blob: 13e5c24ff0fbbfcc5eca36c6f0aa2534a3ea384d [file] [log] [blame]
//! Types for implementers of socket address types or code that is generic over
//! address types.
//!
//! The concrete address types and [`SocketAddrAny`] are in
//! [the parent module][`super`].
#![allow(unsafe_code)]
use core::mem::{size_of, MaybeUninit};
use core::ptr;
use crate::backend::net::write_sockaddr::{encode_sockaddr_v4, encode_sockaddr_v6};
use crate::utils::as_ptr;
use super::{SocketAddr, SocketAddrAny, SocketAddrV4, SocketAddrV6};
pub use crate::backend::net::addr::SocketAddrStorage;
#[cfg(unix)]
use super::SocketAddrUnix;
/// Opaque type equivalent to `sockaddr` in C.
///
/// This is always used behind a raw pointer that is cast from a pointer to a
/// `sockaddr`-compatible C type, and then cast back to a `sockaddr` pointer to
/// be passed to a system call.
#[repr(C)]
pub struct SocketAddrOpaque {
_data: [u8; 0],
}
/// A type for the length of a socket address.
///
/// This type will always be big enough to hold any socket address, but never
/// bigger than `usize`.
#[doc(alias = "socklen_t")]
pub type SocketAddrLen = u32;
/// A trait abstracting over the types that can be passed as a `sockaddr`.
///
/// # Safety
///
/// Implementers of this trait must ensure that `with_sockaddr` calls `f` with
/// a pointer that is readable for the passed length, and points to data that
/// is a valid socket address for the system calls that accept `sockaddr` as a
/// const pointer.
pub unsafe trait SocketAddrArg {
/// Call a closure with the pointer and length to the corresponding C type.
///
/// The memory pointed to by the pointer of size length is guaranteed to be
/// valid only for the duration of the call.
///
/// The API uses a closure so that:
/// - The libc types are not exposed in the rustix API.
/// - Types like `SocketAddrUnix` that contain their corresponding C type
/// can pass it directly without a copy.
/// - Other socket types can construct their C-compatible struct on the
/// stack and call the closure with a pointer to it.
///
/// # Safety
///
/// For `f` to use its pointer argument, it'll contain an `unsafe` block.
/// The caller of `with_sockaddr` here is responsible for ensuring that the
/// safety condition for that `unsafe` block is satisfied by the guarantee
/// that `with_sockaddr` here provides.
unsafe fn with_sockaddr<R>(
&self,
f: impl FnOnce(*const SocketAddrOpaque, SocketAddrLen) -> R,
) -> R;
/// Convert to `SocketAddrAny`.
fn as_any(&self) -> SocketAddrAny {
let mut storage = MaybeUninit::<SocketAddrStorage>::uninit();
// SAFETY: We've allocated `storage` here, we're writing to it, and
// we're using the number of bytes written.
unsafe {
let len = self.write_sockaddr(storage.as_mut_ptr());
SocketAddrAny::new(storage, len)
}
}
/// Encode an address into a `SocketAddrStorage`.
///
/// Returns the number of bytes that were written.
///
/// For a safe interface to this functionality, use [`as_any`].
///
/// [`as_any`]: Self::as_any
///
/// # Safety
///
/// `storage` must be valid to write up to `size_of<SocketAddrStorage>()`
/// bytes to.
unsafe fn write_sockaddr(&self, storage: *mut SocketAddrStorage) -> SocketAddrLen {
// The closure dereferences exactly `len` bytes at `ptr`.
self.with_sockaddr(|ptr, len| {
ptr::copy_nonoverlapping(ptr.cast::<u8>(), storage.cast::<u8>(), len as usize);
len
})
}
}
/// Helper for implementing `SocketAddrArg::with_sockaddr`.
///
/// # Safety
///
/// This calls `f` with a pointer to an object it has a reference to, with the
/// and the length of that object, so they'll be valid for the duration of the
/// call.
pub(crate) unsafe fn call_with_sockaddr<A, R>(
addr: &A,
f: impl FnOnce(*const SocketAddrOpaque, SocketAddrLen) -> R,
) -> R {
let ptr = as_ptr(addr).cast();
let len = size_of::<A>() as SocketAddrLen;
f(ptr, len)
}
// SAFETY: This just forwards to the inner `SocketAddrArg` implementations.
unsafe impl SocketAddrArg for SocketAddr {
unsafe fn with_sockaddr<R>(
&self,
f: impl FnOnce(*const SocketAddrOpaque, SocketAddrLen) -> R,
) -> R {
match self {
Self::V4(v4) => v4.with_sockaddr(f),
Self::V6(v6) => v6.with_sockaddr(f),
}
}
}
// SAFETY: `with_sockaddr` calls `f` using `call_with_sockaddr`, which handles
// calling `f` with the needed preconditions.
unsafe impl SocketAddrArg for SocketAddrV4 {
unsafe fn with_sockaddr<R>(
&self,
f: impl FnOnce(*const SocketAddrOpaque, SocketAddrLen) -> R,
) -> R {
call_with_sockaddr(&encode_sockaddr_v4(self), f)
}
}
// SAFETY: `with_sockaddr` calls `f` using `call_with_sockaddr`, which handles
// calling `f` with the needed preconditions.
unsafe impl SocketAddrArg for SocketAddrV6 {
unsafe fn with_sockaddr<R>(
&self,
f: impl FnOnce(*const SocketAddrOpaque, SocketAddrLen) -> R,
) -> R {
call_with_sockaddr(&encode_sockaddr_v6(self), f)
}
}
#[cfg(unix)]
// SAFETY: `with_sockaddr` calls `f` using `call_with_sockaddr`, which handles
// calling `f` with the needed preconditions.
unsafe impl SocketAddrArg for SocketAddrUnix {
unsafe fn with_sockaddr<R>(
&self,
f: impl FnOnce(*const SocketAddrOpaque, SocketAddrLen) -> R,
) -> R {
f(as_ptr(&self.unix).cast(), self.addr_len())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::backend::c;
#[test]
fn test_layouts() {
assert_eq_size!(SocketAddrLen, c::socklen_t);
#[cfg(not(any(windows, target_os = "redox")))]
assert_eq!(
memoffset::span_of!(c::msghdr, msg_namelen).len(),
size_of::<SocketAddrLen>()
);
assert!(size_of::<SocketAddrLen>() <= size_of::<usize>());
}
}