ints_that_sum_to_0() { | 
|  | assert_eq!([1e30f64, 1.2f64, -1e30f64].sum(), 1.2); | 
|  | } | 
|  | } | 
|  |  |