|  | //===- FuzzerDataFlowTrace.cpp - DataFlowTrace                ---*- C++ -* ===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // fuzzer::DataFlowTrace | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "FuzzerDataFlowTrace.h" | 
|  |  | 
|  | #include "FuzzerCommand.h" | 
|  | #include "FuzzerIO.h" | 
|  | #include "FuzzerRandom.h" | 
|  | #include "FuzzerSHA1.h" | 
|  | #include "FuzzerUtil.h" | 
|  |  | 
|  | #include <cstdlib> | 
|  | #include <fstream> | 
|  | #include <numeric> | 
|  | #include <queue> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <unordered_map> | 
|  | #include <unordered_set> | 
|  | #include <vector> | 
|  |  | 
|  | namespace fuzzer { | 
|  | static const char *kFunctionsTxt = "functions.txt"; | 
|  |  | 
|  | bool BlockCoverage::AppendCoverage(const std::string &S) { | 
|  | std::stringstream SS(S); | 
|  | return AppendCoverage(SS); | 
|  | } | 
|  |  | 
|  | // Coverage lines have this form: | 
|  | // CN X Y Z T | 
|  | // where N is the number of the function, T is the total number of instrumented | 
|  | // BBs, and X,Y,Z, if present, are the indices of covered BB. | 
|  | // BB #0, which is the entry block, is not explicitly listed. | 
|  | bool BlockCoverage::AppendCoverage(std::istream &IN) { | 
|  | std::string L; | 
|  | while (std::getline(IN, L, '\n')) { | 
|  | if (L.empty()) | 
|  | continue; | 
|  | std::stringstream SS(L.c_str() + 1); | 
|  | size_t FunctionId  = 0; | 
|  | SS >> FunctionId; | 
|  | if (L[0] == 'F') { | 
|  | FunctionsWithDFT.insert(FunctionId); | 
|  | continue; | 
|  | } | 
|  | if (L[0] != 'C') continue; | 
|  | std::vector<uint32_t> CoveredBlocks; | 
|  | while (true) { | 
|  | uint32_t BB = 0; | 
|  | SS >> BB; | 
|  | if (!SS) break; | 
|  | CoveredBlocks.push_back(BB); | 
|  | } | 
|  | if (CoveredBlocks.empty()) return false; | 
|  | // Ensures no CoverageVector is longer than UINT32_MAX. | 
|  | uint32_t NumBlocks = CoveredBlocks.back(); | 
|  | CoveredBlocks.pop_back(); | 
|  | for (auto BB : CoveredBlocks) | 
|  | if (BB >= NumBlocks) return false; | 
|  | auto It = Functions.find(FunctionId); | 
|  | auto &Counters = | 
|  | It == Functions.end() | 
|  | ? Functions.insert({FunctionId, std::vector<uint32_t>(NumBlocks)}) | 
|  | .first->second | 
|  | : It->second; | 
|  |  | 
|  | if (Counters.size() != NumBlocks) return false;  // wrong number of blocks. | 
|  |  | 
|  | Counters[0]++; | 
|  | for (auto BB : CoveredBlocks) | 
|  | Counters[BB]++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Assign weights to each function. | 
|  | // General principles: | 
|  | //   * any uncovered function gets weight 0. | 
|  | //   * a function with lots of uncovered blocks gets bigger weight. | 
|  | //   * a function with a less frequently executed code gets bigger weight. | 
|  | std::vector<double> BlockCoverage::FunctionWeights(size_t NumFunctions) const { | 
|  | std::vector<double> Res(NumFunctions); | 
|  | for (const auto &It : Functions) { | 
|  | auto FunctionID = It.first; | 
|  | auto Counters = It.second; | 
|  | assert(FunctionID < NumFunctions); | 
|  | auto &Weight = Res[FunctionID]; | 
|  | // Give higher weight if the function has a DFT. | 
|  | Weight = FunctionsWithDFT.count(FunctionID) ? 1000. : 1; | 
|  | // Give higher weight to functions with less frequently seen basic blocks. | 
|  | Weight /= SmallestNonZeroCounter(Counters); | 
|  | // Give higher weight to functions with the most uncovered basic blocks. | 
|  | Weight *= NumberOfUncoveredBlocks(Counters) + 1; | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | void DataFlowTrace::ReadCoverage(const std::string &DirPath) { | 
|  | std::vector<SizedFile> Files; | 
|  | GetSizedFilesFromDir(DirPath, &Files); | 
|  | for (auto &SF : Files) { | 
|  | auto Name = Basename(SF.File); | 
|  | if (Name == kFunctionsTxt) continue; | 
|  | if (!CorporaHashes.count(Name)) continue; | 
|  | std::ifstream IF(SF.File); | 
|  | Coverage.AppendCoverage(IF); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DFTStringAppendToVector(std::vector<uint8_t> *DFT, | 
|  | const std::string &DFTString) { | 
|  | assert(DFT->size() == DFTString.size()); | 
|  | for (size_t I = 0, Len = DFT->size(); I < Len; I++) | 
|  | (*DFT)[I] = DFTString[I] == '1'; | 
|  | } | 
|  |  | 
|  | // converts a string of '0' and '1' into a std::vector<uint8_t> | 
|  | static std::vector<uint8_t> DFTStringToVector(const std::string &DFTString) { | 
|  | std::vector<uint8_t> DFT(DFTString.size()); | 
|  | DFTStringAppendToVector(&DFT, DFTString); | 
|  | return DFT; | 
|  | } | 
|  |  | 
|  | static bool ParseError(const char *Err, const std::string &Line) { | 
|  | Printf("DataFlowTrace: parse error: %s: Line: %s\n", Err, Line.c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(metzman): replace std::string with std::string_view for | 
|  | // better performance. Need to figure our how to use string_view on Windows. | 
|  | static bool ParseDFTLine(const std::string &Line, size_t *FunctionNum, | 
|  | std::string *DFTString) { | 
|  | if (!Line.empty() && Line[0] != 'F') | 
|  | return false; // Ignore coverage. | 
|  | size_t SpacePos = Line.find(' '); | 
|  | if (SpacePos == std::string::npos) | 
|  | return ParseError("no space in the trace line", Line); | 
|  | if (Line.empty() || Line[0] != 'F') | 
|  | return ParseError("the trace line doesn't start with 'F'", Line); | 
|  | *FunctionNum = std::atol(Line.c_str() + 1); | 
|  | const char *Beg = Line.c_str() + SpacePos + 1; | 
|  | const char *End = Line.c_str() + Line.size(); | 
|  | assert(Beg < End); | 
|  | size_t Len = End - Beg; | 
|  | for (size_t I = 0; I < Len; I++) { | 
|  | if (Beg[I] != '0' && Beg[I] != '1') | 
|  | return ParseError("the trace should contain only 0 or 1", Line); | 
|  | } | 
|  | *DFTString = Beg; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DataFlowTrace::Init(const std::string &DirPath, std::string *FocusFunction, | 
|  | std::vector<SizedFile> &CorporaFiles, Random &Rand) { | 
|  | if (DirPath.empty()) return false; | 
|  | Printf("INFO: DataFlowTrace: reading from '%s'\n", DirPath.c_str()); | 
|  | std::vector<SizedFile> Files; | 
|  | GetSizedFilesFromDir(DirPath, &Files); | 
|  | std::string L; | 
|  | size_t FocusFuncIdx = SIZE_MAX; | 
|  | std::vector<std::string> FunctionNames; | 
|  |  | 
|  | // Collect the hashes of the corpus files. | 
|  | for (auto &SF : CorporaFiles) | 
|  | CorporaHashes.insert(Hash(FileToVector(SF.File))); | 
|  |  | 
|  | // Read functions.txt | 
|  | std::ifstream IF(DirPlusFile(DirPath, kFunctionsTxt)); | 
|  | size_t NumFunctions = 0; | 
|  | while (std::getline(IF, L, '\n')) { | 
|  | FunctionNames.push_back(L); | 
|  | NumFunctions++; | 
|  | if (*FocusFunction == L) | 
|  | FocusFuncIdx = NumFunctions - 1; | 
|  | } | 
|  | if (!NumFunctions) | 
|  | return false; | 
|  |  | 
|  | if (*FocusFunction == "auto") { | 
|  | // AUTOFOCUS works like this: | 
|  | // * reads the coverage data from the DFT files. | 
|  | // * assigns weights to functions based on coverage. | 
|  | // * chooses a random function according to the weights. | 
|  | ReadCoverage(DirPath); | 
|  | auto Weights = Coverage.FunctionWeights(NumFunctions); | 
|  | std::vector<double> Intervals(NumFunctions + 1); | 
|  | std::iota(Intervals.begin(), Intervals.end(), 0); | 
|  | auto Distribution = std::piecewise_constant_distribution<double>( | 
|  | Intervals.begin(), Intervals.end(), Weights.begin()); | 
|  | FocusFuncIdx = static_cast<size_t>(Distribution(Rand)); | 
|  | *FocusFunction = FunctionNames[FocusFuncIdx]; | 
|  | assert(FocusFuncIdx < NumFunctions); | 
|  | Printf("INFO: AUTOFOCUS: %zd %s\n", FocusFuncIdx, | 
|  | FunctionNames[FocusFuncIdx].c_str()); | 
|  | for (size_t i = 0; i < NumFunctions; i++) { | 
|  | if (Weights[i] == 0.0) | 
|  | continue; | 
|  | Printf("  [%zd] W %g\tBB-tot %u\tBB-cov %u\tEntryFreq %u:\t%s\n", i, | 
|  | Weights[i], Coverage.GetNumberOfBlocks(i), | 
|  | Coverage.GetNumberOfCoveredBlocks(i), Coverage.GetCounter(i, 0), | 
|  | FunctionNames[i].c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NumFunctions || FocusFuncIdx == SIZE_MAX || Files.size() <= 1) | 
|  | return false; | 
|  |  | 
|  | // Read traces. | 
|  | size_t NumTraceFiles = 0; | 
|  | size_t NumTracesWithFocusFunction = 0; | 
|  | for (auto &SF : Files) { | 
|  | auto Name = Basename(SF.File); | 
|  | if (Name == kFunctionsTxt) continue; | 
|  | if (!CorporaHashes.count(Name)) continue;  // not in the corpus. | 
|  | NumTraceFiles++; | 
|  | // Printf("=== %s\n", Name.c_str()); | 
|  | std::ifstream IF(SF.File); | 
|  | while (std::getline(IF, L, '\n')) { | 
|  | size_t FunctionNum = 0; | 
|  | std::string DFTString; | 
|  | if (ParseDFTLine(L, &FunctionNum, &DFTString) && | 
|  | FunctionNum == FocusFuncIdx) { | 
|  | NumTracesWithFocusFunction++; | 
|  |  | 
|  | if (FunctionNum >= NumFunctions) | 
|  | return ParseError("N is greater than the number of functions", L); | 
|  | Traces[Name] = DFTStringToVector(DFTString); | 
|  | // Print just a few small traces. | 
|  | if (NumTracesWithFocusFunction <= 3 && DFTString.size() <= 16) | 
|  | Printf("%s => |%s|\n", Name.c_str(), std::string(DFTString).c_str()); | 
|  | break; // No need to parse the following lines. | 
|  | } | 
|  | } | 
|  | } | 
|  | Printf("INFO: DataFlowTrace: %zd trace files, %zd functions, " | 
|  | "%zd traces with focus function\n", | 
|  | NumTraceFiles, NumFunctions, NumTracesWithFocusFunction); | 
|  | return NumTraceFiles > 0; | 
|  | } | 
|  |  | 
|  | int CollectDataFlow(const std::string &DFTBinary, const std::string &DirPath, | 
|  | const std::vector<SizedFile> &CorporaFiles) { | 
|  | Printf("INFO: collecting data flow: bin: %s dir: %s files: %zd\n", | 
|  | DFTBinary.c_str(), DirPath.c_str(), CorporaFiles.size()); | 
|  | if (CorporaFiles.empty()) { | 
|  | Printf("ERROR: can't collect data flow without corpus provided."); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static char DFSanEnv[] = "DFSAN_OPTIONS=warn_unimplemented=0"; | 
|  | putenv(DFSanEnv); | 
|  | MkDir(DirPath); | 
|  | for (auto &F : CorporaFiles) { | 
|  | // For every input F we need to collect the data flow and the coverage. | 
|  | // Data flow collection may fail if we request too many DFSan tags at once. | 
|  | // So, we start from requesting all tags in range [0,Size) and if that fails | 
|  | // we then request tags in [0,Size/2) and [Size/2, Size), and so on. | 
|  | // Function number => DFT. | 
|  | auto OutPath = DirPlusFile(DirPath, Hash(FileToVector(F.File))); | 
|  | std::unordered_map<size_t, std::vector<uint8_t>> DFTMap; | 
|  | std::unordered_set<std::string> Cov; | 
|  | Command Cmd; | 
|  | Cmd.addArgument(DFTBinary); | 
|  | Cmd.addArgument(F.File); | 
|  | Cmd.addArgument(OutPath); | 
|  | Printf("CMD: %s\n", Cmd.toString().c_str()); | 
|  | ExecuteCommand(Cmd); | 
|  | } | 
|  | // Write functions.txt if it's currently empty or doesn't exist. | 
|  | auto FunctionsTxtPath = DirPlusFile(DirPath, kFunctionsTxt); | 
|  | if (FileToString(FunctionsTxtPath).empty()) { | 
|  | Command Cmd; | 
|  | Cmd.addArgument(DFTBinary); | 
|  | Cmd.setOutputFile(FunctionsTxtPath); | 
|  | ExecuteCommand(Cmd); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | }  // namespace fuzzer |