|  | use core::iter::FromIterator; | 
|  | use core::ops::{Deref, RangeBounds}; | 
|  | use core::{cmp, fmt, hash, mem, ptr, slice, usize}; | 
|  |  | 
|  | use alloc::{ | 
|  | alloc::{dealloc, Layout}, | 
|  | borrow::Borrow, | 
|  | boxed::Box, | 
|  | string::String, | 
|  | vec::Vec, | 
|  | }; | 
|  |  | 
|  | use crate::buf::IntoIter; | 
|  | #[allow(unused)] | 
|  | use crate::loom::sync::atomic::AtomicMut; | 
|  | use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; | 
|  | use crate::Buf; | 
|  |  | 
|  | /// A cheaply cloneable and sliceable chunk of contiguous memory. | 
|  | /// | 
|  | /// `Bytes` is an efficient container for storing and operating on contiguous | 
|  | /// slices of memory. It is intended for use primarily in networking code, but | 
|  | /// could have applications elsewhere as well. | 
|  | /// | 
|  | /// `Bytes` values facilitate zero-copy network programming by allowing multiple | 
|  | /// `Bytes` objects to point to the same underlying memory. | 
|  | /// | 
|  | /// `Bytes` does not have a single implementation. It is an interface, whose | 
|  | /// exact behavior is implemented through dynamic dispatch in several underlying | 
|  | /// implementations of `Bytes`. | 
|  | /// | 
|  | /// All `Bytes` implementations must fulfill the following requirements: | 
|  | /// - They are cheaply cloneable and thereby shareable between an unlimited amount | 
|  | ///   of components, for example by modifying a reference count. | 
|  | /// - Instances can be sliced to refer to a subset of the original buffer. | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let mut mem = Bytes::from("Hello world"); | 
|  | /// let a = mem.slice(0..5); | 
|  | /// | 
|  | /// assert_eq!(a, "Hello"); | 
|  | /// | 
|  | /// let b = mem.split_to(6); | 
|  | /// | 
|  | /// assert_eq!(mem, "world"); | 
|  | /// assert_eq!(b, "Hello "); | 
|  | /// ``` | 
|  | /// | 
|  | /// # Memory layout | 
|  | /// | 
|  | /// The `Bytes` struct itself is fairly small, limited to 4 `usize` fields used | 
|  | /// to track information about which segment of the underlying memory the | 
|  | /// `Bytes` handle has access to. | 
|  | /// | 
|  | /// `Bytes` keeps both a pointer to the shared state containing the full memory | 
|  | /// slice and a pointer to the start of the region visible by the handle. | 
|  | /// `Bytes` also tracks the length of its view into the memory. | 
|  | /// | 
|  | /// # Sharing | 
|  | /// | 
|  | /// `Bytes` contains a vtable, which allows implementations of `Bytes` to define | 
|  | /// how sharing/cloning is implemented in detail. | 
|  | /// When `Bytes::clone()` is called, `Bytes` will call the vtable function for | 
|  | /// cloning the backing storage in order to share it behind between multiple | 
|  | /// `Bytes` instances. | 
|  | /// | 
|  | /// For `Bytes` implementations which refer to constant memory (e.g. created | 
|  | /// via `Bytes::from_static()`) the cloning implementation will be a no-op. | 
|  | /// | 
|  | /// For `Bytes` implementations which point to a reference counted shared storage | 
|  | /// (e.g. an `Arc<[u8]>`), sharing will be implemented by increasing the | 
|  | /// reference count. | 
|  | /// | 
|  | /// Due to this mechanism, multiple `Bytes` instances may point to the same | 
|  | /// shared memory region. | 
|  | /// Each `Bytes` instance can point to different sections within that | 
|  | /// memory region, and `Bytes` instances may or may not have overlapping views | 
|  | /// into the memory. | 
|  | /// | 
|  | /// The following diagram visualizes a scenario where 2 `Bytes` instances make | 
|  | /// use of an `Arc`-based backing storage, and provide access to different views: | 
|  | /// | 
|  | /// ```text | 
|  | /// | 
|  | ///    Arc ptrs                   ┌─────────┐ | 
|  | ///    ________________________ / │ Bytes 2 │ | 
|  | ///   /                           └─────────┘ | 
|  | ///  /          ┌───────────┐     |         | | 
|  | /// |_________/ │  Bytes 1  │     |         | | 
|  | /// |           └───────────┘     |         | | 
|  | /// |           |           | ___/ data     | tail | 
|  | /// |      data |      tail |/              | | 
|  | /// v           v           v               v | 
|  | /// ┌─────┬─────┬───────────┬───────────────┬─────┐ | 
|  | /// │ Arc │     │           │               │     │ | 
|  | /// └─────┴─────┴───────────┴───────────────┴─────┘ | 
|  | /// ``` | 
|  | pub struct Bytes { | 
|  | ptr: *const u8, | 
|  | len: usize, | 
|  | // inlined "trait object" | 
|  | data: AtomicPtr<()>, | 
|  | vtable: &'static Vtable, | 
|  | } | 
|  |  | 
|  | pub(crate) struct Vtable { | 
|  | /// fn(data, ptr, len) | 
|  | pub clone: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Bytes, | 
|  | /// fn(data, ptr, len) | 
|  | /// | 
|  | /// takes `Bytes` to value | 
|  | pub to_vec: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Vec<u8>, | 
|  | /// fn(data, ptr, len) | 
|  | pub drop: unsafe fn(&mut AtomicPtr<()>, *const u8, usize), | 
|  | } | 
|  |  | 
|  | impl Bytes { | 
|  | /// Creates a new empty `Bytes`. | 
|  | /// | 
|  | /// This will not allocate and the returned `Bytes` handle will be empty. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let b = Bytes::new(); | 
|  | /// assert_eq!(&b[..], b""); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[cfg(not(all(loom, test)))] | 
|  | pub const fn new() -> Self { | 
|  | // Make it a named const to work around | 
|  | // "unsizing casts are not allowed in const fn" | 
|  | const EMPTY: &[u8] = &[]; | 
|  | Bytes::from_static(EMPTY) | 
|  | } | 
|  |  | 
|  | #[cfg(all(loom, test))] | 
|  | pub fn new() -> Self { | 
|  | const EMPTY: &[u8] = &[]; | 
|  | Bytes::from_static(EMPTY) | 
|  | } | 
|  |  | 
|  | /// Creates a new `Bytes` from a static slice. | 
|  | /// | 
|  | /// The returned `Bytes` will point directly to the static slice. There is | 
|  | /// no allocating or copying. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let b = Bytes::from_static(b"hello"); | 
|  | /// assert_eq!(&b[..], b"hello"); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[cfg(not(all(loom, test)))] | 
|  | pub const fn from_static(bytes: &'static [u8]) -> Self { | 
|  | Bytes { | 
|  | ptr: bytes.as_ptr(), | 
|  | len: bytes.len(), | 
|  | data: AtomicPtr::new(ptr::null_mut()), | 
|  | vtable: &STATIC_VTABLE, | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(all(loom, test))] | 
|  | pub fn from_static(bytes: &'static [u8]) -> Self { | 
|  | Bytes { | 
|  | ptr: bytes.as_ptr(), | 
|  | len: bytes.len(), | 
|  | data: AtomicPtr::new(ptr::null_mut()), | 
|  | vtable: &STATIC_VTABLE, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns the number of bytes contained in this `Bytes`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let b = Bytes::from(&b"hello"[..]); | 
|  | /// assert_eq!(b.len(), 5); | 
|  | /// ``` | 
|  | #[inline] | 
|  | pub const fn len(&self) -> usize { | 
|  | self.len | 
|  | } | 
|  |  | 
|  | /// Returns true if the `Bytes` has a length of 0. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let b = Bytes::new(); | 
|  | /// assert!(b.is_empty()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | pub const fn is_empty(&self) -> bool { | 
|  | self.len == 0 | 
|  | } | 
|  |  | 
|  | /// Creates `Bytes` instance from slice, by copying it. | 
|  | pub fn copy_from_slice(data: &[u8]) -> Self { | 
|  | data.to_vec().into() | 
|  | } | 
|  |  | 
|  | /// Returns a slice of self for the provided range. | 
|  | /// | 
|  | /// This will increment the reference count for the underlying memory and | 
|  | /// return a new `Bytes` handle set to the slice. | 
|  | /// | 
|  | /// This operation is `O(1)`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let a = Bytes::from(&b"hello world"[..]); | 
|  | /// let b = a.slice(2..5); | 
|  | /// | 
|  | /// assert_eq!(&b[..], b"llo"); | 
|  | /// ``` | 
|  | /// | 
|  | /// # Panics | 
|  | /// | 
|  | /// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing | 
|  | /// will panic. | 
|  | pub fn slice(&self, range: impl RangeBounds<usize>) -> Self { | 
|  | use core::ops::Bound; | 
|  |  | 
|  | let len = self.len(); | 
|  |  | 
|  | let begin = match range.start_bound() { | 
|  | Bound::Included(&n) => n, | 
|  | Bound::Excluded(&n) => n + 1, | 
|  | Bound::Unbounded => 0, | 
|  | }; | 
|  |  | 
|  | let end = match range.end_bound() { | 
|  | Bound::Included(&n) => n.checked_add(1).expect("out of range"), | 
|  | Bound::Excluded(&n) => n, | 
|  | Bound::Unbounded => len, | 
|  | }; | 
|  |  | 
|  | assert!( | 
|  | begin <= end, | 
|  | "range start must not be greater than end: {:?} <= {:?}", | 
|  | begin, | 
|  | end, | 
|  | ); | 
|  | assert!( | 
|  | end <= len, | 
|  | "range end out of bounds: {:?} <= {:?}", | 
|  | end, | 
|  | len, | 
|  | ); | 
|  |  | 
|  | if end == begin { | 
|  | return Bytes::new(); | 
|  | } | 
|  |  | 
|  | let mut ret = self.clone(); | 
|  |  | 
|  | ret.len = end - begin; | 
|  | ret.ptr = unsafe { ret.ptr.add(begin) }; | 
|  |  | 
|  | ret | 
|  | } | 
|  |  | 
|  | /// Returns a slice of self that is equivalent to the given `subset`. | 
|  | /// | 
|  | /// When processing a `Bytes` buffer with other tools, one often gets a | 
|  | /// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it. | 
|  | /// This function turns that `&[u8]` into another `Bytes`, as if one had | 
|  | /// called `self.slice()` with the offsets that correspond to `subset`. | 
|  | /// | 
|  | /// This operation is `O(1)`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let bytes = Bytes::from(&b"012345678"[..]); | 
|  | /// let as_slice = bytes.as_ref(); | 
|  | /// let subset = &as_slice[2..6]; | 
|  | /// let subslice = bytes.slice_ref(&subset); | 
|  | /// assert_eq!(&subslice[..], b"2345"); | 
|  | /// ``` | 
|  | /// | 
|  | /// # Panics | 
|  | /// | 
|  | /// Requires that the given `sub` slice is in fact contained within the | 
|  | /// `Bytes` buffer; otherwise this function will panic. | 
|  | pub fn slice_ref(&self, subset: &[u8]) -> Self { | 
|  | // Empty slice and empty Bytes may have their pointers reset | 
|  | // so explicitly allow empty slice to be a subslice of any slice. | 
|  | if subset.is_empty() { | 
|  | return Bytes::new(); | 
|  | } | 
|  |  | 
|  | let bytes_p = self.as_ptr() as usize; | 
|  | let bytes_len = self.len(); | 
|  |  | 
|  | let sub_p = subset.as_ptr() as usize; | 
|  | let sub_len = subset.len(); | 
|  |  | 
|  | assert!( | 
|  | sub_p >= bytes_p, | 
|  | "subset pointer ({:p}) is smaller than self pointer ({:p})", | 
|  | subset.as_ptr(), | 
|  | self.as_ptr(), | 
|  | ); | 
|  | assert!( | 
|  | sub_p + sub_len <= bytes_p + bytes_len, | 
|  | "subset is out of bounds: self = ({:p}, {}), subset = ({:p}, {})", | 
|  | self.as_ptr(), | 
|  | bytes_len, | 
|  | subset.as_ptr(), | 
|  | sub_len, | 
|  | ); | 
|  |  | 
|  | let sub_offset = sub_p - bytes_p; | 
|  |  | 
|  | self.slice(sub_offset..(sub_offset + sub_len)) | 
|  | } | 
|  |  | 
|  | /// Splits the bytes into two at the given index. | 
|  | /// | 
|  | /// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes` | 
|  | /// contains elements `[at, len)`. | 
|  | /// | 
|  | /// This is an `O(1)` operation that just increases the reference count and | 
|  | /// sets a few indices. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let mut a = Bytes::from(&b"hello world"[..]); | 
|  | /// let b = a.split_off(5); | 
|  | /// | 
|  | /// assert_eq!(&a[..], b"hello"); | 
|  | /// assert_eq!(&b[..], b" world"); | 
|  | /// ``` | 
|  | /// | 
|  | /// # Panics | 
|  | /// | 
|  | /// Panics if `at > len`. | 
|  | #[must_use = "consider Bytes::truncate if you don't need the other half"] | 
|  | pub fn split_off(&mut self, at: usize) -> Self { | 
|  | assert!( | 
|  | at <= self.len(), | 
|  | "split_off out of bounds: {:?} <= {:?}", | 
|  | at, | 
|  | self.len(), | 
|  | ); | 
|  |  | 
|  | if at == self.len() { | 
|  | return Bytes::new(); | 
|  | } | 
|  |  | 
|  | if at == 0 { | 
|  | return mem::replace(self, Bytes::new()); | 
|  | } | 
|  |  | 
|  | let mut ret = self.clone(); | 
|  |  | 
|  | self.len = at; | 
|  |  | 
|  | unsafe { ret.inc_start(at) }; | 
|  |  | 
|  | ret | 
|  | } | 
|  |  | 
|  | /// Splits the bytes into two at the given index. | 
|  | /// | 
|  | /// Afterwards `self` contains elements `[at, len)`, and the returned | 
|  | /// `Bytes` contains elements `[0, at)`. | 
|  | /// | 
|  | /// This is an `O(1)` operation that just increases the reference count and | 
|  | /// sets a few indices. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let mut a = Bytes::from(&b"hello world"[..]); | 
|  | /// let b = a.split_to(5); | 
|  | /// | 
|  | /// assert_eq!(&a[..], b" world"); | 
|  | /// assert_eq!(&b[..], b"hello"); | 
|  | /// ``` | 
|  | /// | 
|  | /// # Panics | 
|  | /// | 
|  | /// Panics if `at > len`. | 
|  | #[must_use = "consider Bytes::advance if you don't need the other half"] | 
|  | pub fn split_to(&mut self, at: usize) -> Self { | 
|  | assert!( | 
|  | at <= self.len(), | 
|  | "split_to out of bounds: {:?} <= {:?}", | 
|  | at, | 
|  | self.len(), | 
|  | ); | 
|  |  | 
|  | if at == self.len() { | 
|  | return mem::replace(self, Bytes::new()); | 
|  | } | 
|  |  | 
|  | if at == 0 { | 
|  | return Bytes::new(); | 
|  | } | 
|  |  | 
|  | let mut ret = self.clone(); | 
|  |  | 
|  | unsafe { self.inc_start(at) }; | 
|  |  | 
|  | ret.len = at; | 
|  | ret | 
|  | } | 
|  |  | 
|  | /// Shortens the buffer, keeping the first `len` bytes and dropping the | 
|  | /// rest. | 
|  | /// | 
|  | /// If `len` is greater than the buffer's current length, this has no | 
|  | /// effect. | 
|  | /// | 
|  | /// The [`split_off`] method can emulate `truncate`, but this causes the | 
|  | /// excess bytes to be returned instead of dropped. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let mut buf = Bytes::from(&b"hello world"[..]); | 
|  | /// buf.truncate(5); | 
|  | /// assert_eq!(buf, b"hello"[..]); | 
|  | /// ``` | 
|  | /// | 
|  | /// [`split_off`]: #method.split_off | 
|  | #[inline] | 
|  | pub fn truncate(&mut self, len: usize) { | 
|  | if len < self.len { | 
|  | // The Vec "promotable" vtables do not store the capacity, | 
|  | // so we cannot truncate while using this repr. We *have* to | 
|  | // promote using `split_off` so the capacity can be stored. | 
|  | if self.vtable as *const Vtable == &PROMOTABLE_EVEN_VTABLE | 
|  | || self.vtable as *const Vtable == &PROMOTABLE_ODD_VTABLE | 
|  | { | 
|  | drop(self.split_off(len)); | 
|  | } else { | 
|  | self.len = len; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Clears the buffer, removing all data. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use bytes::Bytes; | 
|  | /// | 
|  | /// let mut buf = Bytes::from(&b"hello world"[..]); | 
|  | /// buf.clear(); | 
|  | /// assert!(buf.is_empty()); | 
|  | /// ``` | 
|  | #[inline] | 
|  | pub fn clear(&mut self) { | 
|  | self.truncate(0); | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | pub(crate) unsafe fn with_vtable( | 
|  | ptr: *const u8, | 
|  | len: usize, | 
|  | data: AtomicPtr<()>, | 
|  | vtable: &'static Vtable, | 
|  | ) -> Bytes { | 
|  | Bytes { | 
|  | ptr, | 
|  | len, | 
|  | data, | 
|  | vtable, | 
|  | } | 
|  | } | 
|  |  | 
|  | // private | 
|  |  | 
|  | #[inline] | 
|  | fn as_slice(&self) -> &[u8] { | 
|  | unsafe { slice::from_raw_parts(self.ptr, self.len) } | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | unsafe fn inc_start(&mut self, by: usize) { | 
|  | // should already be asserted, but debug assert for tests | 
|  | debug_assert!(self.len >= by, "internal: inc_start out of bounds"); | 
|  | self.len -= by; | 
|  | self.ptr = self.ptr.add(by); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Vtable must enforce this behavior | 
|  | unsafe impl Send for Bytes {} | 
|  | unsafe impl Sync for Bytes {} | 
|  |  | 
|  | impl Drop for Bytes { | 
|  | #[inline] | 
|  | fn drop(&mut self) { | 
|  | unsafe { (self.vtable.drop)(&mut self.data, self.ptr, self.len) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Clone for Bytes { | 
|  | #[inline] | 
|  | fn clone(&self) -> Bytes { | 
|  | unsafe { (self.vtable.clone)(&self.data, self.ptr, self.len) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Buf for Bytes { | 
|  | #[inline] | 
|  | fn remaining(&self) -> usize { | 
|  | self.len() | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn chunk(&self) -> &[u8] { | 
|  | self.as_slice() | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn advance(&mut self, cnt: usize) { | 
|  | assert!( | 
|  | cnt <= self.len(), | 
|  | "cannot advance past `remaining`: {:?} <= {:?}", | 
|  | cnt, | 
|  | self.len(), | 
|  | ); | 
|  |  | 
|  | unsafe { | 
|  | self.inc_start(cnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes { | 
|  | if len == self.remaining() { | 
|  | core::mem::replace(self, Bytes::new()) | 
|  | } else { | 
|  | let ret = self.slice(..len); | 
|  | self.advance(len); | 
|  | ret | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Deref for Bytes { | 
|  | type Target = [u8]; | 
|  |  | 
|  | #[inline] | 
|  | fn deref(&self) -> &[u8] { | 
|  | self.as_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl AsRef<[u8]> for Bytes { | 
|  | #[inline] | 
|  | fn as_ref(&self) -> &[u8] { | 
|  | self.as_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl hash::Hash for Bytes { | 
|  | fn hash<H>(&self, state: &mut H) | 
|  | where | 
|  | H: hash::Hasher, | 
|  | { | 
|  | self.as_slice().hash(state); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Borrow<[u8]> for Bytes { | 
|  | fn borrow(&self) -> &[u8] { | 
|  | self.as_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl IntoIterator for Bytes { | 
|  | type Item = u8; | 
|  | type IntoIter = IntoIter<Bytes>; | 
|  |  | 
|  | fn into_iter(self) -> Self::IntoIter { | 
|  | IntoIter::new(self) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a> IntoIterator for &'a Bytes { | 
|  | type Item = &'a u8; | 
|  | type IntoIter = core::slice::Iter<'a, u8>; | 
|  |  | 
|  | fn into_iter(self) -> Self::IntoIter { | 
|  | self.as_slice().iter() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl FromIterator<u8> for Bytes { | 
|  | fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { | 
|  | Vec::from_iter(into_iter).into() | 
|  | } | 
|  | } | 
|  |  | 
|  | // impl Eq | 
|  |  | 
|  | impl PartialEq for Bytes { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | self.as_slice() == other.as_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd for Bytes { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | self.as_slice().partial_cmp(other.as_slice()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Ord for Bytes { | 
|  | fn cmp(&self, other: &Bytes) -> cmp::Ordering { | 
|  | self.as_slice().cmp(other.as_slice()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Eq for Bytes {} | 
|  |  | 
|  | impl PartialEq<[u8]> for Bytes { | 
|  | fn eq(&self, other: &[u8]) -> bool { | 
|  | self.as_slice() == other | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<[u8]> for Bytes { | 
|  | fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { | 
|  | self.as_slice().partial_cmp(other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Bytes> for [u8] { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | *other == *self | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Bytes> for [u8] { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<str> for Bytes { | 
|  | fn eq(&self, other: &str) -> bool { | 
|  | self.as_slice() == other.as_bytes() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<str> for Bytes { | 
|  | fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { | 
|  | self.as_slice().partial_cmp(other.as_bytes()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Bytes> for str { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | *other == *self | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Bytes> for str { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Vec<u8>> for Bytes { | 
|  | fn eq(&self, other: &Vec<u8>) -> bool { | 
|  | *self == other[..] | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Vec<u8>> for Bytes { | 
|  | fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { | 
|  | self.as_slice().partial_cmp(&other[..]) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Bytes> for Vec<u8> { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | *other == *self | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Bytes> for Vec<u8> { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<String> for Bytes { | 
|  | fn eq(&self, other: &String) -> bool { | 
|  | *self == other[..] | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<String> for Bytes { | 
|  | fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { | 
|  | self.as_slice().partial_cmp(other.as_bytes()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Bytes> for String { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | *other == *self | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Bytes> for String { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Bytes> for &[u8] { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | *other == *self | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Bytes> for &[u8] { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq<Bytes> for &str { | 
|  | fn eq(&self, other: &Bytes) -> bool { | 
|  | *other == *self | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialOrd<Bytes> for &str { | 
|  | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { | 
|  | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes | 
|  | where | 
|  | Bytes: PartialEq<T>, | 
|  | { | 
|  | fn eq(&self, other: &&'a T) -> bool { | 
|  | *self == **other | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes | 
|  | where | 
|  | Bytes: PartialOrd<T>, | 
|  | { | 
|  | fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { | 
|  | self.partial_cmp(&**other) | 
|  | } | 
|  | } | 
|  |  | 
|  | // impl From | 
|  |  | 
|  | impl Default for Bytes { | 
|  | #[inline] | 
|  | fn default() -> Bytes { | 
|  | Bytes::new() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<&'static [u8]> for Bytes { | 
|  | fn from(slice: &'static [u8]) -> Bytes { | 
|  | Bytes::from_static(slice) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<&'static str> for Bytes { | 
|  | fn from(slice: &'static str) -> Bytes { | 
|  | Bytes::from_static(slice.as_bytes()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<Vec<u8>> for Bytes { | 
|  | fn from(vec: Vec<u8>) -> Bytes { | 
|  | let mut vec = vec; | 
|  | let ptr = vec.as_mut_ptr(); | 
|  | let len = vec.len(); | 
|  | let cap = vec.capacity(); | 
|  |  | 
|  | // Avoid an extra allocation if possible. | 
|  | if len == cap { | 
|  | return Bytes::from(vec.into_boxed_slice()); | 
|  | } | 
|  |  | 
|  | let shared = Box::new(Shared { | 
|  | buf: ptr, | 
|  | cap, | 
|  | ref_cnt: AtomicUsize::new(1), | 
|  | }); | 
|  | mem::forget(vec); | 
|  |  | 
|  | let shared = Box::into_raw(shared); | 
|  | // The pointer should be aligned, so this assert should | 
|  | // always succeed. | 
|  | debug_assert!( | 
|  | 0 == (shared as usize & KIND_MASK), | 
|  | "internal: Box<Shared> should have an aligned pointer", | 
|  | ); | 
|  | Bytes { | 
|  | ptr, | 
|  | len, | 
|  | data: AtomicPtr::new(shared as _), | 
|  | vtable: &SHARED_VTABLE, | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<Box<[u8]>> for Bytes { | 
|  | fn from(slice: Box<[u8]>) -> Bytes { | 
|  | // Box<[u8]> doesn't contain a heap allocation for empty slices, | 
|  | // so the pointer isn't aligned enough for the KIND_VEC stashing to | 
|  | // work. | 
|  | if slice.is_empty() { | 
|  | return Bytes::new(); | 
|  | } | 
|  |  | 
|  | let len = slice.len(); | 
|  | let ptr = Box::into_raw(slice) as *mut u8; | 
|  |  | 
|  | if ptr as usize & 0x1 == 0 { | 
|  | let data = ptr_map(ptr, |addr| addr | KIND_VEC); | 
|  | Bytes { | 
|  | ptr, | 
|  | len, | 
|  | data: AtomicPtr::new(data.cast()), | 
|  | vtable: &PROMOTABLE_EVEN_VTABLE, | 
|  | } | 
|  | } else { | 
|  | Bytes { | 
|  | ptr, | 
|  | len, | 
|  | data: AtomicPtr::new(ptr.cast()), | 
|  | vtable: &PROMOTABLE_ODD_VTABLE, | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<String> for Bytes { | 
|  | fn from(s: String) -> Bytes { | 
|  | Bytes::from(s.into_bytes()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl From<Bytes> for Vec<u8> { | 
|  | fn from(bytes: Bytes) -> Vec<u8> { | 
|  | let bytes = mem::ManuallyDrop::new(bytes); | 
|  | unsafe { (bytes.vtable.to_vec)(&bytes.data, bytes.ptr, bytes.len) } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ===== impl Vtable ===== | 
|  |  | 
|  | impl fmt::Debug for Vtable { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | f.debug_struct("Vtable") | 
|  | .field("clone", &(self.clone as *const ())) | 
|  | .field("drop", &(self.drop as *const ())) | 
|  | .finish() | 
|  | } | 
|  | } | 
|  |  | 
|  | // ===== impl StaticVtable ===== | 
|  |  | 
|  | const STATIC_VTABLE: Vtable = Vtable { | 
|  | clone: static_clone, | 
|  | to_vec: static_to_vec, | 
|  | drop: static_drop, | 
|  | }; | 
|  |  | 
|  | unsafe fn static_clone(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { | 
|  | let slice = slice::from_raw_parts(ptr, len); | 
|  | Bytes::from_static(slice) | 
|  | } | 
|  |  | 
|  | unsafe fn static_to_vec(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { | 
|  | let slice = slice::from_raw_parts(ptr, len); | 
|  | slice.to_vec() | 
|  | } | 
|  |  | 
|  | unsafe fn static_drop(_: &mut AtomicPtr<()>, _: *const u8, _: usize) { | 
|  | // nothing to drop for &'static [u8] | 
|  | } | 
|  |  | 
|  | // ===== impl PromotableVtable ===== | 
|  |  | 
|  | static PROMOTABLE_EVEN_VTABLE: Vtable = Vtable { | 
|  | clone: promotable_even_clone, | 
|  | to_vec: promotable_even_to_vec, | 
|  | drop: promotable_even_drop, | 
|  | }; | 
|  |  | 
|  | static PROMOTABLE_ODD_VTABLE: Vtable = Vtable { | 
|  | clone: promotable_odd_clone, | 
|  | to_vec: promotable_odd_to_vec, | 
|  | drop: promotable_odd_drop, | 
|  | }; | 
|  |  | 
|  | unsafe fn promotable_even_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { | 
|  | let shared = data.load(Ordering::Acquire); | 
|  | let kind = shared as usize & KIND_MASK; | 
|  |  | 
|  | if kind == KIND_ARC { | 
|  | shallow_clone_arc(shared.cast(), ptr, len) | 
|  | } else { | 
|  | debug_assert_eq!(kind, KIND_VEC); | 
|  | let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK); | 
|  | shallow_clone_vec(data, shared, buf, ptr, len) | 
|  | } | 
|  | } | 
|  |  | 
|  | unsafe fn promotable_to_vec( | 
|  | data: &AtomicPtr<()>, | 
|  | ptr: *const u8, | 
|  | len: usize, | 
|  | f: fn(*mut ()) -> *mut u8, | 
|  | ) -> Vec<u8> { | 
|  | let shared = data.load(Ordering::Acquire); | 
|  | let kind = shared as usize & KIND_MASK; | 
|  |  | 
|  | if kind == KIND_ARC { | 
|  | shared_to_vec_impl(shared.cast(), ptr, len) | 
|  | } else { | 
|  | // If Bytes holds a Vec, then the offset must be 0. | 
|  | debug_assert_eq!(kind, KIND_VEC); | 
|  |  | 
|  | let buf = f(shared); | 
|  |  | 
|  | let cap = (ptr as usize - buf as usize) + len; | 
|  |  | 
|  | // Copy back buffer | 
|  | ptr::copy(ptr, buf, len); | 
|  |  | 
|  | Vec::from_raw_parts(buf, len, cap) | 
|  | } | 
|  | } | 
|  |  | 
|  | unsafe fn promotable_even_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { | 
|  | promotable_to_vec(data, ptr, len, |shared| { | 
|  | ptr_map(shared.cast(), |addr| addr & !KIND_MASK) | 
|  | }) | 
|  | } | 
|  |  | 
|  | unsafe fn promotable_even_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) { | 
|  | data.with_mut(|shared| { | 
|  | let shared = *shared; | 
|  | let kind = shared as usize & KIND_MASK; | 
|  |  | 
|  | if kind == KIND_ARC { | 
|  | release_shared(shared.cast()); | 
|  | } else { | 
|  | debug_assert_eq!(kind, KIND_VEC); | 
|  | let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK); | 
|  | free_boxed_slice(buf, ptr, len); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | unsafe fn promotable_odd_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { | 
|  | let shared = data.load(Ordering::Acquire); | 
|  | let kind = shared as usize & KIND_MASK; | 
|  |  | 
|  | if kind == KIND_ARC { | 
|  | shallow_clone_arc(shared as _, ptr, len) | 
|  | } else { | 
|  | debug_assert_eq!(kind, KIND_VEC); | 
|  | shallow_clone_vec(data, shared, shared.cast(), ptr, len) | 
|  | } | 
|  | } | 
|  |  | 
|  | unsafe fn promotable_odd_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { | 
|  | promotable_to_vec(data, ptr, len, |shared| shared.cast()) | 
|  | } | 
|  |  | 
|  | unsafe fn promotable_odd_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) { | 
|  | data.with_mut(|shared| { | 
|  | let shared = *shared; | 
|  | let kind = shared as usize & KIND_MASK; | 
|  |  | 
|  | if kind == KIND_ARC { | 
|  | release_shared(shared.cast()); | 
|  | } else { | 
|  | debug_assert_eq!(kind, KIND_VEC); | 
|  |  | 
|  | free_boxed_slice(shared.cast(), ptr, len); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | unsafe fn free_boxed_slice(buf: *mut u8, offset: *const u8, len: usize) { | 
|  | let cap = (offset as usize - buf as usize) + len; | 
|  | dealloc(buf, Layout::from_size_align(cap, 1).unwrap()) | 
|  | } | 
|  |  | 
|  | // ===== impl SharedVtable ===== | 
|  |  | 
|  | struct Shared { | 
|  | // Holds arguments to dealloc upon Drop, but otherwise doesn't use them | 
|  | buf: *mut u8, | 
|  | cap: usize, | 
|  | ref_cnt: AtomicUsize, | 
|  | } | 
|  |  | 
|  | impl Drop for Shared { | 
|  | fn drop(&mut self) { | 
|  | unsafe { dealloc(self.buf, Layout::from_size_align(self.cap, 1).unwrap()) } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assert that the alignment of `Shared` is divisible by 2. | 
|  | // This is a necessary invariant since we depend on allocating `Shared` a | 
|  | // shared object to implicitly carry the `KIND_ARC` flag in its pointer. | 
|  | // This flag is set when the LSB is 0. | 
|  | const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2. | 
|  |  | 
|  | static SHARED_VTABLE: Vtable = Vtable { | 
|  | clone: shared_clone, | 
|  | to_vec: shared_to_vec, | 
|  | drop: shared_drop, | 
|  | }; | 
|  |  | 
|  | const KIND_ARC: usize = 0b0; | 
|  | const KIND_VEC: usize = 0b1; | 
|  | const KIND_MASK: usize = 0b1; | 
|  |  | 
|  | unsafe fn shared_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { | 
|  | let shared = data.load(Ordering::Relaxed); | 
|  | shallow_clone_arc(shared as _, ptr, len) | 
|  | } | 
|  |  | 
|  | unsafe fn shared_to_vec_impl(shared: *mut Shared, ptr: *const u8, len: usize) -> Vec<u8> { | 
|  | // Check that the ref_cnt is 1 (unique). | 
|  | // | 
|  | // If it is unique, then it is set to 0 with AcqRel fence for the same | 
|  | // reason in release_shared. | 
|  | // | 
|  | // Otherwise, we take the other branch and call release_shared. | 
|  | if (*shared) | 
|  | .ref_cnt | 
|  | .compare_exchange(1, 0, Ordering::AcqRel, Ordering::Relaxed) | 
|  | .is_ok() | 
|  | { | 
|  | let buf = (*shared).buf; | 
|  | let cap = (*shared).cap; | 
|  |  | 
|  | // Deallocate Shared | 
|  | drop(Box::from_raw(shared as *mut mem::ManuallyDrop<Shared>)); | 
|  |  | 
|  | // Copy back buffer | 
|  | ptr::copy(ptr, buf, len); | 
|  |  | 
|  | Vec::from_raw_parts(buf, len, cap) | 
|  | } else { | 
|  | let v = slice::from_raw_parts(ptr, len).to_vec(); | 
|  | release_shared(shared); | 
|  | v | 
|  | } | 
|  | } | 
|  |  | 
|  | unsafe fn shared_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { | 
|  | shared_to_vec_impl(data.load(Ordering::Relaxed).cast(), ptr, len) | 
|  | } | 
|  |  | 
|  | unsafe fn shared_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) { | 
|  | data.with_mut(|shared| { | 
|  | release_shared(shared.cast()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | unsafe fn shallow_clone_arc(shared: *mut Shared, ptr: *const u8, len: usize) -> Bytes { | 
|  | let old_size = (*shared).ref_cnt.fetch_add(1, Ordering::Relaxed); | 
|  |  | 
|  | if old_size > usize::MAX >> 1 { | 
|  | crate::abort(); | 
|  | } | 
|  |  | 
|  | Bytes { | 
|  | ptr, | 
|  | len, | 
|  | data: AtomicPtr::new(shared as _), | 
|  | vtable: &SHARED_VTABLE, | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cold] | 
|  | unsafe fn shallow_clone_vec( | 
|  | atom: &AtomicPtr<()>, | 
|  | ptr: *const (), | 
|  | buf: *mut u8, | 
|  | offset: *const u8, | 
|  | len: usize, | 
|  | ) -> Bytes { | 
|  | // If  the buffer is still tracked in a `Vec<u8>`. It is time to | 
|  | // promote the vec to an `Arc`. This could potentially be called | 
|  | // concurrently, so some care must be taken. | 
|  |  | 
|  | // First, allocate a new `Shared` instance containing the | 
|  | // `Vec` fields. It's important to note that `ptr`, `len`, | 
|  | // and `cap` cannot be mutated without having `&mut self`. | 
|  | // This means that these fields will not be concurrently | 
|  | // updated and since the buffer hasn't been promoted to an | 
|  | // `Arc`, those three fields still are the components of the | 
|  | // vector. | 
|  | let shared = Box::new(Shared { | 
|  | buf, | 
|  | cap: (offset as usize - buf as usize) + len, | 
|  | // Initialize refcount to 2. One for this reference, and one | 
|  | // for the new clone that will be returned from | 
|  | // `shallow_clone`. | 
|  | ref_cnt: AtomicUsize::new(2), | 
|  | }); | 
|  |  | 
|  | let shared = Box::into_raw(shared); | 
|  |  | 
|  | // The pointer should be aligned, so this assert should | 
|  | // always succeed. | 
|  | debug_assert!( | 
|  | 0 == (shared as usize & KIND_MASK), | 
|  | "internal: Box<Shared> should have an aligned pointer", | 
|  | ); | 
|  |  | 
|  | // Try compare & swapping the pointer into the `arc` field. | 
|  | // `Release` is used synchronize with other threads that | 
|  | // will load the `arc` field. | 
|  | // | 
|  | // If the `compare_exchange` fails, then the thread lost the | 
|  | // race to promote the buffer to shared. The `Acquire` | 
|  | // ordering will synchronize with the `compare_exchange` | 
|  | // that happened in the other thread and the `Shared` | 
|  | // pointed to by `actual` will be visible. | 
|  | match atom.compare_exchange(ptr as _, shared as _, Ordering::AcqRel, Ordering::Acquire) { | 
|  | Ok(actual) => { | 
|  | debug_assert!(actual as usize == ptr as usize); | 
|  | // The upgrade was successful, the new handle can be | 
|  | // returned. | 
|  | Bytes { | 
|  | ptr: offset, | 
|  | len, | 
|  | data: AtomicPtr::new(shared as _), | 
|  | vtable: &SHARED_VTABLE, | 
|  | } | 
|  | } | 
|  | Err(actual) => { | 
|  | // The upgrade failed, a concurrent clone happened. Release | 
|  | // the allocation that was made in this thread, it will not | 
|  | // be needed. | 
|  | let shared = Box::from_raw(shared); | 
|  | mem::forget(*shared); | 
|  |  | 
|  | // Buffer already promoted to shared storage, so increment ref | 
|  | // count. | 
|  | shallow_clone_arc(actual as _, offset, len) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsafe fn release_shared(ptr: *mut Shared) { | 
|  | // `Shared` storage... follow the drop steps from Arc. | 
|  | if (*ptr).ref_cnt.fetch_sub(1, Ordering::Release) != 1 { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // This fence is needed to prevent reordering of use of the data and | 
|  | // deletion of the data.  Because it is marked `Release`, the decreasing | 
|  | // of the reference count synchronizes with this `Acquire` fence. This | 
|  | // means that use of the data happens before decreasing the reference | 
|  | // count, which happens before this fence, which happens before the | 
|  | // deletion of the data. | 
|  | // | 
|  | // As explained in the [Boost documentation][1], | 
|  | // | 
|  | // > It is important to enforce any possible access to the object in one | 
|  | // > thread (through an existing reference) to *happen before* deleting | 
|  | // > the object in a different thread. This is achieved by a "release" | 
|  | // > operation after dropping a reference (any access to the object | 
|  | // > through this reference must obviously happened before), and an | 
|  | // > "acquire" operation before deleting the object. | 
|  | // | 
|  | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) | 
|  | // | 
|  | // Thread sanitizer does not support atomic fences. Use an atomic load | 
|  | // instead. | 
|  | (*ptr).ref_cnt.load(Ordering::Acquire); | 
|  |  | 
|  | // Drop the data | 
|  | drop(Box::from_raw(ptr)); | 
|  | } | 
|  |  | 
|  | // Ideally we would always use this version of `ptr_map` since it is strict | 
|  | // provenance compatible, but it results in worse codegen. We will however still | 
|  | // use it on miri because it gives better diagnostics for people who test bytes | 
|  | // code with miri. | 
|  | // | 
|  | // See https://github.com/tokio-rs/bytes/pull/545 for more info. | 
|  | #[cfg(miri)] | 
|  | fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8 | 
|  | where | 
|  | F: FnOnce(usize) -> usize, | 
|  | { | 
|  | let old_addr = ptr as usize; | 
|  | let new_addr = f(old_addr); | 
|  | let diff = new_addr.wrapping_sub(old_addr); | 
|  | ptr.wrapping_add(diff) | 
|  | } | 
|  |  | 
|  | #[cfg(not(miri))] | 
|  | fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8 | 
|  | where | 
|  | F: FnOnce(usize) -> usize, | 
|  | { | 
|  | let old_addr = ptr as usize; | 
|  | let new_addr = f(old_addr); | 
|  | new_addr as *mut u8 | 
|  | } | 
|  |  | 
|  | // compile-fails | 
|  |  | 
|  | /// ```compile_fail | 
|  | /// use bytes::Bytes; | 
|  | /// #[deny(unused_must_use)] | 
|  | /// { | 
|  | ///     let mut b1 = Bytes::from("hello world"); | 
|  | ///     b1.split_to(6); | 
|  | /// } | 
|  | /// ``` | 
|  | fn _split_to_must_use() {} | 
|  |  | 
|  | /// ```compile_fail | 
|  | /// use bytes::Bytes; | 
|  | /// #[deny(unused_must_use)] | 
|  | /// { | 
|  | ///     let mut b1 = Bytes::from("hello world"); | 
|  | ///     b1.split_off(6); | 
|  | /// } | 
|  | /// ``` | 
|  | fn _split_off_must_use() {} | 
|  |  | 
|  | // fuzz tests | 
|  | #[cfg(all(test, loom))] | 
|  | mod fuzz { | 
|  | use loom::sync::Arc; | 
|  | use loom::thread; | 
|  |  | 
|  | use super::Bytes; | 
|  | #[test] | 
|  | fn bytes_cloning_vec() { | 
|  | loom::model(|| { | 
|  | let a = Bytes::from(b"abcdefgh".to_vec()); | 
|  | let addr = a.as_ptr() as usize; | 
|  |  | 
|  | // test the Bytes::clone is Sync by putting it in an Arc | 
|  | let a1 = Arc::new(a); | 
|  | let a2 = a1.clone(); | 
|  |  | 
|  | let t1 = thread::spawn(move || { | 
|  | let b: Bytes = (*a1).clone(); | 
|  | assert_eq!(b.as_ptr() as usize, addr); | 
|  | }); | 
|  |  | 
|  | let t2 = thread::spawn(move || { | 
|  | let b: Bytes = (*a2).clone(); | 
|  | assert_eq!(b.as_ptr() as usize, addr); | 
|  | }); | 
|  |  | 
|  | t1.join().unwrap(); | 
|  | t2.join().unwrap(); | 
|  | }); | 
|  | } | 
|  | } |