| // Copyright 2012 The Rust Project Developers. See the COPYRIGHT | 
 | // file at the top-level directory of this distribution and at | 
 | // http://rust-lang.org/COPYRIGHT. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | 
 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | 
 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | 
 | // option. This file may not be copied, modified, or distributed | 
 | // except according to those terms. | 
 |  | 
 | #![allow(missing_docs)] | 
 | #![allow(deprecated)] // Float | 
 |  | 
 | use std::cmp::Ordering::{self, Equal, Greater, Less}; | 
 | use std::mem; | 
 |  | 
 | fn local_cmp(x: f64, y: f64) -> Ordering { | 
 |     // arbitrarily decide that NaNs are larger than everything. | 
 |     if y.is_nan() { | 
 |         Less | 
 |     } else if x.is_nan() { | 
 |         Greater | 
 |     } else if x < y { | 
 |         Less | 
 |     } else if x == y { | 
 |         Equal | 
 |     } else { | 
 |         Greater | 
 |     } | 
 | } | 
 |  | 
 | fn local_sort(v: &mut [f64]) { | 
 |     v.sort_by(|x: &f64, y: &f64| local_cmp(*x, *y)); | 
 | } | 
 |  | 
 | /// Trait that provides simple descriptive statistics on a univariate set of numeric samples. | 
 | pub trait Stats { | 
 |     /// Sum of the samples. | 
 |     /// | 
 |     /// Note: this method sacrifices performance at the altar of accuracy | 
 |     /// Depends on IEEE-754 arithmetic guarantees. See proof of correctness at: | 
 |     /// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates"] | 
 |     /// (http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps) | 
 |     fn sum(&self) -> f64; | 
 |  | 
 |     /// Minimum value of the samples. | 
 |     fn min(&self) -> f64; | 
 |  | 
 |     /// Maximum value of the samples. | 
 |     fn max(&self) -> f64; | 
 |  | 
 |     /// Arithmetic mean (average) of the samples: sum divided by sample-count. | 
 |     /// | 
 |     /// See: https://en.wikipedia.org/wiki/Arithmetic_mean | 
 |     fn mean(&self) -> f64; | 
 |  | 
 |     /// Median of the samples: value separating the lower half of the samples from the higher half. | 
 |     /// Equal to `self.percentile(50.0)`. | 
 |     /// | 
 |     /// See: https://en.wikipedia.org/wiki/Median | 
 |     fn median(&self) -> f64; | 
 |  | 
 |     /// Variance of the samples: bias-corrected mean of the squares of the differences of each | 
 |     /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the | 
 |     /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n` | 
 |     /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather | 
 |     /// than `n`. | 
 |     /// | 
 |     /// See: https://en.wikipedia.org/wiki/Variance | 
 |     fn var(&self) -> f64; | 
 |  | 
 |     /// Standard deviation: the square root of the sample variance. | 
 |     /// | 
 |     /// Note: this is not a robust statistic for non-normal distributions. Prefer the | 
 |     /// `median_abs_dev` for unknown distributions. | 
 |     /// | 
 |     /// See: https://en.wikipedia.org/wiki/Standard_deviation | 
 |     fn std_dev(&self) -> f64; | 
 |  | 
 |     /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`. | 
 |     /// | 
 |     /// Note: this is not a robust statistic for non-normal distributions. Prefer the | 
 |     /// `median_abs_dev_pct` for unknown distributions. | 
 |     fn std_dev_pct(&self) -> f64; | 
 |  | 
 |     /// Scaled median of the absolute deviations of each sample from the sample median. This is a | 
 |     /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to | 
 |     /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled | 
 |     /// by the constant `1.4826` to allow its use as a consistent estimator for the standard | 
 |     /// deviation. | 
 |     /// | 
 |     /// See: http://en.wikipedia.org/wiki/Median_absolute_deviation | 
 |     fn median_abs_dev(&self) -> f64; | 
 |  | 
 |     /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`. | 
 |     fn median_abs_dev_pct(&self) -> f64; | 
 |  | 
 |     /// Percentile: the value below which `pct` percent of the values in `self` fall. For example, | 
 |     /// percentile(95.0) will return the value `v` such that 95% of the samples `s` in `self` | 
 |     /// satisfy `s <= v`. | 
 |     /// | 
 |     /// Calculated by linear interpolation between closest ranks. | 
 |     /// | 
 |     /// See: http://en.wikipedia.org/wiki/Percentile | 
 |     fn percentile(&self, pct: f64) -> f64; | 
 |  | 
 |     /// Quartiles of the sample: three values that divide the sample into four equal groups, each | 
 |     /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This | 
 |     /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but | 
 |     /// is otherwise equivalent. | 
 |     /// | 
 |     /// See also: https://en.wikipedia.org/wiki/Quartile | 
 |     fn quartiles(&self) -> (f64, f64, f64); | 
 |  | 
 |     /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th | 
 |     /// percentile (3rd quartile). See `quartiles`. | 
 |     /// | 
 |     /// See also: https://en.wikipedia.org/wiki/Interquartile_range | 
 |     fn iqr(&self) -> f64; | 
 | } | 
 |  | 
 | /// Extracted collection of all the summary statistics of a sample set. | 
 | #[derive(Clone, PartialEq)] | 
 | #[allow(missing_docs)] | 
 | pub struct Summary { | 
 |     pub sum: f64, | 
 |     pub min: f64, | 
 |     pub max: f64, | 
 |     pub mean: f64, | 
 |     pub median: f64, | 
 |     pub var: f64, | 
 |     pub std_dev: f64, | 
 |     pub std_dev_pct: f64, | 
 |     pub median_abs_dev: f64, | 
 |     pub median_abs_dev_pct: f64, | 
 |     pub quartiles: (f64, f64, f64), | 
 |     pub iqr: f64, | 
 | } | 
 |  | 
 | impl Summary { | 
 |     /// Construct a new summary of a sample set. | 
 |     pub fn new(samples: &[f64]) -> Summary { | 
 |         Summary { | 
 |             sum: samples.sum(), | 
 |             min: samples.min(), | 
 |             max: samples.max(), | 
 |             mean: samples.mean(), | 
 |             median: samples.median(), | 
 |             var: samples.var(), | 
 |             std_dev: samples.std_dev(), | 
 |             std_dev_pct: samples.std_dev_pct(), | 
 |             median_abs_dev: samples.median_abs_dev(), | 
 |             median_abs_dev_pct: samples.median_abs_dev_pct(), | 
 |             quartiles: samples.quartiles(), | 
 |             iqr: samples.iqr(), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl Stats for [f64] { | 
 |     // FIXME #11059 handle NaN, inf and overflow | 
 |     fn sum(&self) -> f64 { | 
 |         let mut partials = vec![]; | 
 |  | 
 |         for &x in self { | 
 |             let mut x = x; | 
 |             let mut j = 0; | 
 |             // This inner loop applies `hi`/`lo` summation to each | 
 |             // partial so that the list of partial sums remains exact. | 
 |             for i in 0..partials.len() { | 
 |                 let mut y: f64 = partials[i]; | 
 |                 if x.abs() < y.abs() { | 
 |                     mem::swap(&mut x, &mut y); | 
 |                 } | 
 |                 // Rounded `x+y` is stored in `hi` with round-off stored in | 
 |                 // `lo`. Together `hi+lo` are exactly equal to `x+y`. | 
 |                 let hi = x + y; | 
 |                 let lo = y - (hi - x); | 
 |                 if lo != 0.0 { | 
 |                     partials[j] = lo; | 
 |                     j += 1; | 
 |                 } | 
 |                 x = hi; | 
 |             } | 
 |             if j >= partials.len() { | 
 |                 partials.push(x); | 
 |             } else { | 
 |                 partials[j] = x; | 
 |                 partials.truncate(j + 1); | 
 |             } | 
 |         } | 
 |         let zero: f64 = 0.0; | 
 |         partials.iter().fold(zero, |p, q| p + *q) | 
 |     } | 
 |  | 
 |     fn min(&self) -> f64 { | 
 |         assert!(!self.is_empty()); | 
 |         self.iter().fold(self[0], |p, q| p.min(*q)) | 
 |     } | 
 |  | 
 |     fn max(&self) -> f64 { | 
 |         assert!(!self.is_empty()); | 
 |         self.iter().fold(self[0], |p, q| p.max(*q)) | 
 |     } | 
 |  | 
 |     fn mean(&self) -> f64 { | 
 |         assert!(!self.is_empty()); | 
 |         self.sum() / (self.len() as f64) | 
 |     } | 
 |  | 
 |     fn median(&self) -> f64 { | 
 |         self.percentile(50 as f64) | 
 |     } | 
 |  | 
 |     fn var(&self) -> f64 { | 
 |         if self.len() < 2 { | 
 |             0.0 | 
 |         } else { | 
 |             let mean = self.mean(); | 
 |             let mut v: f64 = 0.0; | 
 |             for s in self { | 
 |                 let x = *s - mean; | 
 |                 v += x * x; | 
 |             } | 
 |             // NB: this is _supposed to be_ len-1, not len. If you | 
 |             // change it back to len, you will be calculating a | 
 |             // population variance, not a sample variance. | 
 |             let denom = (self.len() - 1) as f64; | 
 |             v / denom | 
 |         } | 
 |     } | 
 |  | 
 |     fn std_dev(&self) -> f64 { | 
 |         self.var().sqrt() | 
 |     } | 
 |  | 
 |     fn std_dev_pct(&self) -> f64 { | 
 |         let hundred = 100 as f64; | 
 |         (self.std_dev() / self.mean()) * hundred | 
 |     } | 
 |  | 
 |     fn median_abs_dev(&self) -> f64 { | 
 |         let med = self.median(); | 
 |         let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect(); | 
 |         // This constant is derived by smarter statistics brains than me, but it is | 
 |         // consistent with how R and other packages treat the MAD. | 
 |         let number = 1.4826; | 
 |         abs_devs.median() * number | 
 |     } | 
 |  | 
 |     fn median_abs_dev_pct(&self) -> f64 { | 
 |         let hundred = 100 as f64; | 
 |         (self.median_abs_dev() / self.median()) * hundred | 
 |     } | 
 |  | 
 |     fn percentile(&self, pct: f64) -> f64 { | 
 |         let mut tmp = self.to_vec(); | 
 |         local_sort(&mut tmp); | 
 |         percentile_of_sorted(&tmp, pct) | 
 |     } | 
 |  | 
 |     fn quartiles(&self) -> (f64, f64, f64) { | 
 |         let mut tmp = self.to_vec(); | 
 |         local_sort(&mut tmp); | 
 |         let first = 25f64; | 
 |         let a = percentile_of_sorted(&tmp, first); | 
 |         let secound = 50f64; | 
 |         let b = percentile_of_sorted(&tmp, secound); | 
 |         let third = 75f64; | 
 |         let c = percentile_of_sorted(&tmp, third); | 
 |         (a, b, c) | 
 |     } | 
 |  | 
 |     fn iqr(&self) -> f64 { | 
 |         let (a, _, c) = self.quartiles(); | 
 |         c - a | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using | 
 | // linear interpolation. If samples are not sorted, return nonsensical value. | 
 | fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 { | 
 |     assert!(!sorted_samples.is_empty()); | 
 |     if sorted_samples.len() == 1 { | 
 |         return sorted_samples[0]; | 
 |     } | 
 |     let zero: f64 = 0.0; | 
 |     assert!(zero <= pct); | 
 |     let hundred = 100f64; | 
 |     assert!(pct <= hundred); | 
 |     if pct == hundred { | 
 |         return sorted_samples[sorted_samples.len() - 1]; | 
 |     } | 
 |     let length = (sorted_samples.len() - 1) as f64; | 
 |     let rank = (pct / hundred) * length; | 
 |     let lrank = rank.floor(); | 
 |     let d = rank - lrank; | 
 |     let n = lrank as usize; | 
 |     let lo = sorted_samples[n]; | 
 |     let hi = sorted_samples[n + 1]; | 
 |     lo + (hi - lo) * d | 
 | } | 
 |  | 
 |  | 
 | /// Winsorize a set of samples, replacing values above the `100-pct` percentile | 
 | /// and below the `pct` percentile with those percentiles themselves. This is a | 
 | /// way of minimizing the effect of outliers, at the cost of biasing the sample. | 
 | /// It differs from trimming in that it does not change the number of samples, | 
 | /// just changes the values of those that are outliers. | 
 | /// | 
 | /// See: http://en.wikipedia.org/wiki/Winsorising | 
 | pub fn winsorize(samples: &mut [f64], pct: f64) { | 
 |     let mut tmp = samples.to_vec(); | 
 |     local_sort(&mut tmp); | 
 |     let lo = percentile_of_sorted(&tmp, pct); | 
 |     let hundred = 100 as f64; | 
 |     let hi = percentile_of_sorted(&tmp, hundred - pct); | 
 |     for samp in samples { | 
 |         if *samp > hi { | 
 |             *samp = hi | 
 |         } else if *samp < lo { | 
 |             *samp = lo | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // Test vectors generated from R, using the script src/etc/stat-test-vectors.r. | 
 |  | 
 | #[cfg(test)] | 
 | mod tests { | 
 |     use stats::Stats; | 
 |     use stats::Summary; | 
 |     use std::f64; | 
 |     use std::io::prelude::*; | 
 |     use std::io; | 
 |  | 
 |     macro_rules! assert_approx_eq { | 
 |         ($a:expr, $b:expr) => ({ | 
 |             let (a, b) = (&$a, &$b); | 
 |             assert!((*a - *b).abs() < 1.0e-6, | 
 |                     "{} is not approximately equal to {}", *a, *b); | 
 |         }) | 
 |     } | 
 |  | 
 |     fn check(samples: &[f64], summ: &Summary) { | 
 |  | 
 |         let summ2 = Summary::new(samples); | 
 |  | 
 |         let mut w = io::sink(); | 
 |         let w = &mut w; | 
 |         (write!(w, "\n")).unwrap(); | 
 |  | 
 |         assert_eq!(summ.sum, summ2.sum); | 
 |         assert_eq!(summ.min, summ2.min); | 
 |         assert_eq!(summ.max, summ2.max); | 
 |         assert_eq!(summ.mean, summ2.mean); | 
 |         assert_eq!(summ.median, summ2.median); | 
 |  | 
 |         // We needed a few more digits to get exact equality on these | 
 |         // but they're within float epsilon, which is 1.0e-6. | 
 |         assert_approx_eq!(summ.var, summ2.var); | 
 |         assert_approx_eq!(summ.std_dev, summ2.std_dev); | 
 |         assert_approx_eq!(summ.std_dev_pct, summ2.std_dev_pct); | 
 |         assert_approx_eq!(summ.median_abs_dev, summ2.median_abs_dev); | 
 |         assert_approx_eq!(summ.median_abs_dev_pct, summ2.median_abs_dev_pct); | 
 |  | 
 |         assert_eq!(summ.quartiles, summ2.quartiles); | 
 |         assert_eq!(summ.iqr, summ2.iqr); | 
 |     } | 
 |  | 
 |     #[test] | 
 |     fn test_min_max_nan() { | 
 |         let xs = &[1.0, 2.0, f64::NAN, 3.0, 4.0]; | 
 |         let summary = Summary::new(xs); | 
 |         assert_eq!(summary.min, 1.0); | 
 |         assert_eq!(summary.max, 4.0); | 
 |     } | 
 |  | 
 |     #[test] | 
 |     fn test_norm2() { | 
 |         let val = &[958.0000000000, 924.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 1882.0000000000, | 
 |             min: 924.0000000000, | 
 |             max: 958.0000000000, | 
 |             mean: 941.0000000000, | 
 |             median: 941.0000000000, | 
 |             var: 578.0000000000, | 
 |             std_dev: 24.0416305603, | 
 |             std_dev_pct: 2.5549022912, | 
 |             median_abs_dev: 25.2042000000, | 
 |             median_abs_dev_pct: 2.6784484591, | 
 |             quartiles: (932.5000000000, 941.0000000000, 949.5000000000), | 
 |             iqr: 17.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_norm10narrow() { | 
 |         let val = &[966.0000000000, | 
 |                     985.0000000000, | 
 |                     1110.0000000000, | 
 |                     848.0000000000, | 
 |                     821.0000000000, | 
 |                     975.0000000000, | 
 |                     962.0000000000, | 
 |                     1157.0000000000, | 
 |                     1217.0000000000, | 
 |                     955.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 9996.0000000000, | 
 |             min: 821.0000000000, | 
 |             max: 1217.0000000000, | 
 |             mean: 999.6000000000, | 
 |             median: 970.5000000000, | 
 |             var: 16050.7111111111, | 
 |             std_dev: 126.6914010938, | 
 |             std_dev_pct: 12.6742097933, | 
 |             median_abs_dev: 102.2994000000, | 
 |             median_abs_dev_pct: 10.5408964451, | 
 |             quartiles: (956.7500000000, 970.5000000000, 1078.7500000000), | 
 |             iqr: 122.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_norm10medium() { | 
 |         let val = &[954.0000000000, | 
 |                     1064.0000000000, | 
 |                     855.0000000000, | 
 |                     1000.0000000000, | 
 |                     743.0000000000, | 
 |                     1084.0000000000, | 
 |                     704.0000000000, | 
 |                     1023.0000000000, | 
 |                     357.0000000000, | 
 |                     869.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 8653.0000000000, | 
 |             min: 357.0000000000, | 
 |             max: 1084.0000000000, | 
 |             mean: 865.3000000000, | 
 |             median: 911.5000000000, | 
 |             var: 48628.4555555556, | 
 |             std_dev: 220.5186059170, | 
 |             std_dev_pct: 25.4846418487, | 
 |             median_abs_dev: 195.7032000000, | 
 |             median_abs_dev_pct: 21.4704552935, | 
 |             quartiles: (771.0000000000, 911.5000000000, 1017.2500000000), | 
 |             iqr: 246.2500000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_norm10wide() { | 
 |         let val = &[505.0000000000, | 
 |                     497.0000000000, | 
 |                     1591.0000000000, | 
 |                     887.0000000000, | 
 |                     1026.0000000000, | 
 |                     136.0000000000, | 
 |                     1580.0000000000, | 
 |                     940.0000000000, | 
 |                     754.0000000000, | 
 |                     1433.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 9349.0000000000, | 
 |             min: 136.0000000000, | 
 |             max: 1591.0000000000, | 
 |             mean: 934.9000000000, | 
 |             median: 913.5000000000, | 
 |             var: 239208.9888888889, | 
 |             std_dev: 489.0899599142, | 
 |             std_dev_pct: 52.3146817750, | 
 |             median_abs_dev: 611.5725000000, | 
 |             median_abs_dev_pct: 66.9482758621, | 
 |             quartiles: (567.2500000000, 913.5000000000, 1331.2500000000), | 
 |             iqr: 764.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_norm25verynarrow() { | 
 |         let val = &[991.0000000000, | 
 |                     1018.0000000000, | 
 |                     998.0000000000, | 
 |                     1013.0000000000, | 
 |                     974.0000000000, | 
 |                     1007.0000000000, | 
 |                     1014.0000000000, | 
 |                     999.0000000000, | 
 |                     1011.0000000000, | 
 |                     978.0000000000, | 
 |                     985.0000000000, | 
 |                     999.0000000000, | 
 |                     983.0000000000, | 
 |                     982.0000000000, | 
 |                     1015.0000000000, | 
 |                     1002.0000000000, | 
 |                     977.0000000000, | 
 |                     948.0000000000, | 
 |                     1040.0000000000, | 
 |                     974.0000000000, | 
 |                     996.0000000000, | 
 |                     989.0000000000, | 
 |                     1015.0000000000, | 
 |                     994.0000000000, | 
 |                     1024.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 24926.0000000000, | 
 |             min: 948.0000000000, | 
 |             max: 1040.0000000000, | 
 |             mean: 997.0400000000, | 
 |             median: 998.0000000000, | 
 |             var: 393.2066666667, | 
 |             std_dev: 19.8294393937, | 
 |             std_dev_pct: 1.9888308788, | 
 |             median_abs_dev: 22.2390000000, | 
 |             median_abs_dev_pct: 2.2283567134, | 
 |             quartiles: (983.0000000000, 998.0000000000, 1013.0000000000), | 
 |             iqr: 30.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_exp10a() { | 
 |         let val = &[23.0000000000, | 
 |                     11.0000000000, | 
 |                     2.0000000000, | 
 |                     57.0000000000, | 
 |                     4.0000000000, | 
 |                     12.0000000000, | 
 |                     5.0000000000, | 
 |                     29.0000000000, | 
 |                     3.0000000000, | 
 |                     21.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 167.0000000000, | 
 |             min: 2.0000000000, | 
 |             max: 57.0000000000, | 
 |             mean: 16.7000000000, | 
 |             median: 11.5000000000, | 
 |             var: 287.7888888889, | 
 |             std_dev: 16.9643416875, | 
 |             std_dev_pct: 101.5828843560, | 
 |             median_abs_dev: 13.3434000000, | 
 |             median_abs_dev_pct: 116.0295652174, | 
 |             quartiles: (4.2500000000, 11.5000000000, 22.5000000000), | 
 |             iqr: 18.2500000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_exp10b() { | 
 |         let val = &[24.0000000000, | 
 |                     17.0000000000, | 
 |                     6.0000000000, | 
 |                     38.0000000000, | 
 |                     25.0000000000, | 
 |                     7.0000000000, | 
 |                     51.0000000000, | 
 |                     2.0000000000, | 
 |                     61.0000000000, | 
 |                     32.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 263.0000000000, | 
 |             min: 2.0000000000, | 
 |             max: 61.0000000000, | 
 |             mean: 26.3000000000, | 
 |             median: 24.5000000000, | 
 |             var: 383.5666666667, | 
 |             std_dev: 19.5848580967, | 
 |             std_dev_pct: 74.4671410520, | 
 |             median_abs_dev: 22.9803000000, | 
 |             median_abs_dev_pct: 93.7971428571, | 
 |             quartiles: (9.5000000000, 24.5000000000, 36.5000000000), | 
 |             iqr: 27.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_exp10c() { | 
 |         let val = &[71.0000000000, | 
 |                     2.0000000000, | 
 |                     32.0000000000, | 
 |                     1.0000000000, | 
 |                     6.0000000000, | 
 |                     28.0000000000, | 
 |                     13.0000000000, | 
 |                     37.0000000000, | 
 |                     16.0000000000, | 
 |                     36.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 242.0000000000, | 
 |             min: 1.0000000000, | 
 |             max: 71.0000000000, | 
 |             mean: 24.2000000000, | 
 |             median: 22.0000000000, | 
 |             var: 458.1777777778, | 
 |             std_dev: 21.4050876611, | 
 |             std_dev_pct: 88.4507754589, | 
 |             median_abs_dev: 21.4977000000, | 
 |             median_abs_dev_pct: 97.7168181818, | 
 |             quartiles: (7.7500000000, 22.0000000000, 35.0000000000), | 
 |             iqr: 27.2500000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_exp25() { | 
 |         let val = &[3.0000000000, | 
 |                     24.0000000000, | 
 |                     1.0000000000, | 
 |                     19.0000000000, | 
 |                     7.0000000000, | 
 |                     5.0000000000, | 
 |                     30.0000000000, | 
 |                     39.0000000000, | 
 |                     31.0000000000, | 
 |                     13.0000000000, | 
 |                     25.0000000000, | 
 |                     48.0000000000, | 
 |                     1.0000000000, | 
 |                     6.0000000000, | 
 |                     42.0000000000, | 
 |                     63.0000000000, | 
 |                     2.0000000000, | 
 |                     12.0000000000, | 
 |                     108.0000000000, | 
 |                     26.0000000000, | 
 |                     1.0000000000, | 
 |                     7.0000000000, | 
 |                     44.0000000000, | 
 |                     25.0000000000, | 
 |                     11.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 593.0000000000, | 
 |             min: 1.0000000000, | 
 |             max: 108.0000000000, | 
 |             mean: 23.7200000000, | 
 |             median: 19.0000000000, | 
 |             var: 601.0433333333, | 
 |             std_dev: 24.5161851301, | 
 |             std_dev_pct: 103.3565983562, | 
 |             median_abs_dev: 19.2738000000, | 
 |             median_abs_dev_pct: 101.4410526316, | 
 |             quartiles: (6.0000000000, 19.0000000000, 31.0000000000), | 
 |             iqr: 25.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_binom25() { | 
 |         let val = &[18.0000000000, | 
 |                     17.0000000000, | 
 |                     27.0000000000, | 
 |                     15.0000000000, | 
 |                     21.0000000000, | 
 |                     25.0000000000, | 
 |                     17.0000000000, | 
 |                     24.0000000000, | 
 |                     25.0000000000, | 
 |                     24.0000000000, | 
 |                     26.0000000000, | 
 |                     26.0000000000, | 
 |                     23.0000000000, | 
 |                     15.0000000000, | 
 |                     23.0000000000, | 
 |                     17.0000000000, | 
 |                     18.0000000000, | 
 |                     18.0000000000, | 
 |                     21.0000000000, | 
 |                     16.0000000000, | 
 |                     15.0000000000, | 
 |                     31.0000000000, | 
 |                     20.0000000000, | 
 |                     17.0000000000, | 
 |                     15.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 514.0000000000, | 
 |             min: 15.0000000000, | 
 |             max: 31.0000000000, | 
 |             mean: 20.5600000000, | 
 |             median: 20.0000000000, | 
 |             var: 20.8400000000, | 
 |             std_dev: 4.5650848842, | 
 |             std_dev_pct: 22.2037202539, | 
 |             median_abs_dev: 5.9304000000, | 
 |             median_abs_dev_pct: 29.6520000000, | 
 |             quartiles: (17.0000000000, 20.0000000000, 24.0000000000), | 
 |             iqr: 7.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_pois25lambda30() { | 
 |         let val = &[27.0000000000, | 
 |                     33.0000000000, | 
 |                     34.0000000000, | 
 |                     34.0000000000, | 
 |                     24.0000000000, | 
 |                     39.0000000000, | 
 |                     28.0000000000, | 
 |                     27.0000000000, | 
 |                     31.0000000000, | 
 |                     28.0000000000, | 
 |                     38.0000000000, | 
 |                     21.0000000000, | 
 |                     33.0000000000, | 
 |                     36.0000000000, | 
 |                     29.0000000000, | 
 |                     37.0000000000, | 
 |                     32.0000000000, | 
 |                     34.0000000000, | 
 |                     31.0000000000, | 
 |                     39.0000000000, | 
 |                     25.0000000000, | 
 |                     31.0000000000, | 
 |                     32.0000000000, | 
 |                     40.0000000000, | 
 |                     24.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 787.0000000000, | 
 |             min: 21.0000000000, | 
 |             max: 40.0000000000, | 
 |             mean: 31.4800000000, | 
 |             median: 32.0000000000, | 
 |             var: 26.5933333333, | 
 |             std_dev: 5.1568724372, | 
 |             std_dev_pct: 16.3814245145, | 
 |             median_abs_dev: 5.9304000000, | 
 |             median_abs_dev_pct: 18.5325000000, | 
 |             quartiles: (28.0000000000, 32.0000000000, 34.0000000000), | 
 |             iqr: 6.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_pois25lambda40() { | 
 |         let val = &[42.0000000000, | 
 |                     50.0000000000, | 
 |                     42.0000000000, | 
 |                     46.0000000000, | 
 |                     34.0000000000, | 
 |                     45.0000000000, | 
 |                     34.0000000000, | 
 |                     49.0000000000, | 
 |                     39.0000000000, | 
 |                     28.0000000000, | 
 |                     40.0000000000, | 
 |                     35.0000000000, | 
 |                     37.0000000000, | 
 |                     39.0000000000, | 
 |                     46.0000000000, | 
 |                     44.0000000000, | 
 |                     32.0000000000, | 
 |                     45.0000000000, | 
 |                     42.0000000000, | 
 |                     37.0000000000, | 
 |                     48.0000000000, | 
 |                     42.0000000000, | 
 |                     33.0000000000, | 
 |                     42.0000000000, | 
 |                     48.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 1019.0000000000, | 
 |             min: 28.0000000000, | 
 |             max: 50.0000000000, | 
 |             mean: 40.7600000000, | 
 |             median: 42.0000000000, | 
 |             var: 34.4400000000, | 
 |             std_dev: 5.8685603004, | 
 |             std_dev_pct: 14.3978417577, | 
 |             median_abs_dev: 5.9304000000, | 
 |             median_abs_dev_pct: 14.1200000000, | 
 |             quartiles: (37.0000000000, 42.0000000000, 45.0000000000), | 
 |             iqr: 8.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_pois25lambda50() { | 
 |         let val = &[45.0000000000, | 
 |                     43.0000000000, | 
 |                     44.0000000000, | 
 |                     61.0000000000, | 
 |                     51.0000000000, | 
 |                     53.0000000000, | 
 |                     59.0000000000, | 
 |                     52.0000000000, | 
 |                     49.0000000000, | 
 |                     51.0000000000, | 
 |                     51.0000000000, | 
 |                     50.0000000000, | 
 |                     49.0000000000, | 
 |                     56.0000000000, | 
 |                     42.0000000000, | 
 |                     52.0000000000, | 
 |                     51.0000000000, | 
 |                     43.0000000000, | 
 |                     48.0000000000, | 
 |                     48.0000000000, | 
 |                     50.0000000000, | 
 |                     42.0000000000, | 
 |                     43.0000000000, | 
 |                     42.0000000000, | 
 |                     60.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 1235.0000000000, | 
 |             min: 42.0000000000, | 
 |             max: 61.0000000000, | 
 |             mean: 49.4000000000, | 
 |             median: 50.0000000000, | 
 |             var: 31.6666666667, | 
 |             std_dev: 5.6273143387, | 
 |             std_dev_pct: 11.3913245723, | 
 |             median_abs_dev: 4.4478000000, | 
 |             median_abs_dev_pct: 8.8956000000, | 
 |             quartiles: (44.0000000000, 50.0000000000, 52.0000000000), | 
 |             iqr: 8.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |     #[test] | 
 |     fn test_unif25() { | 
 |         let val = &[99.0000000000, | 
 |                     55.0000000000, | 
 |                     92.0000000000, | 
 |                     79.0000000000, | 
 |                     14.0000000000, | 
 |                     2.0000000000, | 
 |                     33.0000000000, | 
 |                     49.0000000000, | 
 |                     3.0000000000, | 
 |                     32.0000000000, | 
 |                     84.0000000000, | 
 |                     59.0000000000, | 
 |                     22.0000000000, | 
 |                     86.0000000000, | 
 |                     76.0000000000, | 
 |                     31.0000000000, | 
 |                     29.0000000000, | 
 |                     11.0000000000, | 
 |                     41.0000000000, | 
 |                     53.0000000000, | 
 |                     45.0000000000, | 
 |                     44.0000000000, | 
 |                     98.0000000000, | 
 |                     98.0000000000, | 
 |                     7.0000000000]; | 
 |         let summ = &Summary { | 
 |             sum: 1242.0000000000, | 
 |             min: 2.0000000000, | 
 |             max: 99.0000000000, | 
 |             mean: 49.6800000000, | 
 |             median: 45.0000000000, | 
 |             var: 1015.6433333333, | 
 |             std_dev: 31.8691595957, | 
 |             std_dev_pct: 64.1488719719, | 
 |             median_abs_dev: 45.9606000000, | 
 |             median_abs_dev_pct: 102.1346666667, | 
 |             quartiles: (29.0000000000, 45.0000000000, 79.0000000000), | 
 |             iqr: 50.0000000000, | 
 |         }; | 
 |         check(val, summ); | 
 |     } | 
 |  | 
 |     #[test] | 
 |     fn test_sum_f64s() { | 
 |         assert_eq!([0.5f64, 3.2321f64, 1.5678f64].sum(), 5.2999); | 
 |     } | 
 |     #[test] | 
 |     fn test_sum_f64_between_ints_that_sum_to_0() { | 
 |         assert_eq!([1e30f64, 1.2f64, -1e30f64].sum(), 1.2); | 
 |     } | 
 | } | 
 |  |