| // Copyright 2023 The Fuchsia Authors |
| // |
| // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| // This file may not be copied, modified, or distributed except according to |
| // those terms. |
| |
| /// Documents multiple unsafe blocks with a single safety comment. |
| /// |
| /// Invoked as: |
| /// |
| /// ```rust,ignore |
| /// safety_comment! { |
| /// // Non-doc comments come first. |
| /// /// SAFETY: |
| /// /// Safety comment starts on its own line. |
| /// macro_1!(args); |
| /// macro_2! { args }; |
| /// /// SAFETY: |
| /// /// Subsequent safety comments are allowed but not required. |
| /// macro_3! { args }; |
| /// } |
| /// ``` |
| /// |
| /// The macro invocations are emitted, each decorated with the following |
| /// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`. |
| macro_rules! safety_comment { |
| (#[doc = r" SAFETY:"] $($(#[$attr:meta])* $macro:ident!$args:tt;)*) => { |
| #[allow(clippy::undocumented_unsafe_blocks, unused_attributes)] |
| const _: () = { $($(#[$attr])* $macro!$args;)* }; |
| } |
| } |
| |
| /// Unsafely implements trait(s) for a type. |
| /// |
| /// # Safety |
| /// |
| /// The trait impl must be sound. |
| /// |
| /// When implementing `TryFromBytes`: |
| /// - If no `is_bit_valid` impl is provided, then it must be valid for |
| /// `is_bit_valid` to unconditionally return `true`. In other words, it must |
| /// be the case that any initialized sequence of bytes constitutes a valid |
| /// instance of `$ty`. |
| /// - If an `is_bit_valid` impl is provided, then the impl of `is_bit_valid` |
| /// must only return `true` if its argument refers to a valid `$ty`. |
| macro_rules! unsafe_impl { |
| // Implement `$trait` for `$ty` with no bounds. |
| ($(#[$attr:meta])* $ty:ty: $trait:ident $(; |$candidate:ident| $is_bit_valid:expr)?) => { |
| $(#[$attr])* |
| unsafe impl $trait for $ty { |
| unsafe_impl!(@method $trait $(; |$candidate| $is_bit_valid)?); |
| } |
| }; |
| |
| // Implement all `$traits` for `$ty` with no bounds. |
| // |
| // The 2 arms under this one are there so we can apply |
| // N attributes for each one of M trait implementations. |
| // The simple solution of: |
| // |
| // ($(#[$attrs:meta])* $ty:ty: $($traits:ident),*) => { |
| // $( unsafe_impl!( $(#[$attrs])* $ty: $traits ) );* |
| // } |
| // |
| // Won't work. The macro processor sees that the outer repetition |
| // contains both $attrs and $traits and expects them to match the same |
| // amount of fragments. |
| // |
| // To solve this we must: |
| // 1. Pack the attributes into a single token tree fragment we can match over. |
| // 2. Expand the traits. |
| // 3. Unpack and expand the attributes. |
| ($(#[$attrs:meta])* $ty:ty: $($traits:ident),*) => { |
| unsafe_impl!(@impl_traits_with_packed_attrs { $(#[$attrs])* } $ty: $($traits),*) |
| }; |
| |
| (@impl_traits_with_packed_attrs $attrs:tt $ty:ty: $($traits:ident),*) => { |
| $( unsafe_impl!(@unpack_attrs $attrs $ty: $traits); )* |
| }; |
| |
| (@unpack_attrs { $(#[$attrs:meta])* } $ty:ty: $traits:ident) => { |
| unsafe_impl!($(#[$attrs])* $ty: $traits); |
| }; |
| |
| // This arm is identical to the following one, except it contains a |
| // preceding `const`. If we attempt to handle these with a single arm, there |
| // is an inherent ambiguity between `const` (the keyword) and `const` (the |
| // ident match for `$tyvar:ident`). |
| // |
| // To explain how this works, consider the following invocation: |
| // |
| // unsafe_impl!(const N: usize, T: ?Sized + Copy => Clone for Foo<T>); |
| // |
| // In this invocation, here are the assignments to meta-variables: |
| // |
| // |---------------|------------| |
| // | Meta-variable | Assignment | |
| // |---------------|------------| |
| // | $constname | N | |
| // | $constty | usize | |
| // | $tyvar | T | |
| // | $optbound | Sized | |
| // | $bound | Copy | |
| // | $trait | Clone | |
| // | $ty | Foo<T> | |
| // |---------------|------------| |
| // |
| // The following arm has the same behavior with the exception of the lack of |
| // support for a leading `const` parameter. |
| ( |
| $(#[$attr:meta])* |
| const $constname:ident : $constty:ident $(,)? |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl!( |
| @inner |
| $(#[$attr])* |
| @const $constname: $constty, |
| $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)* |
| => $trait for $ty $(; |$candidate| $is_bit_valid)? |
| ); |
| }; |
| ( |
| $(#[$attr:meta])* |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl!( |
| @inner |
| $(#[$attr])* |
| $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)* |
| => $trait for $ty $(; |$candidate| $is_bit_valid)? |
| ); |
| }; |
| ( |
| @inner |
| $(#[$attr:meta])* |
| $(@const $constname:ident : $constty:ident,)* |
| $($tyvar:ident $(: $(? $optbound:ident +)* + $($bound:ident +)* )?,)* |
| => $trait:ident for $ty:ty $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| $(#[$attr])* |
| #[allow(non_local_definitions)] |
| unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* $(, const $constname: $constty,)*> $trait for $ty { |
| unsafe_impl!(@method $trait $(; |$candidate| $is_bit_valid)?); |
| } |
| }; |
| |
| (@method TryFromBytes ; |$candidate:ident| $is_bit_valid:expr) => { |
| #[allow(clippy::missing_inline_in_public_items, dead_code)] |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| |
| #[inline] |
| fn is_bit_valid<AA: crate::pointer::invariant::Reference>($candidate: Maybe<'_, Self, AA>) -> bool { |
| $is_bit_valid |
| } |
| }; |
| (@method TryFromBytes) => { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| #[inline(always)] fn is_bit_valid<AA: crate::pointer::invariant::Reference>(_: Maybe<'_, Self, AA>) -> bool { true } |
| }; |
| (@method $trait:ident) => { |
| #[allow(clippy::missing_inline_in_public_items, dead_code)] |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| }; |
| (@method $trait:ident; |$_candidate:ident| $_is_bit_valid:expr) => { |
| compile_error!("Can't provide `is_bit_valid` impl for trait other than `TryFromBytes`"); |
| }; |
| } |
| |
| /// Implements `$trait` for `$ty` where `$ty: TransmuteFrom<$repr>` (and |
| /// vice-versa). |
| /// |
| /// Calling this macro is safe; the internals of the macro emit appropriate |
| /// trait bounds which ensure that the given impl is sound. |
| macro_rules! impl_for_transmute_from { |
| ( |
| $(#[$attr:meta])* |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?)? |
| => $trait:ident for $ty:ty [$($unsafe_cell:ident)? <$repr:ty>] |
| ) => { |
| $(#[$attr])* |
| #[allow(non_local_definitions)] |
| |
| // SAFETY: `is_trait<T, R>` (defined and used below) requires `T: |
| // TransmuteFrom<R>`, `R: TransmuteFrom<T>`, and `R: $trait`. It is |
| // called using `$ty` and `$repr`, ensuring that `$ty` and `$repr` have |
| // equivalent bit validity, and ensuring that `$repr: $trait`. The |
| // supported traits - `TryFromBytes`, `FromZeros`, `FromBytes`, and |
| // `IntoBytes` - are defined only in terms of the bit validity of a |
| // type. Therefore, `$repr: $trait` ensures that `$ty: $trait` is sound. |
| unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?)?> $trait for $ty { |
| #[allow(dead_code, clippy::missing_inline_in_public_items)] |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() { |
| use crate::pointer::{*, invariant::Valid}; |
| |
| impl_for_transmute_from!(@assert_is_supported_trait $trait); |
| |
| fn is_trait<T, R>() |
| where |
| T: TransmuteFrom<R, Valid, Valid> + ?Sized, |
| R: TransmuteFrom<T, Valid, Valid> + ?Sized, |
| R: $trait, |
| { |
| } |
| |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn f<$($tyvar $(: $(? $optbound +)* $($bound +)*)?)?>() { |
| is_trait::<$ty, $repr>(); |
| } |
| } |
| |
| impl_for_transmute_from!( |
| @is_bit_valid |
| $(<$tyvar $(: $(? $optbound +)* $($bound +)*)?>)? |
| $trait for $ty [$($unsafe_cell)? <$repr>] |
| ); |
| } |
| }; |
| (@assert_is_supported_trait TryFromBytes) => {}; |
| (@assert_is_supported_trait FromZeros) => {}; |
| (@assert_is_supported_trait FromBytes) => {}; |
| (@assert_is_supported_trait IntoBytes) => {}; |
| ( |
| @is_bit_valid |
| $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)? |
| TryFromBytes for $ty:ty [UnsafeCell<$repr:ty>] |
| ) => { |
| #[inline] |
| fn is_bit_valid<A: crate::pointer::invariant::Reference>(candidate: Maybe<'_, Self, A>) -> bool { |
| let c: Maybe<'_, Self, crate::pointer::invariant::Exclusive> = candidate.into_exclusive_or_pme(); |
| let c: Maybe<'_, $repr, _> = c.transmute::<_, _, (_, (_, (BecauseExclusive, BecauseExclusive)))>(); |
| // SAFETY: This macro ensures that `$repr` and `Self` have the same |
| // size and bit validity. Thus, a bit-valid instance of `$repr` is |
| // also a bit-valid instance of `Self`. |
| <$repr as TryFromBytes>::is_bit_valid(c) |
| } |
| }; |
| ( |
| @is_bit_valid |
| $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)? |
| TryFromBytes for $ty:ty [<$repr:ty>] |
| ) => { |
| #[inline] |
| fn is_bit_valid<A: crate::pointer::invariant::Reference>(candidate: Maybe<'_, Self, A>) -> bool { |
| // SAFETY: This macro ensures that `$repr` and `Self` have the same |
| // size and bit validity. Thus, a bit-valid instance of `$repr` is |
| // also a bit-valid instance of `Self`. |
| <$repr as TryFromBytes>::is_bit_valid(candidate.transmute()) |
| } |
| }; |
| ( |
| @is_bit_valid |
| $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)? |
| $trait:ident for $ty:ty [$($unsafe_cell:ident)? <$repr:ty>] |
| ) => { |
| // Trait other than `TryFromBytes`; no `is_bit_valid` impl. |
| }; |
| } |
| |
| /// Implements a trait for a type, bounding on each memeber of the power set of |
| /// a set of type variables. This is useful for implementing traits for tuples |
| /// or `fn` types. |
| /// |
| /// The last argument is the name of a macro which will be called in every |
| /// `impl` block, and is expected to expand to the name of the type for which to |
| /// implement the trait. |
| /// |
| /// For example, the invocation: |
| /// ```ignore |
| /// unsafe_impl_for_power_set!(A, B => Foo for type!(...)) |
| /// ``` |
| /// ...expands to: |
| /// ```ignore |
| /// unsafe impl Foo for type!() { ... } |
| /// unsafe impl<B> Foo for type!(B) { ... } |
| /// unsafe impl<A, B> Foo for type!(A, B) { ... } |
| /// ``` |
| macro_rules! unsafe_impl_for_power_set { |
| ( |
| $first:ident $(, $rest:ident)* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...) |
| $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl_for_power_set!( |
| $($rest),* $(-> $ret)? => $trait for $macro!(...) |
| $(; |$candidate| $is_bit_valid)? |
| ); |
| unsafe_impl_for_power_set!( |
| @impl $first $(, $rest)* $(-> $ret)? => $trait for $macro!(...) |
| $(; |$candidate| $is_bit_valid)? |
| ); |
| }; |
| ( |
| $(-> $ret:ident)? => $trait:ident for $macro:ident!(...) |
| $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl_for_power_set!( |
| @impl $(-> $ret)? => $trait for $macro!(...) |
| $(; |$candidate| $is_bit_valid)? |
| ); |
| }; |
| ( |
| @impl $($vars:ident),* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...) |
| $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl!( |
| $($vars,)* $($ret)? => $trait for $macro!($($vars),* $(-> $ret)?) |
| $(; |$candidate| $is_bit_valid)? |
| ); |
| }; |
| } |
| |
| /// Expands to an `Option<extern "C" fn>` type with the given argument types and |
| /// return type. Designed for use with `unsafe_impl_for_power_set`. |
| macro_rules! opt_extern_c_fn { |
| ($($args:ident),* -> $ret:ident) => { Option<extern "C" fn($($args),*) -> $ret> }; |
| } |
| |
| /// Expands to a `Option<fn>` type with the given argument types and return |
| /// type. Designed for use with `unsafe_impl_for_power_set`. |
| macro_rules! opt_fn { |
| ($($args:ident),* -> $ret:ident) => { Option<fn($($args),*) -> $ret> }; |
| } |
| |
| /// Implements trait(s) for a type or verifies the given implementation by |
| /// referencing an existing (derived) implementation. |
| /// |
| /// This macro exists so that we can provide zerocopy-derive as an optional |
| /// dependency and still get the benefit of using its derives to validate that |
| /// our trait impls are sound. |
| /// |
| /// When compiling without `--cfg 'feature = "derive"` and without `--cfg test`, |
| /// `impl_or_verify!` emits the provided trait impl. When compiling with either |
| /// of those cfgs, it is expected that the type in question is deriving the |
| /// traits instead. In this case, `impl_or_verify!` emits code which validates |
| /// that the given trait impl is at least as restrictive as the the impl emitted |
| /// by the custom derive. This has the effect of confirming that the impl which |
| /// is emitted when the `derive` feature is disabled is actually sound (on the |
| /// assumption that the impl emitted by the custom derive is sound). |
| /// |
| /// The caller is still required to provide a safety comment (e.g. using the |
| /// `safety_comment!` macro) . The reason for this restriction is that, while |
| /// `impl_or_verify!` can guarantee that the provided impl is sound when it is |
| /// compiled with the appropriate cfgs, there is no way to guarantee that it is |
| /// ever compiled with those cfgs. In particular, it would be possible to |
| /// accidentally place an `impl_or_verify!` call in a context that is only ever |
| /// compiled when the `derive` feature is disabled. If that were to happen, |
| /// there would be nothing to prevent an unsound trait impl from being emitted. |
| /// Requiring a safety comment reduces the likelihood of emitting an unsound |
| /// impl in this case, and also provides useful documentation for readers of the |
| /// code. |
| /// |
| /// Finally, if a `TryFromBytes::is_bit_valid` impl is provided, it must adhere |
| /// to the safety preconditions of [`unsafe_impl!`]. |
| /// |
| /// ## Example |
| /// |
| /// ```rust,ignore |
| /// // Note that these derives are gated by `feature = "derive"` |
| /// #[cfg_attr(any(feature = "derive", test), derive(FromZeros, FromBytes, IntoBytes, Unaligned))] |
| /// #[repr(transparent)] |
| /// struct Wrapper<T>(T); |
| /// |
| /// safety_comment! { |
| /// /// SAFETY: |
| /// /// `Wrapper<T>` is `repr(transparent)`, so it is sound to implement any |
| /// /// zerocopy trait if `T` implements that trait. |
| /// impl_or_verify!(T: FromZeros => FromZeros for Wrapper<T>); |
| /// impl_or_verify!(T: FromBytes => FromBytes for Wrapper<T>); |
| /// impl_or_verify!(T: IntoBytes => IntoBytes for Wrapper<T>); |
| /// impl_or_verify!(T: Unaligned => Unaligned for Wrapper<T>); |
| /// } |
| /// ``` |
| macro_rules! impl_or_verify { |
| // The following two match arms follow the same pattern as their |
| // counterparts in `unsafe_impl!`; see the documentation on those arms for |
| // more details. |
| ( |
| const $constname:ident : $constty:ident $(,)? |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty |
| ) => { |
| impl_or_verify!(@impl { unsafe_impl!( |
| const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty |
| ); }); |
| impl_or_verify!(@verify $trait, { |
| impl<const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {} |
| }); |
| }; |
| ( |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty $(; |$candidate:ident| $is_bit_valid:expr)? |
| ) => { |
| impl_or_verify!(@impl { unsafe_impl!( |
| $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty |
| $(; |$candidate| $is_bit_valid)? |
| ); }); |
| impl_or_verify!(@verify $trait, { |
| impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {} |
| }); |
| }; |
| (@impl $impl_block:tt) => { |
| #[cfg(not(any(feature = "derive", test)))] |
| const _: () = { $impl_block }; |
| }; |
| (@verify $trait:ident, $impl_block:tt) => { |
| #[cfg(any(feature = "derive", test))] |
| const _: () = { |
| trait Subtrait: $trait {} |
| $impl_block |
| }; |
| }; |
| } |
| |
| /// Implements `KnownLayout` for a sized type. |
| macro_rules! impl_known_layout { |
| ($(const $constvar:ident : $constty:ty, $tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => { |
| $(impl_known_layout!(@inner const $constvar: $constty, $tyvar $(: ?$optbound)? => $ty);)* |
| }; |
| ($($tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => { |
| $(impl_known_layout!(@inner , $tyvar $(: ?$optbound)? => $ty);)* |
| }; |
| ($($(#[$attrs:meta])* $ty:ty),*) => { $(impl_known_layout!(@inner , => $(#[$attrs])* $ty);)* }; |
| (@inner $(const $constvar:ident : $constty:ty)? , $($tyvar:ident $(: ?$optbound:ident)?)? => $(#[$attrs:meta])* $ty:ty) => { |
| const _: () = { |
| use core::ptr::NonNull; |
| |
| #[allow(non_local_definitions)] |
| $(#[$attrs])* |
| // SAFETY: Delegates safety to `DstLayout::for_type`. |
| unsafe impl<$($tyvar $(: ?$optbound)?)? $(, const $constvar : $constty)?> KnownLayout for $ty { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {} |
| |
| type PointerMetadata = (); |
| |
| // SAFETY: `CoreMaybeUninit<T>::LAYOUT` and `T::LAYOUT` are |
| // identical because `CoreMaybeUninit<T>` has the same size and |
| // alignment as `T` [1], and `CoreMaybeUninit` admits |
| // uninitialized bytes in all positions. |
| // |
| // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1: |
| // |
| // `MaybeUninit<T>` is guaranteed to have the same size, |
| // alignment, and ABI as `T` |
| type MaybeUninit = core::mem::MaybeUninit<Self>; |
| |
| const LAYOUT: crate::DstLayout = crate::DstLayout::for_type::<$ty>(); |
| |
| // SAFETY: `.cast` preserves address and provenance. |
| // |
| // TODO(#429): Add documentation to `.cast` that promises that |
| // it preserves provenance. |
| #[inline(always)] |
| fn raw_from_ptr_len(bytes: NonNull<u8>, _meta: ()) -> NonNull<Self> { |
| bytes.cast::<Self>() |
| } |
| |
| #[inline(always)] |
| fn pointer_to_metadata(_ptr: *mut Self) -> () { |
| } |
| } |
| }; |
| }; |
| } |
| |
| /// Implements `KnownLayout` for a type in terms of the implementation of |
| /// another type with the same representation. |
| /// |
| /// # Safety |
| /// |
| /// - `$ty` and `$repr` must have the same: |
| /// - Fixed prefix size |
| /// - Alignment |
| /// - (For DSTs) trailing slice element size |
| /// - It must be valid to perform an `as` cast from `*mut $repr` to `*mut $ty`, |
| /// and this operation must preserve referent size (ie, `size_of_val_raw`). |
| macro_rules! unsafe_impl_known_layout { |
| ($($tyvar:ident: ?Sized + KnownLayout =>)? #[repr($repr:ty)] $ty:ty) => { |
| const _: () = { |
| use core::ptr::NonNull; |
| |
| #[allow(non_local_definitions)] |
| unsafe impl<$($tyvar: ?Sized + KnownLayout)?> KnownLayout for $ty { |
| #[allow(clippy::missing_inline_in_public_items, dead_code)] |
| #[cfg_attr(all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| |
| type PointerMetadata = <$repr as KnownLayout>::PointerMetadata; |
| type MaybeUninit = <$repr as KnownLayout>::MaybeUninit; |
| |
| const LAYOUT: DstLayout = <$repr as KnownLayout>::LAYOUT; |
| |
| // SAFETY: All operations preserve address and provenance. |
| // Caller has promised that the `as` cast preserves size. |
| // |
| // TODO(#429): Add documentation to `NonNull::new_unchecked` |
| // that it preserves provenance. |
| #[inline(always)] |
| fn raw_from_ptr_len(bytes: NonNull<u8>, meta: <$repr as KnownLayout>::PointerMetadata) -> NonNull<Self> { |
| #[allow(clippy::as_conversions)] |
| let ptr = <$repr>::raw_from_ptr_len(bytes, meta).as_ptr() as *mut Self; |
| // SAFETY: `ptr` was converted from `bytes`, which is non-null. |
| unsafe { NonNull::new_unchecked(ptr) } |
| } |
| |
| #[inline(always)] |
| fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata { |
| #[allow(clippy::as_conversions)] |
| let ptr = ptr as *mut $repr; |
| <$repr>::pointer_to_metadata(ptr) |
| } |
| } |
| }; |
| }; |
| } |
| |
| /// Uses `align_of` to confirm that a type or set of types have alignment 1. |
| /// |
| /// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for |
| /// unsized types. |
| macro_rules! assert_unaligned { |
| ($($tys:ty),*) => { |
| $( |
| // We only compile this assertion under `cfg(test)` to avoid taking |
| // an extra non-dev dependency (and making this crate more expensive |
| // to compile for our dependents). |
| #[cfg(test)] |
| static_assertions::const_assert_eq!(core::mem::align_of::<$tys>(), 1); |
| )* |
| }; |
| } |
| |
| /// Emits a function definition as either `const fn` or `fn` depending on |
| /// whether the current toolchain version supports `const fn` with generic trait |
| /// bounds. |
| macro_rules! maybe_const_trait_bounded_fn { |
| // This case handles both `self` methods (where `self` is by value) and |
| // non-method functions. Each `$args` may optionally be followed by `: |
| // $arg_tys:ty`, which can be omitted for `self`. |
| ($(#[$attr:meta])* $vis:vis const fn $name:ident($($args:ident $(: $arg_tys:ty)?),* $(,)?) $(-> $ret_ty:ty)? $body:block) => { |
| #[cfg(zerocopy_generic_bounds_in_const_fn_1_61_0)] |
| $(#[$attr])* $vis const fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body |
| |
| #[cfg(not(zerocopy_generic_bounds_in_const_fn_1_61_0))] |
| $(#[$attr])* $vis fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body |
| }; |
| } |
| |
| /// Either panic (if the current Rust toolchain supports panicking in `const |
| /// fn`) or evaluate a constant that will cause an array indexing error whose |
| /// error message will include the format string. |
| /// |
| /// The type that this expression evaluates to must be `Copy`, or else the |
| /// non-panicking desugaring will fail to compile. |
| macro_rules! const_panic { |
| (@non_panic $($_arg:tt)+) => {{ |
| // This will type check to whatever type is expected based on the call |
| // site. |
| let panic: [_; 0] = []; |
| // This will always fail (since we're indexing into an array of size 0. |
| #[allow(unconditional_panic)] |
| panic[0] |
| }}; |
| ($($arg:tt)+) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| panic!($($arg)+); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| const_panic!(@non_panic $($arg)+) |
| }}; |
| } |
| |
| /// Either assert (if the current Rust toolchain supports panicking in `const |
| /// fn`) or evaluate the expression and, if it evaluates to `false`, call |
| /// `const_panic!`. This is used in place of `assert!` in const contexts to |
| /// accommodate old toolchains. |
| macro_rules! const_assert { |
| ($e:expr) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| assert!($e); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| { |
| let e = $e; |
| if !e { |
| let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e))); |
| } |
| } |
| }}; |
| ($e:expr, $($args:tt)+) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| assert!($e, $($args)+); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| { |
| let e = $e; |
| if !e { |
| let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e), ": ", stringify!($arg)), $($args)*); |
| } |
| } |
| }}; |
| } |
| |
| /// Like `const_assert!`, but relative to `debug_assert!`. |
| macro_rules! const_debug_assert { |
| ($e:expr $(, $msg:expr)?) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| debug_assert!($e $(, $msg)?); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| { |
| // Use this (rather than `#[cfg(debug_assertions)]`) to ensure that |
| // `$e` is always compiled even if it will never be evaluated at |
| // runtime. |
| if cfg!(debug_assertions) { |
| let e = $e; |
| if !e { |
| let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e) $(, ": ", $msg)?)); |
| } |
| } |
| } |
| }} |
| } |
| |
| /// Either invoke `unreachable!()` or `loop {}` depending on whether the Rust |
| /// toolchain supports panicking in `const fn`. |
| macro_rules! const_unreachable { |
| () => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| unreachable!(); |
| |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| loop {} |
| }}; |
| } |
| |
| /// Asserts at compile time that `$condition` is true for `Self` or the given |
| /// `$tyvar`s. Unlike `const_assert`, this is *strictly* a compile-time check; |
| /// it cannot be evaluated in a runtime context. The condition is checked after |
| /// monomorphization and, upon failure, emits a compile error. |
| macro_rules! static_assert { |
| (Self $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )? => $condition:expr $(, $args:tt)*) => {{ |
| trait StaticAssert { |
| const ASSERT: bool; |
| } |
| |
| impl<T $(: $(? $optbound +)* $($bound +)*)?> StaticAssert for T { |
| const ASSERT: bool = { |
| const_assert!($condition $(, $args)*); |
| $condition |
| }; |
| } |
| |
| const_assert!(<Self as StaticAssert>::ASSERT); |
| }}; |
| ($($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* => $condition:expr $(, $args:tt)*) => {{ |
| trait StaticAssert { |
| const ASSERT: bool; |
| } |
| |
| impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?,)*> StaticAssert for ($($tyvar,)*) { |
| const ASSERT: bool = { |
| const_assert!($condition $(, $args)*); |
| $condition |
| }; |
| } |
| |
| const_assert!(<($($tyvar,)*) as StaticAssert>::ASSERT); |
| }}; |
| } |
| |
| /// Assert at compile time that `tyvar` does not have a zero-sized DST |
| /// component. |
| macro_rules! static_assert_dst_is_not_zst { |
| ($tyvar:ident) => {{ |
| use crate::KnownLayout; |
| static_assert!($tyvar: ?Sized + KnownLayout => { |
| let dst_is_zst = match $tyvar::LAYOUT.size_info { |
| crate::SizeInfo::Sized { .. } => false, |
| crate::SizeInfo::SliceDst(TrailingSliceLayout { elem_size, .. }) => { |
| elem_size == 0 |
| } |
| }; |
| !dst_is_zst |
| }, "cannot call this method on a dynamically-sized type whose trailing slice element is zero-sized"); |
| }} |
| } |
| |
| macro_rules! cast { |
| () => { |
| |p| { |
| // SAFETY: `NonNull::as_ptr` returns a non-null pointer, so the |
| // argument to `NonNull::new_unchecked` is also non-null. |
| #[allow(clippy::as_conversions, unused_unsafe)] |
| #[allow(clippy::undocumented_unsafe_blocks)] // Clippy false positive |
| return unsafe { |
| core::ptr::NonNull::new_unchecked(core::ptr::NonNull::as_ptr(p) as *mut _) |
| }; |
| } |
| }; |
| ($p:ident) => { |
| cast!()($p) |
| }; |
| } |
| |
| /// Implements `TransmuteFrom` and `SizeEq` for `T` and `$wrapper<T>`. |
| /// |
| /// # Safety |
| /// |
| /// `T` and `$wrapper<T>` must have the same bit validity, and must have the |
| /// same size in the sense of `SizeEq`. |
| macro_rules! unsafe_impl_for_transparent_wrapper { |
| (T $(: ?$optbound:ident)? => $wrapper:ident<T>) => { |
| const _: () = { |
| use core::ptr::NonNull; |
| use crate::pointer::{TransmuteFrom, SizeEq, invariant::Valid}; |
| |
| // SAFETY: The caller promises that `T` and `$wrapper<T>` have the |
| // same bit validity. |
| unsafe impl<T $(: ?$optbound)?> TransmuteFrom<T, Valid, Valid> for $wrapper<T> {} |
| // SAFETY: See previous safety comment. |
| unsafe impl<T $(: ?$optbound)?> TransmuteFrom<$wrapper<T>, Valid, Valid> for T {} |
| // SAFETY: The caller promises that `T` and `$wrapper<T>` satisfy |
| // `SizeEq`. |
| unsafe impl<T $(: ?$optbound)?> SizeEq<T> for $wrapper<T> { |
| fn cast_from_raw(t: NonNull<T>) -> NonNull<$wrapper<T>> { |
| cast!(t) |
| } |
| } |
| // SAFETY: See previous safety comment. |
| unsafe impl<T $(: ?$optbound)?> SizeEq<$wrapper<T>> for T { |
| fn cast_from_raw(t: NonNull<$wrapper<T>>) -> NonNull<T> { |
| cast!(t) |
| } |
| } |
| }; |
| |
| // So that this macro must be invoked inside `safety_comment!` or else |
| // it will generate a `clippy::undocumented_unsafe_blocks` warning. |
| #[allow(unused_unsafe)] |
| const _: () = unsafe {}; |
| }; |
| } |
| |
| macro_rules! impl_transitive_transmute_from { |
| ($($tyvar:ident $(: ?$optbound:ident)?)? => $t:ty => $u:ty => $v:ty) => { |
| const _: () = { |
| use core::ptr::NonNull; |
| use crate::pointer::{TransmuteFrom, SizeEq, invariant::Valid}; |
| |
| // SAFETY: Since `$u: SizeEq<$t>` and `$v: SizeEq<U>`, this impl is |
| // transitively sound. |
| unsafe impl<$($tyvar $(: ?$optbound)?)?> SizeEq<$t> for $v |
| where |
| $u: SizeEq<$t>, |
| $v: SizeEq<$u>, |
| { |
| fn cast_from_raw(t: NonNull<$t>) -> NonNull<$v> { |
| cast!(t) |
| } |
| } |
| |
| // SAFETY: Since `$u: TransmuteFrom<$t, Valid, Valid>`, it is sound |
| // to transmute a bit-valid `$t` to a bit-valid `$u`. Since `$v: |
| // TransmuteFrom<$u, Valid, Valid>`, it is sound to transmute that |
| // bit-valid `$u` to a bit-valid `$v`. |
| unsafe impl<$($tyvar $(: ?$optbound)?)?> TransmuteFrom<$t, Valid, Valid> for $v |
| where |
| $u: TransmuteFrom<$t, Valid, Valid>, |
| $v: TransmuteFrom<$u, Valid, Valid>, |
| {} |
| }; |
| }; |
| } |
| |
| macro_rules! impl_size_eq { |
| ($t:ty, $u:ty) => { |
| const _: () = { |
| use crate::pointer::SizeEq; |
| use core::ptr::NonNull; |
| |
| static_assert!(=> mem::size_of::<$t>() == mem::size_of::<$u>()); |
| |
| // SAFETY: We've asserted that their sizes are equal. |
| unsafe impl SizeEq<$t> for $u { |
| fn cast_from_raw(t: NonNull<$t>) -> NonNull<$u> { |
| cast!(t) |
| } |
| } |
| // SAFETY: We've asserted that their sizes are equal. |
| unsafe impl SizeEq<$u> for $t { |
| fn cast_from_raw(u: NonNull<$u>) -> NonNull<$t> { |
| cast!(u) |
| } |
| } |
| }; |
| }; |
| } |