| // Copyright 2018-2023 Developers of the Rand project. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom` |
| |
| use super::increasing_uniform::IncreasingUniform; |
| use super::index; |
| #[cfg(feature = "alloc")] |
| use crate::distr::uniform::{SampleBorrow, SampleUniform}; |
| #[cfg(feature = "alloc")] |
| use crate::distr::weighted::{Error as WeightError, Weight}; |
| use crate::Rng; |
| use core::ops::{Index, IndexMut}; |
| |
| /// Extension trait on indexable lists, providing random sampling methods. |
| /// |
| /// This trait is implemented on `[T]` slice types. Other types supporting |
| /// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be |
| /// specified). |
| pub trait IndexedRandom: Index<usize> { |
| /// The length |
| fn len(&self) -> usize; |
| |
| /// True when the length is zero |
| #[inline] |
| fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Uniformly sample one element |
| /// |
| /// Returns a reference to one uniformly-sampled random element of |
| /// the slice, or `None` if the slice is empty. |
| /// |
| /// For slices, complexity is `O(1)`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::seq::IndexedRandom; |
| /// |
| /// let choices = [1, 2, 4, 8, 16, 32]; |
| /// let mut rng = rand::rng(); |
| /// println!("{:?}", choices.choose(&mut rng)); |
| /// assert_eq!(choices[..0].choose(&mut rng), None); |
| /// ``` |
| fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output> |
| where |
| R: Rng + ?Sized, |
| { |
| if self.is_empty() { |
| None |
| } else { |
| Some(&self[rng.random_range(..self.len())]) |
| } |
| } |
| |
| /// Uniformly sample `amount` distinct elements from self |
| /// |
| /// Chooses `amount` elements from the slice at random, without repetition, |
| /// and in random order. The returned iterator is appropriate both for |
| /// collection into a `Vec` and filling an existing buffer (see example). |
| /// |
| /// In case this API is not sufficiently flexible, use [`index::sample`]. |
| /// |
| /// For slices, complexity is the same as [`index::sample`]. |
| /// |
| /// # Example |
| /// ``` |
| /// use rand::seq::IndexedRandom; |
| /// |
| /// let mut rng = &mut rand::rng(); |
| /// let sample = "Hello, audience!".as_bytes(); |
| /// |
| /// // collect the results into a vector: |
| /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); |
| /// |
| /// // store in a buffer: |
| /// let mut buf = [0u8; 5]; |
| /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { |
| /// *slot = *b; |
| /// } |
| /// ``` |
| #[cfg(feature = "alloc")] |
| fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output> |
| where |
| Self::Output: Sized, |
| R: Rng + ?Sized, |
| { |
| let amount = core::cmp::min(amount, self.len()); |
| SliceChooseIter { |
| slice: self, |
| _phantom: Default::default(), |
| indices: index::sample(rng, self.len(), amount).into_iter(), |
| } |
| } |
| |
| /// Uniformly sample a fixed-size array of distinct elements from self |
| /// |
| /// Chooses `N` elements from the slice at random, without repetition, |
| /// and in random order. |
| /// |
| /// For slices, complexity is the same as [`index::sample_array`]. |
| /// |
| /// # Example |
| /// ``` |
| /// use rand::seq::IndexedRandom; |
| /// |
| /// let mut rng = &mut rand::rng(); |
| /// let sample = "Hello, audience!".as_bytes(); |
| /// |
| /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap(); |
| /// ``` |
| fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]> |
| where |
| Self::Output: Clone + Sized, |
| R: Rng + ?Sized, |
| { |
| let indices = index::sample_array(rng, self.len())?; |
| Some(indices.map(|index| self[index].clone())) |
| } |
| |
| /// Biased sampling for one element |
| /// |
| /// Returns a reference to one element of the slice, sampled according |
| /// to the provided weights. Returns `None` only if the slice is empty. |
| /// |
| /// The specified function `weight` maps each item `x` to a relative |
| /// likelihood `weight(x)`. The probability of each item being selected is |
| /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| /// |
| /// For slices of length `n`, complexity is `O(n)`. |
| /// For more information about the underlying algorithm, |
| /// see the [`WeightedIndex`] distribution. |
| /// |
| /// See also [`choose_weighted_mut`]. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::prelude::*; |
| /// |
| /// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)]; |
| /// let mut rng = rand::rng(); |
| /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c', |
| /// // and 'd' will never be printed |
| /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); |
| /// ``` |
| /// [`choose`]: IndexedRandom::choose |
| /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut |
| /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex |
| #[cfg(feature = "alloc")] |
| fn choose_weighted<R, F, B, X>( |
| &self, |
| rng: &mut R, |
| weight: F, |
| ) -> Result<&Self::Output, WeightError> |
| where |
| R: Rng + ?Sized, |
| F: Fn(&Self::Output) -> B, |
| B: SampleBorrow<X>, |
| X: SampleUniform + Weight + PartialOrd<X>, |
| { |
| use crate::distr::{weighted::WeightedIndex, Distribution}; |
| let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; |
| Ok(&self[distr.sample(rng)]) |
| } |
| |
| /// Biased sampling of `amount` distinct elements |
| /// |
| /// Similar to [`choose_multiple`], but where the likelihood of each |
| /// element's inclusion in the output may be specified. Zero-weighted |
| /// elements are never returned; the result may therefore contain fewer |
| /// elements than `amount` even when `self.len() >= amount`. The elements |
| /// are returned in an arbitrary, unspecified order. |
| /// |
| /// The specified function `weight` maps each item `x` to a relative |
| /// likelihood `weight(x)`. The probability of each item being selected is |
| /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| /// |
| /// This implementation uses `O(length + amount)` space and `O(length)` time. |
| /// See [`index::sample_weighted`] for details. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::prelude::*; |
| /// |
| /// let choices = [('a', 2), ('b', 1), ('c', 1)]; |
| /// let mut rng = rand::rng(); |
| /// // First Draw * Second Draw = total odds |
| /// // ----------------------- |
| /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order. |
| /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order. |
| /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order. |
| /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>()); |
| /// ``` |
| /// [`choose_multiple`]: IndexedRandom::choose_multiple |
| // Note: this is feature-gated on std due to usage of f64::powf. |
| // If necessary, we may use alloc+libm as an alternative (see PR #1089). |
| #[cfg(feature = "std")] |
| fn choose_multiple_weighted<R, F, X>( |
| &self, |
| rng: &mut R, |
| amount: usize, |
| weight: F, |
| ) -> Result<SliceChooseIter<Self, Self::Output>, WeightError> |
| where |
| Self::Output: Sized, |
| R: Rng + ?Sized, |
| F: Fn(&Self::Output) -> X, |
| X: Into<f64>, |
| { |
| let amount = core::cmp::min(amount, self.len()); |
| Ok(SliceChooseIter { |
| slice: self, |
| _phantom: Default::default(), |
| indices: index::sample_weighted( |
| rng, |
| self.len(), |
| |idx| weight(&self[idx]).into(), |
| amount, |
| )? |
| .into_iter(), |
| }) |
| } |
| } |
| |
| /// Extension trait on indexable lists, providing random sampling methods. |
| /// |
| /// This trait is implemented automatically for every type implementing |
| /// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`]. |
| pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> { |
| /// Uniformly sample one element (mut) |
| /// |
| /// Returns a mutable reference to one uniformly-sampled random element of |
| /// the slice, or `None` if the slice is empty. |
| /// |
| /// For slices, complexity is `O(1)`. |
| fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output> |
| where |
| R: Rng + ?Sized, |
| { |
| if self.is_empty() { |
| None |
| } else { |
| let len = self.len(); |
| Some(&mut self[rng.random_range(..len)]) |
| } |
| } |
| |
| /// Biased sampling for one element (mut) |
| /// |
| /// Returns a mutable reference to one element of the slice, sampled according |
| /// to the provided weights. Returns `None` only if the slice is empty. |
| /// |
| /// The specified function `weight` maps each item `x` to a relative |
| /// likelihood `weight(x)`. The probability of each item being selected is |
| /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| /// |
| /// For slices of length `n`, complexity is `O(n)`. |
| /// For more information about the underlying algorithm, |
| /// see the [`WeightedIndex`] distribution. |
| /// |
| /// See also [`choose_weighted`]. |
| /// |
| /// [`choose_mut`]: IndexedMutRandom::choose_mut |
| /// [`choose_weighted`]: IndexedRandom::choose_weighted |
| /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex |
| #[cfg(feature = "alloc")] |
| fn choose_weighted_mut<R, F, B, X>( |
| &mut self, |
| rng: &mut R, |
| weight: F, |
| ) -> Result<&mut Self::Output, WeightError> |
| where |
| R: Rng + ?Sized, |
| F: Fn(&Self::Output) -> B, |
| B: SampleBorrow<X>, |
| X: SampleUniform + Weight + PartialOrd<X>, |
| { |
| use crate::distr::{weighted::WeightedIndex, Distribution}; |
| let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; |
| let index = distr.sample(rng); |
| Ok(&mut self[index]) |
| } |
| } |
| |
| /// Extension trait on slices, providing shuffling methods. |
| /// |
| /// This trait is implemented on all `[T]` slice types, providing several |
| /// methods for choosing and shuffling elements. You must `use` this trait: |
| /// |
| /// ``` |
| /// use rand::seq::SliceRandom; |
| /// |
| /// let mut rng = rand::rng(); |
| /// let mut bytes = "Hello, random!".to_string().into_bytes(); |
| /// bytes.shuffle(&mut rng); |
| /// let str = String::from_utf8(bytes).unwrap(); |
| /// println!("{}", str); |
| /// ``` |
| /// Example output (non-deterministic): |
| /// ```none |
| /// l,nmroHado !le |
| /// ``` |
| pub trait SliceRandom: IndexedMutRandom { |
| /// Shuffle a mutable slice in place. |
| /// |
| /// For slices of length `n`, complexity is `O(n)`. |
| /// The resulting permutation is picked uniformly from the set of all possible permutations. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use rand::seq::SliceRandom; |
| /// |
| /// let mut rng = rand::rng(); |
| /// let mut y = [1, 2, 3, 4, 5]; |
| /// println!("Unshuffled: {:?}", y); |
| /// y.shuffle(&mut rng); |
| /// println!("Shuffled: {:?}", y); |
| /// ``` |
| fn shuffle<R>(&mut self, rng: &mut R) |
| where |
| R: Rng + ?Sized; |
| |
| /// Shuffle a slice in place, but exit early. |
| /// |
| /// Returns two mutable slices from the source slice. The first contains |
| /// `amount` elements randomly permuted. The second has the remaining |
| /// elements that are not fully shuffled. |
| /// |
| /// This is an efficient method to select `amount` elements at random from |
| /// the slice, provided the slice may be mutated. |
| /// |
| /// If you only need to choose elements randomly and `amount > self.len()/2` |
| /// then you may improve performance by taking |
| /// `amount = self.len() - amount` and using only the second slice. |
| /// |
| /// If `amount` is greater than the number of elements in the slice, this |
| /// will perform a full shuffle. |
| /// |
| /// For slices, complexity is `O(m)` where `m = amount`. |
| fn partial_shuffle<R>( |
| &mut self, |
| rng: &mut R, |
| amount: usize, |
| ) -> (&mut [Self::Output], &mut [Self::Output]) |
| where |
| Self::Output: Sized, |
| R: Rng + ?Sized; |
| } |
| |
| impl<T> IndexedRandom for [T] { |
| fn len(&self) -> usize { |
| self.len() |
| } |
| } |
| |
| impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {} |
| |
| impl<T> SliceRandom for [T] { |
| fn shuffle<R>(&mut self, rng: &mut R) |
| where |
| R: Rng + ?Sized, |
| { |
| if self.len() <= 1 { |
| // There is no need to shuffle an empty or single element slice |
| return; |
| } |
| self.partial_shuffle(rng, self.len()); |
| } |
| |
| fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T]) |
| where |
| R: Rng + ?Sized, |
| { |
| let m = self.len().saturating_sub(amount); |
| |
| // The algorithm below is based on Durstenfeld's algorithm for the |
| // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) |
| // for an unbiased permutation. |
| // It ensures that the last `amount` elements of the slice |
| // are randomly selected from the whole slice. |
| |
| // `IncreasingUniform::next_index()` is faster than `Rng::random_range` |
| // but only works for 32 bit integers |
| // So we must use the slow method if the slice is longer than that. |
| if self.len() < (u32::MAX as usize) { |
| let mut chooser = IncreasingUniform::new(rng, m as u32); |
| for i in m..self.len() { |
| let index = chooser.next_index(); |
| self.swap(i, index); |
| } |
| } else { |
| for i in m..self.len() { |
| let index = rng.random_range(..i + 1); |
| self.swap(i, index); |
| } |
| } |
| let r = self.split_at_mut(m); |
| (r.1, r.0) |
| } |
| } |
| |
| /// An iterator over multiple slice elements. |
| /// |
| /// This struct is created by |
| /// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple). |
| #[cfg(feature = "alloc")] |
| #[derive(Debug)] |
| pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { |
| slice: &'a S, |
| _phantom: core::marker::PhantomData<T>, |
| indices: index::IndexVecIntoIter, |
| } |
| |
| #[cfg(feature = "alloc")] |
| impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { |
| type Item = &'a T; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| // TODO: investigate using SliceIndex::get_unchecked when stable |
| self.indices.next().map(|i| &self.slice[i]) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (self.indices.len(), Some(self.indices.len())) |
| } |
| } |
| |
| #[cfg(feature = "alloc")] |
| impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator |
| for SliceChooseIter<'a, S, T> |
| { |
| fn len(&self) -> usize { |
| self.indices.len() |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| #[cfg(feature = "alloc")] |
| use alloc::vec::Vec; |
| |
| #[test] |
| fn test_slice_choose() { |
| let mut r = crate::test::rng(107); |
| let chars = [ |
| 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', |
| ]; |
| let mut chosen = [0i32; 14]; |
| // The below all use a binomial distribution with n=1000, p=1/14. |
| // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 |
| for _ in 0..1000 { |
| let picked = *chars.choose(&mut r).unwrap(); |
| chosen[(picked as usize) - ('a' as usize)] += 1; |
| } |
| for count in chosen.iter() { |
| assert!(40 < *count && *count < 106); |
| } |
| |
| chosen.iter_mut().for_each(|x| *x = 0); |
| for _ in 0..1000 { |
| *chosen.choose_mut(&mut r).unwrap() += 1; |
| } |
| for count in chosen.iter() { |
| assert!(40 < *count && *count < 106); |
| } |
| |
| let mut v: [isize; 0] = []; |
| assert_eq!(v.choose(&mut r), None); |
| assert_eq!(v.choose_mut(&mut r), None); |
| } |
| |
| #[test] |
| fn value_stability_slice() { |
| let mut r = crate::test::rng(413); |
| let chars = [ |
| 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', |
| ]; |
| let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
| |
| assert_eq!(chars.choose(&mut r), Some(&'l')); |
| assert_eq!(nums.choose_mut(&mut r), Some(&mut 3)); |
| |
| assert_eq!( |
| &chars.choose_multiple_array(&mut r), |
| &Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k']) |
| ); |
| |
| #[cfg(feature = "alloc")] |
| assert_eq!( |
| &chars |
| .choose_multiple(&mut r, 8) |
| .cloned() |
| .collect::<Vec<char>>(), |
| &['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f'] |
| ); |
| |
| #[cfg(feature = "alloc")] |
| assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i')); |
| #[cfg(feature = "alloc")] |
| assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2)); |
| |
| let mut r = crate::test::rng(414); |
| nums.shuffle(&mut r); |
| assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]); |
| nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
| let res = nums.partial_shuffle(&mut r, 6); |
| assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]); |
| assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]); |
| } |
| |
| #[test] |
| #[cfg_attr(miri, ignore)] // Miri is too slow |
| fn test_shuffle() { |
| let mut r = crate::test::rng(108); |
| let empty: &mut [isize] = &mut []; |
| empty.shuffle(&mut r); |
| let mut one = [1]; |
| one.shuffle(&mut r); |
| let b: &[_] = &[1]; |
| assert_eq!(one, b); |
| |
| let mut two = [1, 2]; |
| two.shuffle(&mut r); |
| assert!(two == [1, 2] || two == [2, 1]); |
| |
| fn move_last(slice: &mut [usize], pos: usize) { |
| // use slice[pos..].rotate_left(1); once we can use that |
| let last_val = slice[pos]; |
| for i in pos..slice.len() - 1 { |
| slice[i] = slice[i + 1]; |
| } |
| *slice.last_mut().unwrap() = last_val; |
| } |
| let mut counts = [0i32; 24]; |
| for _ in 0..10000 { |
| let mut arr: [usize; 4] = [0, 1, 2, 3]; |
| arr.shuffle(&mut r); |
| let mut permutation = 0usize; |
| let mut pos_value = counts.len(); |
| for i in 0..4 { |
| pos_value /= 4 - i; |
| let pos = arr.iter().position(|&x| x == i).unwrap(); |
| assert!(pos < (4 - i)); |
| permutation += pos * pos_value; |
| move_last(&mut arr, pos); |
| assert_eq!(arr[3], i); |
| } |
| for (i, &a) in arr.iter().enumerate() { |
| assert_eq!(a, i); |
| } |
| counts[permutation] += 1; |
| } |
| for count in counts.iter() { |
| // Binomial(10000, 1/24) with average 416.667 |
| // Octave: binocdf(n, 10000, 1/24) |
| // 99.9% chance samples lie within this range: |
| assert!(352 <= *count && *count <= 483, "count: {}", count); |
| } |
| } |
| |
| #[test] |
| fn test_partial_shuffle() { |
| let mut r = crate::test::rng(118); |
| |
| let mut empty: [u32; 0] = []; |
| let res = empty.partial_shuffle(&mut r, 10); |
| assert_eq!((res.0.len(), res.1.len()), (0, 0)); |
| |
| let mut v = [1, 2, 3, 4, 5]; |
| let res = v.partial_shuffle(&mut r, 2); |
| assert_eq!((res.0.len(), res.1.len()), (2, 3)); |
| assert!(res.0[0] != res.0[1]); |
| // First elements are only modified if selected, so at least one isn't modified: |
| assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); |
| } |
| |
| #[test] |
| #[cfg(feature = "alloc")] |
| #[cfg_attr(miri, ignore)] // Miri is too slow |
| fn test_weighted() { |
| let mut r = crate::test::rng(406); |
| const N_REPS: u32 = 3000; |
| let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; |
| let total_weight = weights.iter().sum::<u32>() as f32; |
| |
| let verify = |result: [i32; 14]| { |
| for (i, count) in result.iter().enumerate() { |
| let exp = (weights[i] * N_REPS) as f32 / total_weight; |
| let mut err = (*count as f32 - exp).abs(); |
| if err != 0.0 { |
| err /= exp; |
| } |
| assert!(err <= 0.25); |
| } |
| }; |
| |
| // choose_weighted |
| fn get_weight<T>(item: &(u32, T)) -> u32 { |
| item.0 |
| } |
| let mut chosen = [0i32; 14]; |
| let mut items = [(0u32, 0usize); 14]; // (weight, index) |
| for (i, item) in items.iter_mut().enumerate() { |
| *item = (weights[i], i); |
| } |
| for _ in 0..N_REPS { |
| let item = items.choose_weighted(&mut r, get_weight).unwrap(); |
| chosen[item.1] += 1; |
| } |
| verify(chosen); |
| |
| // choose_weighted_mut |
| let mut items = [(0u32, 0i32); 14]; // (weight, count) |
| for (i, item) in items.iter_mut().enumerate() { |
| *item = (weights[i], 0); |
| } |
| for _ in 0..N_REPS { |
| items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; |
| } |
| for (ch, item) in chosen.iter_mut().zip(items.iter()) { |
| *ch = item.1; |
| } |
| verify(chosen); |
| |
| // Check error cases |
| let empty_slice = &mut [10][0..0]; |
| assert_eq!( |
| empty_slice.choose_weighted(&mut r, |_| 1), |
| Err(WeightError::InvalidInput) |
| ); |
| assert_eq!( |
| empty_slice.choose_weighted_mut(&mut r, |_| 1), |
| Err(WeightError::InvalidInput) |
| ); |
| assert_eq!( |
| ['x'].choose_weighted_mut(&mut r, |_| 0), |
| Err(WeightError::InsufficientNonZero) |
| ); |
| assert_eq!( |
| [0, -1].choose_weighted_mut(&mut r, |x| *x), |
| Err(WeightError::InvalidWeight) |
| ); |
| assert_eq!( |
| [-1, 0].choose_weighted_mut(&mut r, |x| *x), |
| Err(WeightError::InvalidWeight) |
| ); |
| } |
| |
| #[test] |
| #[cfg(feature = "std")] |
| fn test_multiple_weighted_edge_cases() { |
| use super::*; |
| |
| let mut rng = crate::test::rng(413); |
| |
| // Case 1: One of the weights is 0 |
| let choices = [('a', 2), ('b', 1), ('c', 0)]; |
| for _ in 0..100 { |
| let result = choices |
| .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| .unwrap() |
| .collect::<Vec<_>>(); |
| |
| assert_eq!(result.len(), 2); |
| assert!(!result.iter().any(|val| val.0 == 'c')); |
| } |
| |
| // Case 2: All of the weights are 0 |
| let choices = [('a', 0), ('b', 0), ('c', 0)]; |
| let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| assert_eq!(r.unwrap().len(), 0); |
| |
| // Case 3: Negative weights |
| let choices = [('a', -1), ('b', 1), ('c', 1)]; |
| let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
| |
| // Case 4: Empty list |
| let choices = []; |
| let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0); |
| assert_eq!(r.unwrap().count(), 0); |
| |
| // Case 5: NaN weights |
| let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)]; |
| let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
| |
| // Case 6: +infinity weights |
| let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)]; |
| for _ in 0..100 { |
| let result = choices |
| .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| .unwrap() |
| .collect::<Vec<_>>(); |
| assert_eq!(result.len(), 2); |
| assert!(result.iter().any(|val| val.0 == 'a')); |
| } |
| |
| // Case 7: -infinity weights |
| let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)]; |
| let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
| |
| // Case 8: -0 weights |
| let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)]; |
| let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| assert!(r.is_ok()); |
| } |
| |
| #[test] |
| #[cfg(feature = "std")] |
| fn test_multiple_weighted_distributions() { |
| use super::*; |
| |
| // The theoretical probabilities of the different outcomes are: |
| // AB: 0.5 * 0.667 = 0.3333 |
| // AC: 0.5 * 0.333 = 0.1667 |
| // BA: 0.333 * 0.75 = 0.25 |
| // BC: 0.333 * 0.25 = 0.0833 |
| // CA: 0.167 * 0.6 = 0.1 |
| // CB: 0.167 * 0.4 = 0.0667 |
| let choices = [('a', 3), ('b', 2), ('c', 1)]; |
| let mut rng = crate::test::rng(414); |
| |
| let mut results = [0i32; 3]; |
| let expected_results = [5833, 2667, 1500]; |
| for _ in 0..10000 { |
| let result = choices |
| .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| .unwrap() |
| .collect::<Vec<_>>(); |
| |
| assert_eq!(result.len(), 2); |
| |
| match (result[0].0, result[1].0) { |
| ('a', 'b') | ('b', 'a') => { |
| results[0] += 1; |
| } |
| ('a', 'c') | ('c', 'a') => { |
| results[1] += 1; |
| } |
| ('b', 'c') | ('c', 'b') => { |
| results[2] += 1; |
| } |
| (_, _) => panic!("unexpected result"), |
| } |
| } |
| |
| let mut diffs = results |
| .iter() |
| .zip(&expected_results) |
| .map(|(a, b)| (a - b).abs()); |
| assert!(!diffs.any(|deviation| deviation > 100)); |
| } |
| } |